| /* mpfr_exp2 -- power of 2 function 2^y |
| |
| Copyright 2001-2017 Free Software Foundation, Inc. |
| Contributed by the AriC and Caramba projects, INRIA. |
| |
| This file is part of the GNU MPFR Library. |
| |
| The GNU MPFR Library is free software; you can redistribute it and/or modify |
| it under the terms of the GNU Lesser General Public License as published by |
| the Free Software Foundation; either version 3 of the License, or (at your |
| option) any later version. |
| |
| The GNU MPFR Library is distributed in the hope that it will be useful, but |
| WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
| or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public |
| License for more details. |
| |
| You should have received a copy of the GNU Lesser General Public License |
| along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see |
| http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc., |
| 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */ |
| |
| #define MPFR_NEED_LONGLONG_H |
| #include "third_party/mpfr/v3_1_6/src/mpfr-impl.h" |
| |
| /* The computation of y = 2^z is done by * |
| * y = exp(z*log(2)). The result is exact iff z is an integer. */ |
| |
| int |
| mpfr_exp2 (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd_mode) |
| { |
| int inexact; |
| long xint; |
| mpfr_t xfrac; |
| MPFR_SAVE_EXPO_DECL (expo); |
| |
| MPFR_LOG_FUNC |
| (("x[%Pu]=%.*Rg rnd=%d", mpfr_get_prec(x), mpfr_log_prec, x, rnd_mode), |
| ("y[%Pu]=%.*Rg inexact=%d", mpfr_get_prec(y), mpfr_log_prec, y, |
| inexact)); |
| |
| if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x))) |
| { |
| if (MPFR_IS_NAN (x)) |
| { |
| MPFR_SET_NAN (y); |
| MPFR_RET_NAN; |
| } |
| else if (MPFR_IS_INF (x)) |
| { |
| if (MPFR_IS_POS (x)) |
| MPFR_SET_INF (y); |
| else |
| MPFR_SET_ZERO (y); |
| MPFR_SET_POS (y); |
| MPFR_RET (0); |
| } |
| else /* 2^0 = 1 */ |
| { |
| MPFR_ASSERTD (MPFR_IS_ZERO(x)); |
| return mpfr_set_ui (y, 1, rnd_mode); |
| } |
| } |
| |
| /* since the smallest representable non-zero float is 1/2*2^__gmpfr_emin, |
| if x < __gmpfr_emin - 1, the result is either 1/2*2^__gmpfr_emin or 0 */ |
| MPFR_ASSERTN (MPFR_EMIN_MIN >= LONG_MIN + 2); |
| if (MPFR_UNLIKELY (mpfr_cmp_si (x, __gmpfr_emin - 1) < 0)) |
| { |
| mpfr_rnd_t rnd2 = rnd_mode; |
| /* in round to nearest mode, round to zero when x <= __gmpfr_emin-2 */ |
| if (rnd_mode == MPFR_RNDN && |
| mpfr_cmp_si_2exp (x, __gmpfr_emin - 2, 0) <= 0) |
| rnd2 = MPFR_RNDZ; |
| return mpfr_underflow (y, rnd2, 1); |
| } |
| |
| MPFR_ASSERTN (MPFR_EMAX_MAX <= LONG_MAX); |
| if (MPFR_UNLIKELY (mpfr_cmp_si (x, __gmpfr_emax) >= 0)) |
| return mpfr_overflow (y, rnd_mode, 1); |
| |
| /* We now know that emin - 1 <= x < emax. */ |
| |
| MPFR_SAVE_EXPO_MARK (expo); |
| |
| /* 2^x = 1 + x*log(2) + O(x^2) for x near zero, and for |x| <= 1 we have |
| |2^x - 1| <= x < 2^EXP(x). If x > 0 we must round away from 0 (dir=1); |
| if x < 0 we must round toward 0 (dir=0). */ |
| MPFR_SMALL_INPUT_AFTER_SAVE_EXPO (y, __gmpfr_one, - MPFR_GET_EXP (x), 0, |
| MPFR_SIGN(x) > 0, rnd_mode, expo, {}); |
| |
| xint = mpfr_get_si (x, MPFR_RNDZ); |
| mpfr_init2 (xfrac, MPFR_PREC (x)); |
| mpfr_sub_si (xfrac, x, xint, MPFR_RNDN); /* exact */ |
| |
| if (MPFR_IS_ZERO (xfrac)) |
| { |
| mpfr_set_ui (y, 1, MPFR_RNDN); |
| inexact = 0; |
| } |
| else |
| { |
| /* Declaration of the intermediary variable */ |
| mpfr_t t; |
| |
| /* Declaration of the size variable */ |
| mpfr_prec_t Ny = MPFR_PREC(y); /* target precision */ |
| mpfr_prec_t Nt; /* working precision */ |
| mpfr_exp_t err; /* error */ |
| MPFR_ZIV_DECL (loop); |
| |
| /* compute the precision of intermediary variable */ |
| /* the optimal number of bits : see algorithms.tex */ |
| Nt = Ny + 5 + MPFR_INT_CEIL_LOG2 (Ny); |
| |
| /* initialise of intermediary variable */ |
| mpfr_init2 (t, Nt); |
| |
| /* First computation */ |
| MPFR_ZIV_INIT (loop, Nt); |
| for (;;) |
| { |
| /* compute exp(x*ln(2))*/ |
| mpfr_const_log2 (t, MPFR_RNDU); /* ln(2) */ |
| mpfr_mul (t, xfrac, t, MPFR_RNDU); /* xfrac * ln(2) */ |
| err = Nt - (MPFR_GET_EXP (t) + 2); /* Estimate of the error */ |
| mpfr_exp (t, t, MPFR_RNDN); /* exp(xfrac * ln(2)) */ |
| |
| if (MPFR_LIKELY (MPFR_CAN_ROUND (t, err, Ny, rnd_mode))) |
| break; |
| |
| /* Actualisation of the precision */ |
| MPFR_ZIV_NEXT (loop, Nt); |
| mpfr_set_prec (t, Nt); |
| } |
| MPFR_ZIV_FREE (loop); |
| |
| inexact = mpfr_set (y, t, rnd_mode); |
| |
| mpfr_clear (t); |
| } |
| |
| mpfr_clear (xfrac); |
| mpfr_clear_flags (); |
| mpfr_mul_2si (y, y, xint, MPFR_RNDN); /* exact or overflow */ |
| /* Note: We can have an overflow only when t was rounded up to 2. */ |
| MPFR_ASSERTD (MPFR_IS_PURE_FP (y) || inexact > 0); |
| MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, __gmpfr_flags); |
| MPFR_SAVE_EXPO_FREE (expo); |
| return mpfr_check_range (y, inexact, rnd_mode); |
| } |