/** | |
* This file has no copyright assigned and is placed in the Public Domain. | |
* This file is part of the w64 mingw-runtime package. | |
* No warranty is given; refer to the file DISCLAIMER within this package. | |
*/ | |
#include <math.h> | |
#include "cephes_mconf.h" | |
static const double CBRT2 = 1.2599210498948731647672; | |
static const double CBRT4 = 1.5874010519681994747517; | |
static const double CBRT2I = 0.79370052598409973737585; | |
static const double CBRT4I = 0.62996052494743658238361; | |
#ifndef __MINGW32__ | |
#ifdef ANSIPROT | |
extern double frexp ( double, int * ); | |
extern double ldexp ( double, int ); | |
extern int isnan ( double ); | |
extern int isfinite ( double ); | |
#else | |
double frexp(), ldexp(); | |
int isnan(), isfinite(); | |
#endif | |
#endif | |
double cbrt(x) | |
double x; | |
{ | |
int e, rem, sign; | |
double z; | |
#ifdef __MINGW32__ | |
if (!isfinite (x) || x == 0 ) | |
return x; | |
#else | |
#ifdef NANS | |
if( isnan(x) ) | |
return x; | |
#endif | |
#ifdef INFINITIES | |
if( !isfinite(x) ) | |
return x; | |
#endif | |
if( x == 0 ) | |
return( x ); | |
#endif /* __MINGW32__ */ | |
if( x > 0 ) | |
sign = 1; | |
else | |
{ | |
sign = -1; | |
x = -x; | |
} | |
z = x; | |
/* extract power of 2, leaving | |
* mantissa between 0.5 and 1 | |
*/ | |
x = frexp( x, &e ); | |
/* Approximate cube root of number between .5 and 1, | |
* peak relative error = 9.2e-6 | |
*/ | |
x = (((-1.3466110473359520655053e-1 * x | |
+ 5.4664601366395524503440e-1) * x | |
- 9.5438224771509446525043e-1) * x | |
+ 1.1399983354717293273738e0 ) * x | |
+ 4.0238979564544752126924e-1; | |
/* exponent divided by 3 */ | |
if( e >= 0 ) | |
{ | |
rem = e; | |
e /= 3; | |
rem -= 3*e; | |
if( rem == 1 ) | |
x *= CBRT2; | |
else if( rem == 2 ) | |
x *= CBRT4; | |
} | |
/* argument less than 1 */ | |
else | |
{ | |
e = -e; | |
rem = e; | |
e /= 3; | |
rem -= 3*e; | |
if( rem == 1 ) | |
x *= CBRT2I; | |
else if( rem == 2 ) | |
x *= CBRT4I; | |
e = -e; | |
} | |
/* multiply by power of 2 */ | |
x = ldexp( x, e ); | |
/* Newton iteration */ | |
x -= ( x - (z/(x*x)) )*0.33333333333333333333; | |
#ifdef DEC | |
x -= ( x - (z/(x*x)) )/3.0; | |
#else | |
x -= ( x - (z/(x*x)) )*0.33333333333333333333; | |
#endif | |
if( sign < 0 ) | |
x = -x; | |
return(x); | |
} |