| #include <math.h> |
| #include <errno.h> |
| |
| |
| #define IBMPC 1 |
| #define ANSIPROT 1 |
| #define MINUSZERO 1 |
| #define INFINITIES 1 |
| #define NANS 1 |
| #define DENORMAL 1 |
| #define VOLATILE |
| #define mtherr(fname, code) |
| #define XPD 0, |
| #ifdef _WIN64 |
| #define XPD_SHORT 0, 0, |
| #define XPD_LONG 0, |
| #else |
| #define XPD_SHORT |
| #define XPD_LONG |
| #endif |
| |
| #if UNK |
| typedef union uLD { long double ld; unsigned short sh[8]; long lo[4]; } uLD; |
| typedef union uD { double d; unsigned short sh[4]; } uD; |
| #elif IBMPC |
| typedef union uLD { unsigned short sh[8]; long double ld; long lo[4]; } uLD; |
| typedef union uD { unsigned short sh[4]; double d; } uD; |
| #elif MIEEE |
| typedef union uLD { long lo[4]; long double ld; unsigned short sh[8]; } uLD; |
| typedef union uD { unsigned short sh[4]; double d; } uD; |
| #else |
| #error Unknown uLD/uD type definition |
| #endif |
| |
| #define _CEPHES_USE_ERRNO |
| |
| #ifdef _CEPHES_USE_ERRNO |
| #define _SET_ERRNO(x) errno = (x) |
| #else |
| #define _SET_ERRNO(x) |
| #endif |
| |
| /* constants used by cephes functions */ |
| |
| /* double */ |
| #define MAXNUM 1.7976931348623158E308 |
| #define MAXLOG 7.09782712893383996843E2 |
| #define MINLOG -7.08396418532264106224E2 |
| #define LOGE2 6.93147180559945309417E-1 |
| #define LOG2E 1.44269504088896340736 |
| #define PI 3.14159265358979323846 |
| #define PIO2 1.57079632679489661923 |
| #define PIO4 7.85398163397448309616E-1 |
| |
| #define NEGZERO (-0.0) |
| #undef NAN |
| #undef INFINITY |
| #if (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ > 2)) |
| #define INFINITY __builtin_huge_val() |
| #define NAN __builtin_nan("") |
| #else |
| extern double __INF; |
| #define INFINITY (__INF) |
| extern double __QNAN; |
| #define NAN (__QNAN) |
| #endif |
| |
| /*long double*/ |
| #if defined(__arm__) || defined(_ARM_) |
| #define MAXNUML 1.7976931348623158E308 |
| #define MAXLOGL 7.09782712893383996843E2 |
| #define MINLOGL -7.08396418532264106224E2 |
| #define LOGE2L 6.93147180559945309417E-1 |
| #define LOG2EL 1.44269504088896340736 |
| #define PIL 3.14159265358979323846 |
| #define PIO2L 1.57079632679489661923 |
| #define PIO4L 7.85398163397448309616E-1 |
| #else |
| #define MAXNUML 1.189731495357231765021263853E4932L |
| #define MAXLOGL 1.1356523406294143949492E4L |
| #define MINLOGL -1.13994985314888605586758E4L |
| #define LOGE2L 6.9314718055994530941723E-1L |
| #define LOG2EL 1.4426950408889634073599E0L |
| #define PIL 3.1415926535897932384626L |
| #define PIO2L 1.5707963267948966192313L |
| #define PIO4L 7.8539816339744830961566E-1L |
| #endif /* defined(__arm__) || defined(_ARM_) */ |
| |
| #define isfinitel isfinite |
| #define isinfl isinf |
| #define isnanl isnan |
| #define signbitl signbit |
| |
| #define NEGZEROL (-0.0L) |
| |
| #undef NANL |
| #undef INFINITYL |
| #if (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ > 2)) |
| #define INFINITYL __builtin_huge_vall() |
| #define NANL __builtin_nanl("") |
| #else |
| extern long double __INFL; |
| #define INFINITYL (__INFL) |
| extern long double __QNANL; |
| #define NANL (__QNANL) |
| #endif |
| |
| /* float */ |
| |
| #define MAXNUMF 3.4028234663852885981170418348451692544e38F |
| #define MAXLOGF 88.72283905206835F |
| #define MINLOGF -103.278929903431851103F /* log(2^-149) */ |
| #define LOG2EF 1.44269504088896341F |
| #define LOGE2F 0.693147180559945309F |
| #define PIF 3.141592653589793238F |
| #define PIO2F 1.5707963267948966192F |
| #define PIO4F 0.7853981633974483096F |
| |
| #define isfinitef isfinite |
| #define isinff isinf |
| #define isnanf isnan |
| #define signbitf signbit |
| |
| #define NEGZEROF (-0.0F) |
| |
| #undef NANF |
| #undef INFINITYF |
| #if (__GNUC__ > 3 || (__GNUC__ == 3 && __GNUC_MINOR__ > 2)) |
| #define INFINITYF __builtin_huge_valf() |
| #define NANF __builtin_nanf("") |
| #else |
| extern float __INFF; |
| #define INFINITYF (__INFF) |
| extern float __QNANF; |
| #define NANF (__QNANF) |
| #endif |
| |
| |
| /* double */ |
| |
| /* |
| Cephes Math Library Release 2.2: July, 1992 |
| Copyright 1984, 1987, 1988, 1992 by Stephen L. Moshier |
| Direct inquiries to 30 Frost Street, Cambridge, MA 02140 |
| */ |
| |
| |
| /* polevl.c |
| * p1evl.c |
| * |
| * Evaluate polynomial |
| * |
| * |
| * |
| * SYNOPSIS: |
| * |
| * int N; |
| * double x, y, coef[N+1], polevl[]; |
| * |
| * y = polevl( x, coef, N ); |
| * |
| * |
| * |
| * DESCRIPTION: |
| * |
| * Evaluates polynomial of degree N: |
| * |
| * 2 N |
| * y = C + C x + C x +...+ C x |
| * 0 1 2 N |
| * |
| * Coefficients are stored in reverse order: |
| * |
| * coef[0] = C , ..., coef[N] = C . |
| * N 0 |
| * |
| * The function p1evl() assumes that coef[N] = 1.0 and is |
| * omitted from the array. Its calling arguments are |
| * otherwise the same as polevl(). |
| * |
| * |
| * SPEED: |
| * |
| * In the interest of speed, there are no checks for out |
| * of bounds arithmetic. This routine is used by most of |
| * the functions in the library. Depending on available |
| * equipment features, the user may wish to rewrite the |
| * program in microcode or assembly language. |
| * |
| */ |
| |
| /* Polynomial evaluator: |
| * P[0] x^n + P[1] x^(n-1) + ... + P[n] |
| */ |
| static __inline__ double polevl(double x, const uD *p, int n) |
| { |
| register double y; |
| |
| y = p->d; |
| p++; |
| do |
| { |
| y = y * x + p->d; |
| p++; |
| } |
| while (--n); |
| return (y); |
| } |
| |
| |
| /* Polynomial evaluator: |
| * x^n + P[0] x^(n-1) + P[1] x^(n-2) + ... + P[n] |
| */ |
| static __inline__ double p1evl(double x, const uD *p, int n) |
| { |
| register double y; |
| |
| n -= 1; |
| y = x + p->d; p++; |
| do |
| { |
| y = y * x + p->d; p++; |
| } |
| while (--n); |
| return (y); |
| } |
| |
| |
| /* long double */ |
| /* |
| Cephes Math Library Release 2.2: July, 1992 |
| Copyright 1984, 1987, 1988, 1992 by Stephen L. Moshier |
| Direct inquiries to 30 Frost Street, Cambridge, MA 02140 |
| */ |
| |
| |
| /* polevll.c |
| * p1evll.c |
| * |
| * Evaluate polynomial |
| * |
| * |
| * |
| * SYNOPSIS: |
| * |
| * int N; |
| * long double x, y, coef[N+1], polevl[]; |
| * |
| * y = polevll( x, coef, N ); |
| * |
| * |
| * |
| * DESCRIPTION: |
| * |
| * Evaluates polynomial of degree N: |
| * |
| * 2 N |
| * y = C + C x + C x +...+ C x |
| * 0 1 2 N |
| * |
| * Coefficients are stored in reverse order: |
| * |
| * coef[0] = C , ..., coef[N] = C . |
| * N 0 |
| * |
| * The function p1evll() assumes that coef[N] = 1.0 and is |
| * omitted from the array. Its calling arguments are |
| * otherwise the same as polevll(). |
| * |
| * |
| * SPEED: |
| * |
| * In the interest of speed, there are no checks for out |
| * of bounds arithmetic. This routine is used by most of |
| * the functions in the library. Depending on available |
| * equipment features, the user may wish to rewrite the |
| * program in microcode or assembly language. |
| * |
| */ |
| |
| /* Polynomial evaluator: |
| * P[0] x^n + P[1] x^(n-1) + ... + P[n] |
| */ |
| static __inline__ long double polevll(long double x, const uLD *p, int n) |
| { |
| register long double y; |
| |
| y = p->ld; |
| p++; |
| do |
| { |
| y = y * x + p->ld; |
| p++; |
| } |
| while (--n); |
| return y; |
| } |
| |
| |
| |
| /* Polynomial evaluator: |
| * x^n + P[0] x^(n-1) + P[1] x^(n-2) + ... + P[n] |
| */ |
| static __inline__ long double p1evll(long double x, const uLD *p, int n) |
| { |
| register long double y; |
| |
| n -= 1; |
| y = x + p->ld; |
| p++; |
| |
| do |
| { |
| y = y * x + p->ld; |
| p++; |
| } |
| while (--n); |
| return (y); |
| } |
| |
| /* Float version */ |
| |
| /* polevlf.c |
| * p1evlf.c |
| * |
| * Evaluate polynomial |
| * |
| * |
| * |
| * SYNOPSIS: |
| * |
| * int N; |
| * float x, y, coef[N+1], polevlf[]; |
| * |
| * y = polevlf( x, coef, N ); |
| * |
| * |
| * |
| * DESCRIPTION: |
| * |
| * Evaluates polynomial of degree N: |
| * |
| * 2 N |
| * y = C + C x + C x +...+ C x |
| * 0 1 2 N |
| * |
| * Coefficients are stored in reverse order: |
| * |
| * coef[0] = C , ..., coef[N] = C . |
| * N 0 |
| * |
| * The function p1evl() assumes that coef[N] = 1.0 and is |
| * omitted from the array. Its calling arguments are |
| * otherwise the same as polevl(). |
| * |
| * |
| * SPEED: |
| * |
| * In the interest of speed, there are no checks for out |
| * of bounds arithmetic. This routine is used by most of |
| * the functions in the library. Depending on available |
| * equipment features, the user may wish to rewrite the |
| * program in microcode or assembly language. |
| * |
| */ |
| |
| /* |
| Cephes Math Library Release 2.1: December, 1988 |
| Copyright 1984, 1987, 1988 by Stephen L. Moshier |
| Direct inquiries to 30 Frost Street, Cambridge, MA 02140 |
| */ |
| |
| static __inline__ float polevlf(float x, const float* coef, int N) |
| { |
| float ans; |
| float *p; |
| int i; |
| |
| p = (float*)coef; |
| ans = *p++; |
| |
| /* |
| for (i = 0; i < N; i++) |
| ans = ans * x + *p++; |
| */ |
| |
| i = N; |
| do |
| ans = ans * x + *p++; |
| while (--i); |
| |
| return (ans); |
| } |
| |
| /* p1evl() */ |
| /* N |
| * Evaluate polynomial when coefficient of x is 1.0. |
| * Otherwise same as polevl. |
| */ |
| |
| static __inline__ float p1evlf(float x, const float *coef, int N) |
| { |
| float ans; |
| float *p; |
| int i; |
| |
| p = (float*)coef; |
| ans = x + *p++; |
| i = N - 1; |
| |
| do |
| ans = ans * x + *p++; |
| while (--i); |
| |
| return (ans); |
| } |
| |