| /* |
| * Copyright (c) 2008-2016 Stefan Krah. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS" AND |
| * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE |
| * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL |
| * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS |
| * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) |
| * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT |
| * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY |
| * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF |
| * SUCH DAMAGE. |
| */ |
| |
| |
| #include mpdecimal_header |
| #include <assert.h> |
| #include "numbertheory.h" |
| #include "sixstep.h" |
| #include "transpose.h" |
| #include "umodarith.h" |
| #include "fourstep.h" |
| |
| |
| /* Bignum: Cache efficient Matrix Fourier Transform for arrays of the |
| form 3 * 2**n (See literature/matrix-transform.txt). */ |
| |
| |
| #ifndef PPRO |
| static inline void |
| std_size3_ntt(mpd_uint_t *x1, mpd_uint_t *x2, mpd_uint_t *x3, |
| mpd_uint_t w3table[3], mpd_uint_t umod) |
| { |
| mpd_uint_t r1, r2; |
| mpd_uint_t w; |
| mpd_uint_t s, tmp; |
| |
| |
| /* k = 0 -> w = 1 */ |
| s = *x1; |
| s = addmod(s, *x2, umod); |
| s = addmod(s, *x3, umod); |
| |
| r1 = s; |
| |
| /* k = 1 */ |
| s = *x1; |
| |
| w = w3table[1]; |
| tmp = MULMOD(*x2, w); |
| s = addmod(s, tmp, umod); |
| |
| w = w3table[2]; |
| tmp = MULMOD(*x3, w); |
| s = addmod(s, tmp, umod); |
| |
| r2 = s; |
| |
| /* k = 2 */ |
| s = *x1; |
| |
| w = w3table[2]; |
| tmp = MULMOD(*x2, w); |
| s = addmod(s, tmp, umod); |
| |
| w = w3table[1]; |
| tmp = MULMOD(*x3, w); |
| s = addmod(s, tmp, umod); |
| |
| *x3 = s; |
| *x2 = r2; |
| *x1 = r1; |
| } |
| #else /* PPRO */ |
| static inline void |
| ppro_size3_ntt(mpd_uint_t *x1, mpd_uint_t *x2, mpd_uint_t *x3, mpd_uint_t w3table[3], |
| mpd_uint_t umod, double *dmod, uint32_t dinvmod[3]) |
| { |
| mpd_uint_t r1, r2; |
| mpd_uint_t w; |
| mpd_uint_t s, tmp; |
| |
| |
| /* k = 0 -> w = 1 */ |
| s = *x1; |
| s = addmod(s, *x2, umod); |
| s = addmod(s, *x3, umod); |
| |
| r1 = s; |
| |
| /* k = 1 */ |
| s = *x1; |
| |
| w = w3table[1]; |
| tmp = ppro_mulmod(*x2, w, dmod, dinvmod); |
| s = addmod(s, tmp, umod); |
| |
| w = w3table[2]; |
| tmp = ppro_mulmod(*x3, w, dmod, dinvmod); |
| s = addmod(s, tmp, umod); |
| |
| r2 = s; |
| |
| /* k = 2 */ |
| s = *x1; |
| |
| w = w3table[2]; |
| tmp = ppro_mulmod(*x2, w, dmod, dinvmod); |
| s = addmod(s, tmp, umod); |
| |
| w = w3table[1]; |
| tmp = ppro_mulmod(*x3, w, dmod, dinvmod); |
| s = addmod(s, tmp, umod); |
| |
| *x3 = s; |
| *x2 = r2; |
| *x1 = r1; |
| } |
| #endif |
| |
| |
| /* forward transform, sign = -1; transform length = 3 * 2**n */ |
| int |
| four_step_fnt(mpd_uint_t *a, mpd_size_t n, int modnum) |
| { |
| mpd_size_t R = 3; /* number of rows */ |
| mpd_size_t C = n / 3; /* number of columns */ |
| mpd_uint_t w3table[3]; |
| mpd_uint_t kernel, w0, w1, wstep; |
| mpd_uint_t *s, *p0, *p1, *p2; |
| mpd_uint_t umod; |
| #ifdef PPRO |
| double dmod; |
| uint32_t dinvmod[3]; |
| #endif |
| mpd_size_t i, k; |
| |
| |
| assert(n >= 48); |
| assert(n <= 3*MPD_MAXTRANSFORM_2N); |
| |
| |
| /* Length R transform on the columns. */ |
| SETMODULUS(modnum); |
| _mpd_init_w3table(w3table, -1, modnum); |
| for (p0=a, p1=p0+C, p2=p0+2*C; p0<a+C; p0++,p1++,p2++) { |
| |
| SIZE3_NTT(p0, p1, p2, w3table); |
| } |
| |
| /* Multiply each matrix element (addressed by i*C+k) by r**(i*k). */ |
| kernel = _mpd_getkernel(n, -1, modnum); |
| for (i = 1; i < R; i++) { |
| w0 = 1; /* r**(i*0): initial value for k=0 */ |
| w1 = POWMOD(kernel, i); /* r**(i*1): initial value for k=1 */ |
| wstep = MULMOD(w1, w1); /* r**(2*i) */ |
| for (k = 0; k < C-1; k += 2) { |
| mpd_uint_t x0 = a[i*C+k]; |
| mpd_uint_t x1 = a[i*C+k+1]; |
| MULMOD2(&x0, w0, &x1, w1); |
| MULMOD2C(&w0, &w1, wstep); /* r**(i*(k+2)) = r**(i*k) * r**(2*i) */ |
| a[i*C+k] = x0; |
| a[i*C+k+1] = x1; |
| } |
| } |
| |
| /* Length C transform on the rows. */ |
| for (s = a; s < a+n; s += C) { |
| if (!six_step_fnt(s, C, modnum)) { |
| return 0; |
| } |
| } |
| |
| #if 0 |
| /* An unordered transform is sufficient for convolution. */ |
| /* Transpose the matrix. */ |
| transpose_3xpow2(a, R, C); |
| #endif |
| |
| return 1; |
| } |
| |
| /* backward transform, sign = 1; transform length = 3 * 2**n */ |
| int |
| inv_four_step_fnt(mpd_uint_t *a, mpd_size_t n, int modnum) |
| { |
| mpd_size_t R = 3; /* number of rows */ |
| mpd_size_t C = n / 3; /* number of columns */ |
| mpd_uint_t w3table[3]; |
| mpd_uint_t kernel, w0, w1, wstep; |
| mpd_uint_t *s, *p0, *p1, *p2; |
| mpd_uint_t umod; |
| #ifdef PPRO |
| double dmod; |
| uint32_t dinvmod[3]; |
| #endif |
| mpd_size_t i, k; |
| |
| |
| assert(n >= 48); |
| assert(n <= 3*MPD_MAXTRANSFORM_2N); |
| |
| |
| #if 0 |
| /* An unordered transform is sufficient for convolution. */ |
| /* Transpose the matrix, producing an R*C matrix. */ |
| transpose_3xpow2(a, C, R); |
| #endif |
| |
| /* Length C transform on the rows. */ |
| for (s = a; s < a+n; s += C) { |
| if (!inv_six_step_fnt(s, C, modnum)) { |
| return 0; |
| } |
| } |
| |
| /* Multiply each matrix element (addressed by i*C+k) by r**(i*k). */ |
| SETMODULUS(modnum); |
| kernel = _mpd_getkernel(n, 1, modnum); |
| for (i = 1; i < R; i++) { |
| w0 = 1; |
| w1 = POWMOD(kernel, i); |
| wstep = MULMOD(w1, w1); |
| for (k = 0; k < C; k += 2) { |
| mpd_uint_t x0 = a[i*C+k]; |
| mpd_uint_t x1 = a[i*C+k+1]; |
| MULMOD2(&x0, w0, &x1, w1); |
| MULMOD2C(&w0, &w1, wstep); |
| a[i*C+k] = x0; |
| a[i*C+k+1] = x1; |
| } |
| } |
| |
| /* Length R transform on the columns. */ |
| _mpd_init_w3table(w3table, 1, modnum); |
| for (p0=a, p1=p0+C, p2=p0+2*C; p0<a+C; p0++,p1++,p2++) { |
| |
| SIZE3_NTT(p0, p1, p2, w3table); |
| } |
| |
| return 1; |
| } |
| |
| |