| /* mpfr_lngamma -- lngamma function |
| |
| Copyright 2005-2017 Free Software Foundation, Inc. |
| Contributed by the AriC and Caramba projects, INRIA. |
| |
| This file is part of the GNU MPFR Library. |
| |
| The GNU MPFR Library is free software; you can redistribute it and/or modify |
| it under the terms of the GNU Lesser General Public License as published by |
| the Free Software Foundation; either version 3 of the License, or (at your |
| option) any later version. |
| |
| The GNU MPFR Library is distributed in the hope that it will be useful, but |
| WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
| or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public |
| License for more details. |
| |
| You should have received a copy of the GNU Lesser General Public License |
| along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see |
| http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc., |
| 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */ |
| |
| #define MPFR_NEED_LONGLONG_H |
| #include "third_party/mpfr/v3_1_6/src/mpfr-impl.h" |
| |
| /* given a precision p, return alpha, such that the argument reduction |
| will use k = alpha*p*log(2). |
| |
| Warning: we should always have alpha >= log(2)/(2Pi) ~ 0.11, |
| and the smallest value of alpha multiplied by the smallest working |
| precision should be >= 4. |
| */ |
| static void |
| mpfr_gamma_alpha (mpfr_t s, mpfr_prec_t p) |
| { |
| if (p <= 100) |
| mpfr_set_ui_2exp (s, 614, -10, MPFR_RNDN); /* about 0.6 */ |
| else if (p <= 500) |
| mpfr_set_ui_2exp (s, 819, -10, MPFR_RNDN); /* about 0.8 */ |
| else if (p <= 1000) |
| mpfr_set_ui_2exp (s, 1331, -10, MPFR_RNDN); /* about 1.3 */ |
| else if (p <= 2000) |
| mpfr_set_ui_2exp (s, 1741, -10, MPFR_RNDN); /* about 1.7 */ |
| else if (p <= 5000) |
| mpfr_set_ui_2exp (s, 2253, -10, MPFR_RNDN); /* about 2.2 */ |
| else if (p <= 10000) |
| mpfr_set_ui_2exp (s, 3482, -10, MPFR_RNDN); /* about 3.4 */ |
| else |
| mpfr_set_ui_2exp (s, 9, -1, MPFR_RNDN); /* 4.5 */ |
| } |
| |
| #ifdef IS_GAMMA |
| |
| /* This function is called in case of intermediate overflow/underflow. |
| The s1 and s2 arguments are temporary MPFR numbers, having the |
| working precision. If the result could be determined, then the |
| flags are updated via pexpo, y is set to the result, and the |
| (non-zero) ternary value is returned. Otherwise 0 is returned |
| in order to perform the next Ziv iteration. */ |
| static int |
| mpfr_explgamma (mpfr_ptr y, mpfr_srcptr x, mpfr_save_expo_t *pexpo, |
| mpfr_ptr s1, mpfr_ptr s2, mpfr_rnd_t rnd) |
| { |
| mpfr_t t1, t2; |
| int inex1, inex2, sign; |
| MPFR_BLOCK_DECL (flags1); |
| MPFR_BLOCK_DECL (flags2); |
| MPFR_GROUP_DECL (group); |
| |
| MPFR_BLOCK (flags1, inex1 = mpfr_lgamma (s1, &sign, x, MPFR_RNDD)); |
| MPFR_ASSERTN (inex1 != 0); |
| /* s1 = RNDD(lngamma(x)), inexact */ |
| if (MPFR_UNLIKELY (MPFR_OVERFLOW (flags1))) |
| { |
| if (MPFR_SIGN (s1) > 0) |
| { |
| MPFR_SAVE_EXPO_UPDATE_FLAGS (*pexpo, MPFR_FLAGS_OVERFLOW); |
| return mpfr_overflow (y, rnd, sign); |
| } |
| else |
| { |
| MPFR_SAVE_EXPO_UPDATE_FLAGS (*pexpo, MPFR_FLAGS_UNDERFLOW); |
| return mpfr_underflow (y, rnd == MPFR_RNDN ? MPFR_RNDZ : rnd, sign); |
| } |
| } |
| |
| mpfr_set (s2, s1, MPFR_RNDN); /* exact */ |
| mpfr_nextabove (s2); /* v = RNDU(lngamma(z0)) */ |
| |
| if (sign < 0) |
| rnd = MPFR_INVERT_RND (rnd); /* since the result with be negated */ |
| MPFR_GROUP_INIT_2 (group, MPFR_PREC (y), t1, t2); |
| MPFR_BLOCK (flags1, inex1 = mpfr_exp (t1, s1, rnd)); |
| MPFR_BLOCK (flags2, inex2 = mpfr_exp (t2, s2, rnd)); |
| /* t1 is the rounding with mode 'rnd' of a lower bound on |Gamma(x)|, |
| t2 is the rounding with mode 'rnd' of an upper bound, thus if both |
| are equal, so is the wanted result. If t1 and t2 differ or the flags |
| differ, at some point of Ziv's loop they should agree. */ |
| if (mpfr_equal_p (t1, t2) && flags1 == flags2) |
| { |
| MPFR_ASSERTN ((inex1 > 0 && inex2 > 0) || (inex1 < 0 && inex2 < 0)); |
| mpfr_set4 (y, t1, MPFR_RNDN, sign); /* exact */ |
| if (sign < 0) |
| inex1 = - inex1; |
| MPFR_SAVE_EXPO_UPDATE_FLAGS (*pexpo, flags1); |
| } |
| else |
| inex1 = 0; /* couldn't determine the result */ |
| MPFR_GROUP_CLEAR (group); |
| |
| return inex1; |
| } |
| |
| #else |
| |
| static int |
| unit_bit (mpfr_srcptr x) |
| { |
| mpfr_exp_t expo; |
| mpfr_prec_t prec; |
| mp_limb_t x0; |
| |
| expo = MPFR_GET_EXP (x); |
| if (expo <= 0) |
| return 0; /* |x| < 1 */ |
| |
| prec = MPFR_PREC (x); |
| if (expo > prec) |
| return 0; /* y is a multiple of 2^(expo-prec), thus an even integer */ |
| |
| /* Now, the unit bit is represented. */ |
| |
| prec = MPFR_PREC2LIMBS (prec) * GMP_NUMB_BITS - expo; |
| /* number of represented fractional bits (including the trailing 0's) */ |
| |
| x0 = *(MPFR_MANT (x) + prec / GMP_NUMB_BITS); |
| /* limb containing the unit bit */ |
| |
| return (x0 >> (prec % GMP_NUMB_BITS)) & 1; |
| } |
| |
| #endif |
| |
| /* lngamma(x) = log(gamma(x)). |
| We use formula [6.1.40] from Abramowitz&Stegun: |
| lngamma(z) = (z-1/2)*log(z) - z + 1/2*log(2*Pi) |
| + sum (Bernoulli[2m]/(2m)/(2m-1)/z^(2m-1),m=1..infinity) |
| According to [6.1.42], if the sum is truncated after m=n, the error |
| R_n(z) is bounded by |B[2n+2]|*K(z)/(2n+1)/(2n+2)/|z|^(2n+1) |
| where K(z) = max (z^2/(u^2+z^2)) for u >= 0. |
| For z real, |K(z)| <= 1 thus R_n(z) is bounded by the first neglected term. |
| */ |
| #ifdef IS_GAMMA |
| #define GAMMA_FUNC mpfr_gamma_aux |
| #else |
| #define GAMMA_FUNC mpfr_lngamma_aux |
| #endif |
| |
| static int |
| GAMMA_FUNC (mpfr_ptr y, mpfr_srcptr z0, mpfr_rnd_t rnd) |
| { |
| mpfr_prec_t precy, w; /* working precision */ |
| mpfr_t s, t, u, v, z; |
| unsigned long m, k, maxm; |
| mpz_t *INITIALIZED(B); /* variable B declared as initialized */ |
| int compared; |
| int inexact = 0; /* 0 means: result y not set yet */ |
| mpfr_exp_t err_s, err_t; |
| unsigned long Bm = 0; /* number of allocated B[] */ |
| unsigned long oldBm; |
| double d; |
| MPFR_SAVE_EXPO_DECL (expo); |
| MPFR_ZIV_DECL (loop); |
| |
| compared = mpfr_cmp_ui (z0, 1); |
| |
| MPFR_SAVE_EXPO_MARK (expo); |
| |
| #ifndef IS_GAMMA /* lngamma or lgamma */ |
| if (compared == 0 || (compared > 0 && mpfr_cmp_ui (z0, 2) == 0)) |
| { |
| MPFR_SAVE_EXPO_FREE (expo); |
| return mpfr_set_ui (y, 0, MPFR_RNDN); /* lngamma(1 or 2) = +0 */ |
| } |
| |
| /* Deal here with tiny inputs. We have for -0.3 <= x <= 0.3: |
| - log|x| - gamma*x <= log|gamma(x)| <= - log|x| - gamma*x + x^2 */ |
| if (MPFR_EXP(z0) <= - (mpfr_exp_t) MPFR_PREC(y)) |
| { |
| mpfr_t l, h, g; |
| int ok, inex1, inex2; |
| mpfr_prec_t prec = MPFR_PREC(y) + 14; |
| MPFR_ZIV_DECL (loop); |
| |
| MPFR_ZIV_INIT (loop, prec); |
| do |
| { |
| mpfr_init2 (l, prec); |
| if (MPFR_IS_POS(z0)) |
| { |
| mpfr_log (l, z0, MPFR_RNDU); /* upper bound for log(z0) */ |
| mpfr_init2 (h, MPFR_PREC(l)); |
| } |
| else |
| { |
| mpfr_init2 (h, MPFR_PREC(z0)); |
| mpfr_neg (h, z0, MPFR_RNDN); /* exact */ |
| mpfr_log (l, h, MPFR_RNDU); /* upper bound for log(-z0) */ |
| mpfr_set_prec (h, MPFR_PREC(l)); |
| } |
| mpfr_neg (l, l, MPFR_RNDD); /* lower bound for -log(|z0|) */ |
| mpfr_set (h, l, MPFR_RNDD); /* exact */ |
| mpfr_nextabove (h); /* upper bound for -log(|z0|), avoids two calls |
| to mpfr_log */ |
| mpfr_init2 (g, MPFR_PREC(l)); |
| /* if z0>0, we need an upper approximation of Euler's constant |
| for the left bound */ |
| mpfr_const_euler (g, MPFR_IS_POS(z0) ? MPFR_RNDU : MPFR_RNDD); |
| mpfr_mul (g, g, z0, MPFR_RNDD); |
| mpfr_sub (l, l, g, MPFR_RNDD); |
| mpfr_const_euler (g, MPFR_IS_POS(z0) ? MPFR_RNDD : MPFR_RNDU); /* cached */ |
| mpfr_mul (g, g, z0, MPFR_RNDU); |
| mpfr_sub (h, h, g, MPFR_RNDD); |
| mpfr_mul (g, z0, z0, MPFR_RNDU); |
| mpfr_add (h, h, g, MPFR_RNDU); |
| inex1 = mpfr_prec_round (l, MPFR_PREC(y), rnd); |
| inex2 = mpfr_prec_round (h, MPFR_PREC(y), rnd); |
| /* Caution: we not only need l = h, but both inexact flags should |
| agree. Indeed, one of the inexact flags might be zero. In that |
| case if we assume lngamma(z0) cannot be exact, the other flag |
| should be correct. We are conservative here and request that both |
| inexact flags agree. */ |
| ok = SAME_SIGN (inex1, inex2) && mpfr_cmp (l, h) == 0; |
| if (ok) |
| mpfr_set (y, h, rnd); /* exact */ |
| mpfr_clear (l); |
| mpfr_clear (h); |
| mpfr_clear (g); |
| if (ok) |
| { |
| MPFR_ZIV_FREE (loop); |
| MPFR_SAVE_EXPO_FREE (expo); |
| return mpfr_check_range (y, inex1, rnd); |
| } |
| /* since we have log|gamma(x)| = - log|x| - gamma*x + O(x^2), |
| if x ~ 2^(-n), then we have a n-bit approximation, thus |
| we can try again with a working precision of n bits, |
| especially when n >> PREC(y). |
| Otherwise we would use the reflection formula evaluating x-1, |
| which would need precision n. */ |
| MPFR_ZIV_NEXT (loop, prec); |
| } |
| while (prec <= -MPFR_EXP(z0)); |
| MPFR_ZIV_FREE (loop); |
| } |
| #endif |
| |
| precy = MPFR_PREC(y); |
| |
| mpfr_init2 (s, MPFR_PREC_MIN); |
| mpfr_init2 (t, MPFR_PREC_MIN); |
| mpfr_init2 (u, MPFR_PREC_MIN); |
| mpfr_init2 (v, MPFR_PREC_MIN); |
| mpfr_init2 (z, MPFR_PREC_MIN); |
| |
| if (compared < 0) |
| { |
| mpfr_exp_t err_u; |
| |
| /* use reflection formula: |
| gamma(x) = Pi*(x-1)/sin(Pi*(2-x))/gamma(2-x) |
| thus lngamma(x) = log(Pi*(x-1)/sin(Pi*(2-x))) - lngamma(2-x) */ |
| |
| w = precy + MPFR_INT_CEIL_LOG2 (precy); |
| w += MPFR_INT_CEIL_LOG2 (w) + 14; |
| MPFR_ZIV_INIT (loop, w); |
| while (1) |
| { |
| MPFR_ASSERTD(w >= 3); |
| mpfr_set_prec (s, w); |
| mpfr_set_prec (t, w); |
| mpfr_set_prec (u, w); |
| mpfr_set_prec (v, w); |
| /* In the following, we write r for a real of absolute value |
| at most 2^(-w). Different instances of r may represent different |
| values. */ |
| mpfr_ui_sub (s, 2, z0, MPFR_RNDD); /* s = (2-z0) * (1+2r) >= 1 */ |
| mpfr_const_pi (t, MPFR_RNDN); /* t = Pi * (1+r) */ |
| mpfr_lngamma (u, s, MPFR_RNDN); /* lngamma(2-x) */ |
| /* Let s = (2-z0) + h. By construction, -(2-z0)*2^(1-w) <= h <= 0. |
| We have lngamma(s) = lngamma(2-z0) + h*Psi(z), z in [2-z0+h,2-z0]. |
| Since 2-z0+h = s >= 1 and |Psi(x)| <= max(1,log(x)) for x >= 1, |
| the error on u is bounded by |
| ulp(u)/2 + (2-z0)*max(1,log(2-z0))*2^(1-w) |
| = (1/2 + (2-z0)*max(1,log(2-z0))*2^(1-E(u))) ulp(u) */ |
| d = (double) MPFR_GET_EXP(s) * 0.694; /* upper bound for log(2-z0) */ |
| err_u = MPFR_GET_EXP(s) + __gmpfr_ceil_log2 (d) + 1 - MPFR_GET_EXP(u); |
| err_u = (err_u >= 0) ? err_u + 1 : 0; |
| /* now the error on u is bounded by 2^err_u ulps */ |
| |
| mpfr_mul (s, s, t, MPFR_RNDN); /* Pi*(2-x) * (1+r)^4 */ |
| err_s = MPFR_GET_EXP(s); /* 2-x <= 2^err_s */ |
| mpfr_sin (s, s, MPFR_RNDN); /* sin(Pi*(2-x)) */ |
| /* the error on s is bounded by 1/2*ulp(s) + [(1+2^(-w))^4-1]*(2-x) |
| <= 1/2*ulp(s) + 5*2^(-w)*(2-x) for w >= 3 |
| <= (1/2 + 5 * 2^(-E(s)) * (2-x)) ulp(s) */ |
| err_s += 3 - MPFR_GET_EXP(s); |
| err_s = (err_s >= 0) ? err_s + 1 : 0; |
| /* the error on s is bounded by 2^err_s ulp(s), thus by |
| 2^(err_s+1)*2^(-w)*|s| since ulp(s) <= 2^(1-w)*|s|. |
| Now n*2^(-w) can always be written |(1+r)^n-1| for some |
| |r|<=2^(-w), thus taking n=2^(err_s+1) we see that |
| |S - s| <= |(1+r)^(2^(err_s+1))-1| * |s|, where S is the |
| true value. |
| In fact if ulp(s) <= ulp(S) the same inequality holds for |
| |S| instead of |s| in the right hand side, i.e., we can |
| write s = (1+r)^(2^(err_s+1)) * S. |
| But if ulp(S) < ulp(s), we need to add one ``bit'' to the error, |
| to get s = (1+r)^(2^(err_s+2)) * S. This is true since with |
| E = n*2^(-w) we have |s - S| <= E * |s|, thus |
| |s - S| <= E/(1-E) * |S|. |
| Now E/(1-E) is bounded by 2E as long as E<=1/2, |
| and 2E can be written (1+r)^(2n)-1 as above. |
| */ |
| err_s += 2; /* exponent of relative error */ |
| |
| mpfr_sub_ui (v, z0, 1, MPFR_RNDN); /* v = (x-1) * (1+r) */ |
| mpfr_mul (v, v, t, MPFR_RNDN); /* v = Pi*(x-1) * (1+r)^3 */ |
| mpfr_div (v, v, s, MPFR_RNDN); /* Pi*(x-1)/sin(Pi*(2-x)) */ |
| mpfr_abs (v, v, MPFR_RNDN); |
| /* (1+r)^(3+2^err_s+1) */ |
| err_s = (err_s <= 1) ? 3 : err_s + 1; |
| /* now (1+r)^M with M <= 2^err_s */ |
| mpfr_log (v, v, MPFR_RNDN); |
| /* log(v*(1+e)) = log(v)+log(1+e) where |e| <= 2^(err_s-w). |
| Since |log(1+e)| <= 2*e for |e| <= 1/4, the error on v is |
| bounded by ulp(v)/2 + 2^(err_s+1-w). */ |
| if (err_s + 2 > w) |
| { |
| w += err_s + 2; |
| } |
| else |
| { |
| err_s += 1 - MPFR_GET_EXP(v); |
| err_s = (err_s >= 0) ? err_s + 1 : 0; |
| /* the error on v is bounded by 2^err_s ulps */ |
| err_u += MPFR_GET_EXP(u); /* absolute error on u */ |
| err_s += MPFR_GET_EXP(v); /* absolute error on v */ |
| mpfr_sub (s, v, u, MPFR_RNDN); |
| /* the total error on s is bounded by ulp(s)/2 + 2^(err_u-w) |
| + 2^(err_s-w) <= ulp(s)/2 + 2^(max(err_u,err_s)+1-w) */ |
| err_s = (err_s >= err_u) ? err_s : err_u; |
| err_s += 1 - MPFR_GET_EXP(s); /* error is 2^err_s ulp(s) */ |
| err_s = (err_s >= 0) ? err_s + 1 : 0; |
| if (mpfr_can_round (s, w - err_s, MPFR_RNDN, MPFR_RNDZ, precy |
| + (rnd == MPFR_RNDN))) |
| goto end; |
| } |
| MPFR_ZIV_NEXT (loop, w); |
| } |
| MPFR_ZIV_FREE (loop); |
| } |
| |
| /* now z0 > 1 */ |
| |
| MPFR_ASSERTD (compared > 0); |
| |
| /* since k is O(w), the value of log(z0*...*(z0+k-1)) is about w*log(w), |
| so there is a cancellation of ~log(w) in the argument reconstruction */ |
| w = precy + MPFR_INT_CEIL_LOG2 (precy); |
| w += MPFR_INT_CEIL_LOG2 (w) + 13; |
| MPFR_ZIV_INIT (loop, w); |
| while (1) |
| { |
| MPFR_ASSERTD (w >= 3); |
| |
| /* argument reduction: we compute gamma(z0 + k), where the series |
| has error term B_{2n}/(z0+k)^(2n) ~ (n/(Pi*e*(z0+k)))^(2n) |
| and we need k steps of argument reconstruction. Assuming k is large |
| with respect to z0, and k = n, we get 1/(Pi*e)^(2n) ~ 2^(-w), i.e., |
| k ~ w*log(2)/2/log(Pi*e) ~ 0.1616 * w. |
| However, since the series is more expensive to compute, the optimal |
| value seems to be k ~ 4.5 * w experimentally. */ |
| mpfr_set_prec (s, 53); |
| mpfr_gamma_alpha (s, w); |
| mpfr_set_ui_2exp (s, 9, -1, MPFR_RNDU); |
| mpfr_mul_ui (s, s, w, MPFR_RNDU); |
| if (mpfr_cmp (z0, s) < 0) |
| { |
| mpfr_sub (s, s, z0, MPFR_RNDU); |
| k = mpfr_get_ui (s, MPFR_RNDU); |
| if (k < 3) |
| k = 3; |
| } |
| else |
| k = 3; |
| |
| mpfr_set_prec (s, w); |
| mpfr_set_prec (t, w); |
| mpfr_set_prec (u, w); |
| mpfr_set_prec (v, w); |
| mpfr_set_prec (z, w); |
| |
| mpfr_add_ui (z, z0, k, MPFR_RNDN); |
| /* z = (z0+k)*(1+t1) with |t1| <= 2^(-w) */ |
| |
| /* z >= 4 ensures the relative error on log(z) is small, |
| and also (z-1/2)*log(z)-z >= 0 */ |
| MPFR_ASSERTD (mpfr_cmp_ui (z, 4) >= 0); |
| |
| mpfr_log (s, z, MPFR_RNDN); /* log(z) */ |
| /* we have s = log((z0+k)*(1+t1))*(1+t2) with |t1|, |t2| <= 2^(-w). |
| Since w >= 2 and z0+k >= 4, we can write log((z0+k)*(1+t1)) |
| = log(z0+k) * (1+t3) with |t3| <= 2^(-w), thus we have |
| s = log(z0+k) * (1+t4)^2 with |t4| <= 2^(-w) */ |
| mpfr_mul_2ui (t, z, 1, MPFR_RNDN); /* t = 2z * (1+t5) */ |
| mpfr_sub_ui (t, t, 1, MPFR_RNDN); /* t = 2z-1 * (1+t6)^3 */ |
| /* since we can write 2z*(1+t5) = (2z-1)*(1+t5') with |
| t5' = 2z/(2z-1) * t5, thus |t5'| <= 8/7 * t5 */ |
| mpfr_mul (s, s, t, MPFR_RNDN); /* (2z-1)*log(z) * (1+t7)^6 */ |
| mpfr_div_2ui (s, s, 1, MPFR_RNDN); /* (z-1/2)*log(z) * (1+t7)^6 */ |
| mpfr_sub (s, s, z, MPFR_RNDN); /* (z-1/2)*log(z)-z */ |
| /* s = [(z-1/2)*log(z)-z]*(1+u)^14, s >= 1/2 */ |
| |
| mpfr_ui_div (u, 1, z, MPFR_RNDN); /* 1/z * (1+u), u <= 1/4 since z >= 4 */ |
| |
| /* the first term is B[2]/2/z = 1/12/z: t=1/12/z, C[2]=1 */ |
| mpfr_div_ui (t, u, 12, MPFR_RNDN); /* 1/(12z) * (1+u)^2, t <= 3/128 */ |
| mpfr_set (v, t, MPFR_RNDN); /* (1+u)^2, v < 2^(-5) */ |
| mpfr_add (s, s, v, MPFR_RNDN); /* (1+u)^15 */ |
| |
| mpfr_mul (u, u, u, MPFR_RNDN); /* 1/z^2 * (1+u)^3 */ |
| |
| if (Bm == 0) |
| { |
| B = mpfr_bernoulli_internal ((mpz_t *) 0, 0); |
| B = mpfr_bernoulli_internal (B, 1); |
| Bm = 2; |
| } |
| |
| /* m <= maxm ensures that 2*m*(2*m+1) <= ULONG_MAX */ |
| maxm = 1UL << (GMP_NUMB_BITS / 2 - 1); |
| |
| /* s:(1+u)^15, t:(1+u)^2, t <= 3/128 */ |
| |
| for (m = 2; MPFR_GET_EXP(v) + (mpfr_exp_t) w >= MPFR_GET_EXP(s); m++) |
| { |
| mpfr_mul (t, t, u, MPFR_RNDN); /* (1+u)^(10m-14) */ |
| if (m <= maxm) |
| { |
| mpfr_mul_ui (t, t, 2*(m-1)*(2*m-3), MPFR_RNDN); |
| mpfr_div_ui (t, t, 2*m*(2*m-1), MPFR_RNDN); |
| mpfr_div_ui (t, t, 2*m*(2*m+1), MPFR_RNDN); |
| } |
| else |
| { |
| mpfr_mul_ui (t, t, 2*(m-1), MPFR_RNDN); |
| mpfr_mul_ui (t, t, 2*m-3, MPFR_RNDN); |
| mpfr_div_ui (t, t, 2*m, MPFR_RNDN); |
| mpfr_div_ui (t, t, 2*m-1, MPFR_RNDN); |
| mpfr_div_ui (t, t, 2*m, MPFR_RNDN); |
| mpfr_div_ui (t, t, 2*m+1, MPFR_RNDN); |
| } |
| /* (1+u)^(10m-8) */ |
| /* invariant: t=1/(2m)/(2m-1)/z^(2m-1)/(2m+1)! */ |
| if (Bm <= m) |
| { |
| B = mpfr_bernoulli_internal (B, m); /* B[2m]*(2m+1)!, exact */ |
| Bm ++; |
| } |
| mpfr_mul_z (v, t, B[m], MPFR_RNDN); /* (1+u)^(10m-7) */ |
| MPFR_ASSERTD(MPFR_GET_EXP(v) <= - (2 * m + 3)); |
| mpfr_add (s, s, v, MPFR_RNDN); |
| } |
| /* m <= 1/2*Pi*e*z ensures that |v[m]| < 1/2^(2m+3) */ |
| MPFR_ASSERTD ((double) m <= 4.26 * mpfr_get_d (z, MPFR_RNDZ)); |
| |
| /* We have sum([(1+u)^(10m-7)-1]*1/2^(2m+3), m=2..infinity) |
| <= 1.46*u for u <= 2^(-3). |
| We have 0 < lngamma(z) - [(z - 1/2) ln(z) - z + 1/2 ln(2 Pi)] < 0.021 |
| for z >= 4, thus since the initial s >= 0.85, the different values of |
| s differ by at most one binade, and the total rounding error on s |
| in the for-loop is bounded by 2*(m-1)*ulp(final_s). |
| The error coming from the v's is bounded by |
| 1.46*2^(-w) <= 2*ulp(final_s). |
| Thus the total error so far is bounded by [(1+u)^15-1]*s+2m*ulp(s) |
| <= (2m+47)*ulp(s). |
| Taking into account the truncation error (which is bounded by the last |
| term v[] according to 6.1.42 in A&S), the bound is (2m+48)*ulp(s). |
| */ |
| |
| /* add 1/2*log(2*Pi) and subtract log(z0*(z0+1)*...*(z0+k-1)) */ |
| mpfr_const_pi (v, MPFR_RNDN); /* v = Pi*(1+u) */ |
| mpfr_mul_2ui (v, v, 1, MPFR_RNDN); /* v = 2*Pi * (1+u) */ |
| if (k) |
| { |
| unsigned long l; |
| mpfr_set (t, z0, MPFR_RNDN); /* t = z0*(1+u) */ |
| for (l = 1; l < k; l++) |
| { |
| mpfr_add_ui (u, z0, l, MPFR_RNDN); /* u = (z0+l)*(1+u) */ |
| mpfr_mul (t, t, u, MPFR_RNDN); /* (1+u)^(2l+1) */ |
| } |
| /* now t: (1+u)^(2k-1) */ |
| /* instead of computing log(sqrt(2*Pi)/t), we compute |
| 1/2*log(2*Pi/t^2), which trades a square root for a square */ |
| mpfr_mul (t, t, t, MPFR_RNDN); /* (z0*...*(z0+k-1))^2, (1+u)^(4k-1) */ |
| mpfr_div (v, v, t, MPFR_RNDN); |
| /* 2*Pi/(z0*...*(z0+k-1))^2 (1+u)^(4k+1) */ |
| } |
| #ifdef IS_GAMMA |
| err_s = MPFR_GET_EXP(s); |
| mpfr_exp (s, s, MPFR_RNDN); |
| /* If s is +Inf, we compute exp(lngamma(z0)). */ |
| if (mpfr_inf_p (s)) |
| { |
| inexact = mpfr_explgamma (y, z0, &expo, s, t, rnd); |
| if (inexact) |
| goto end0; |
| else |
| goto ziv_next; |
| } |
| /* before the exponential, we have s = s0 + h where |
| |h| <= (2m+48)*ulp(s), thus exp(s0) = exp(s) * exp(-h). |
| For |h| <= 1/4, we have |exp(h)-1| <= 1.2*|h| thus |
| |exp(s) - exp(s0)| <= 1.2 * exp(s) * (2m+48)* 2^(EXP(s)-w). */ |
| d = 1.2 * (2.0 * (double) m + 48.0); |
| /* the error on s is bounded by d*2^err_s * 2^(-w) */ |
| mpfr_sqrt (t, v, MPFR_RNDN); |
| /* let v0 be the exact value of v. We have v = v0*(1+u)^(4k+1), |
| thus t = sqrt(v0)*(1+u)^(2k+3/2). */ |
| mpfr_mul (s, s, t, MPFR_RNDN); |
| /* the error on input s is bounded by (1+u)^(d*2^err_s), |
| and that on t is (1+u)^(2k+3/2), thus the |
| total error is (1+u)^(d*2^err_s+2k+5/2) */ |
| err_s += __gmpfr_ceil_log2 (d); |
| err_t = __gmpfr_ceil_log2 (2.0 * (double) k + 2.5); |
| err_s = (err_s >= err_t) ? err_s + 1 : err_t + 1; |
| #else |
| mpfr_log (t, v, MPFR_RNDN); |
| /* let v0 be the exact value of v. We have v = v0*(1+u)^(4k+1), |
| thus log(v) = log(v0) + (4k+1)*log(1+u). Since |log(1+u)/u| <= 1.07 |
| for |u| <= 2^(-3), the absolute error on log(v) is bounded by |
| 1.07*(4k+1)*u, and the rounding error by ulp(t). */ |
| mpfr_div_2ui (t, t, 1, MPFR_RNDN); |
| /* the error on t is now bounded by ulp(t) + 0.54*(4k+1)*2^(-w). |
| We have sqrt(2*Pi)/(z0*(z0+1)*...*(z0+k-1)) <= sqrt(2*Pi)/k! <= 0.5 |
| since k>=3, thus t <= -0.5 and ulp(t) >= 2^(-w). |
| Thus the error on t is bounded by (2.16*k+1.54)*ulp(t). */ |
| err_t = MPFR_GET_EXP(t) + (mpfr_exp_t) |
| __gmpfr_ceil_log2 (2.2 * (double) k + 1.6); |
| err_s = MPFR_GET_EXP(s) + (mpfr_exp_t) |
| __gmpfr_ceil_log2 (2.0 * (double) m + 48.0); |
| mpfr_add (s, s, t, MPFR_RNDN); /* this is a subtraction in fact */ |
| /* the final error in ulp(s) is |
| <= 1 + 2^(err_t-EXP(s)) + 2^(err_s-EXP(s)) |
| <= 2^(1+max(err_t,err_s)-EXP(s)) if err_t <> err_s |
| <= 2^(2+max(err_t,err_s)-EXP(s)) if err_t = err_s */ |
| err_s = (err_t == err_s) ? 1 + err_s : ((err_t > err_s) ? err_t : err_s); |
| err_s += 1 - MPFR_GET_EXP(s); |
| #endif |
| if (MPFR_LIKELY (MPFR_CAN_ROUND (s, w - err_s, precy, rnd))) |
| break; |
| #ifdef IS_GAMMA |
| ziv_next: |
| #endif |
| MPFR_ZIV_NEXT (loop, w); |
| } |
| |
| #ifdef IS_GAMMA |
| end0: |
| #endif |
| oldBm = Bm; |
| while (Bm--) |
| mpz_clear (B[Bm]); |
| (*__gmp_free_func) (B, oldBm * sizeof (mpz_t)); |
| |
| end: |
| if (inexact == 0) |
| inexact = mpfr_set (y, s, rnd); |
| MPFR_ZIV_FREE (loop); |
| |
| mpfr_clear (s); |
| mpfr_clear (t); |
| mpfr_clear (u); |
| mpfr_clear (v); |
| mpfr_clear (z); |
| |
| MPFR_SAVE_EXPO_FREE (expo); |
| return mpfr_check_range (y, inexact, rnd); |
| } |
| |
| #ifndef IS_GAMMA |
| |
| int |
| mpfr_lngamma (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd) |
| { |
| int inex; |
| |
| MPFR_LOG_FUNC |
| (("x[%Pu]=%.*Rg rnd=%d", mpfr_get_prec (x), mpfr_log_prec, x, rnd), |
| ("y[%Pu]=%.*Rg inexact=%d", |
| mpfr_get_prec (y), mpfr_log_prec, y, inex)); |
| |
| /* special cases */ |
| if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x) || |
| (MPFR_IS_NEG (x) && mpfr_integer_p (x)))) |
| { |
| if (MPFR_IS_NAN (x)) |
| { |
| MPFR_SET_NAN (y); |
| MPFR_RET_NAN; |
| } |
| else /* lngamma(+/-Inf) = lngamma(nonpositive integer) = +Inf */ |
| { |
| if (!MPFR_IS_INF (x)) |
| mpfr_set_divby0 (); |
| MPFR_SET_INF (y); |
| MPFR_SET_POS (y); |
| MPFR_RET (0); /* exact */ |
| } |
| } |
| |
| /* if -2k-1 < x < -2k <= 0, then lngamma(x) = NaN */ |
| if (MPFR_IS_NEG (x) && unit_bit (x) == 0) |
| { |
| MPFR_SET_NAN (y); |
| MPFR_RET_NAN; |
| } |
| |
| inex = mpfr_lngamma_aux (y, x, rnd); |
| return inex; |
| } |
| |
| int |
| mpfr_lgamma (mpfr_ptr y, int *signp, mpfr_srcptr x, mpfr_rnd_t rnd) |
| { |
| int inex; |
| |
| MPFR_LOG_FUNC |
| (("x[%Pu]=%.*Rg rnd=%d", mpfr_get_prec (x), mpfr_log_prec, x, rnd), |
| ("y[%Pu]=%.*Rg signp=%d inexact=%d", |
| mpfr_get_prec (y), mpfr_log_prec, y, *signp, inex)); |
| |
| *signp = 1; /* most common case */ |
| |
| if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x))) |
| { |
| if (MPFR_IS_NAN (x)) |
| { |
| MPFR_SET_NAN (y); |
| MPFR_RET_NAN; |
| } |
| else |
| { |
| if (MPFR_IS_ZERO (x)) |
| mpfr_set_divby0 (); |
| *signp = MPFR_INT_SIGN (x); |
| MPFR_SET_INF (y); |
| MPFR_SET_POS (y); |
| MPFR_RET (0); |
| } |
| } |
| |
| if (MPFR_IS_NEG (x)) |
| { |
| if (mpfr_integer_p (x)) |
| { |
| MPFR_SET_INF (y); |
| MPFR_SET_POS (y); |
| mpfr_set_divby0 (); |
| MPFR_RET (0); |
| } |
| |
| if (unit_bit (x) == 0) |
| *signp = -1; |
| |
| /* For tiny negative x, we have gamma(x) = 1/x - euler + O(x), |
| thus |gamma(x)| = -1/x + euler + O(x), and |
| log |gamma(x)| = -log(-x) - euler*x + O(x^2). |
| More precisely we have for -0.4 <= x < 0: |
| -log(-x) <= log |gamma(x)| <= -log(-x) - x. |
| Since log(x) is not representable, we may have an instance of the |
| Table Maker Dilemma. The only way to ensure correct rounding is to |
| compute an interval [l,h] such that l <= -log(-x) and |
| -log(-x) - x <= h, and check whether l and h round to the same number |
| for the target precision and rounding modes. */ |
| if (MPFR_EXP(x) + 1 <= - (mpfr_exp_t) MPFR_PREC(y)) |
| /* since PREC(y) >= 1, this ensures EXP(x) <= -2, |
| thus |x| <= 0.25 < 0.4 */ |
| { |
| mpfr_t l, h; |
| int ok, inex2; |
| mpfr_prec_t w = MPFR_PREC (y) + 14; |
| mpfr_exp_t expl; |
| |
| while (1) |
| { |
| mpfr_init2 (l, w); |
| mpfr_init2 (h, w); |
| /* we want a lower bound on -log(-x), thus an upper bound |
| on log(-x), thus an upper bound on -x. */ |
| mpfr_neg (l, x, MPFR_RNDU); /* upper bound on -x */ |
| mpfr_log (l, l, MPFR_RNDU); /* upper bound for log(-x) */ |
| mpfr_neg (l, l, MPFR_RNDD); /* lower bound for -log(-x) */ |
| mpfr_neg (h, x, MPFR_RNDD); /* lower bound on -x */ |
| mpfr_log (h, h, MPFR_RNDD); /* lower bound on log(-x) */ |
| mpfr_neg (h, h, MPFR_RNDU); /* upper bound for -log(-x) */ |
| mpfr_sub (h, h, x, MPFR_RNDU); /* upper bound for -log(-x) - x */ |
| inex = mpfr_prec_round (l, MPFR_PREC (y), rnd); |
| inex2 = mpfr_prec_round (h, MPFR_PREC (y), rnd); |
| /* Caution: we not only need l = h, but both inexact flags |
| should agree. Indeed, one of the inexact flags might be |
| zero. In that case if we assume ln|gamma(x)| cannot be |
| exact, the other flag should be correct. We are conservative |
| here and request that both inexact flags agree. */ |
| ok = SAME_SIGN (inex, inex2) && mpfr_equal_p (l, h); |
| if (ok) |
| mpfr_set (y, h, rnd); /* exact */ |
| else |
| expl = MPFR_EXP (l); |
| mpfr_clear (l); |
| mpfr_clear (h); |
| if (ok) |
| return inex; |
| /* if ulp(log(-x)) <= |x| there is no reason to loop, |
| since the width of [l, h] will be at least |x| */ |
| if (expl < MPFR_EXP(x) + (mpfr_exp_t) w) |
| break; |
| w += MPFR_INT_CEIL_LOG2(w) + 3; |
| } |
| } |
| } |
| |
| inex = mpfr_lngamma_aux (y, x, rnd); |
| return inex; |
| } |
| |
| #endif |