| /* bernoulli -- internal function to compute Bernoulli numbers. |
| |
| Copyright 2005-2017 Free Software Foundation, Inc. |
| Contributed by the AriC and Caramba projects, INRIA. |
| |
| This file is part of the GNU MPFR Library. |
| |
| The GNU MPFR Library is free software; you can redistribute it and/or modify |
| it under the terms of the GNU Lesser General Public License as published by |
| the Free Software Foundation; either version 3 of the License, or (at your |
| option) any later version. |
| |
| The GNU MPFR Library is distributed in the hope that it will be useful, but |
| WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
| or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public |
| License for more details. |
| |
| You should have received a copy of the GNU Lesser General Public License |
| along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see |
| http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc., |
| 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */ |
| |
| #include "third_party/mpfr/v3_1_6/src/mpfr-impl.h" |
| |
| /* assuming b[0]...b[2(n-1)] are computed, computes and stores B[2n]*(2n+1)! |
| |
| t/(exp(t)-1) = sum(B[j]*t^j/j!, j=0..infinity) |
| thus t = (exp(t)-1) * sum(B[j]*t^j/j!, n=0..infinity). |
| Taking the coefficient of degree n+1 > 1, we get: |
| 0 = sum(1/(n+1-k)!*B[k]/k!, k=0..n) |
| which gives: |
| B[n] = -sum(binomial(n+1,k)*B[k], k=0..n-1)/(n+1). |
| |
| Let C[n] = B[n]*(n+1)!. |
| Then C[n] = -sum(binomial(n+1,k)*C[k]*n!/(k+1)!, k=0..n-1), |
| which proves that the C[n] are integers. |
| */ |
| mpz_t* |
| mpfr_bernoulli_internal (mpz_t *b, unsigned long n) |
| { |
| if (n == 0) |
| { |
| b = (mpz_t *) (*__gmp_allocate_func) (sizeof (mpz_t)); |
| mpz_init_set_ui (b[0], 1); |
| } |
| else |
| { |
| mpz_t t; |
| unsigned long k; |
| |
| b = (mpz_t *) (*__gmp_reallocate_func) |
| (b, n * sizeof (mpz_t), (n + 1) * sizeof (mpz_t)); |
| mpz_init (b[n]); |
| /* b[n] = -sum(binomial(2n+1,2k)*C[k]*(2n)!/(2k+1)!, k=0..n-1) */ |
| mpz_init_set_ui (t, 2 * n + 1); |
| mpz_mul_ui (t, t, 2 * n - 1); |
| mpz_mul_ui (t, t, 2 * n); |
| mpz_mul_ui (t, t, n); |
| mpz_fdiv_q_ui (t, t, 3); /* exact: t=binomial(2*n+1,2*k)*(2*n)!/(2*k+1)! |
| for k=n-1 */ |
| mpz_mul (b[n], t, b[n-1]); |
| for (k = n - 1; k-- > 0;) |
| { |
| mpz_mul_ui (t, t, 2 * k + 1); |
| mpz_mul_ui (t, t, 2 * k + 2); |
| mpz_mul_ui (t, t, 2 * k + 2); |
| mpz_mul_ui (t, t, 2 * k + 3); |
| mpz_fdiv_q_ui (t, t, 2 * (n - k) + 1); |
| mpz_fdiv_q_ui (t, t, 2 * (n - k)); |
| mpz_addmul (b[n], t, b[k]); |
| } |
| /* take into account C[1] */ |
| mpz_mul_ui (t, t, 2 * n + 1); |
| mpz_fdiv_q_2exp (t, t, 1); |
| mpz_sub (b[n], b[n], t); |
| mpz_neg (b[n], b[n]); |
| mpz_clear (t); |
| } |
| return b; |
| } |