blob: d053fedf03acd4af26f7ff6c769ea631cc542832 [file] [log] [blame]
/*
* OpenVPN -- An application to securely tunnel IP networks
* over a single UDP port, with support for SSL/TLS-based
* session authentication and key exchange,
* packet encryption, packet authentication, and
* packet compression.
*
* Copyright (C) 2002-2018 OpenVPN Inc <sales@openvpn.net>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2
* as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
/**
* @file Data Channel Compression module function definitions.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#elif defined(_MSC_VER)
#include "config-msvc.h"
#endif
#include "syshead.h"
#if defined(ENABLE_LZO)
#include "comp.h"
#include "error.h"
#include "otime.h"
#include "memdbg.h"
/**
* Perform adaptive compression housekeeping.
*
* @param ac the adaptive compression state structure.
*
* @return
*/
static bool
lzo_adaptive_compress_test(struct lzo_adaptive_compress *ac)
{
const bool save = ac->compress_state;
const time_t local_now = now;
if (!ac->compress_state)
{
if (local_now >= ac->next)
{
if (ac->n_total > AC_MIN_BYTES
&& (ac->n_total - ac->n_comp) < (ac->n_total / (100 / AC_SAVE_PCT)))
{
ac->compress_state = true;
ac->next = local_now + AC_OFF_SEC;
}
else
{
ac->next = local_now + AC_SAMP_SEC;
}
dmsg(D_COMP, "lzo_adaptive_compress_test: comp=%d total=%d", ac->n_comp, ac->n_total);
ac->n_total = ac->n_comp = 0;
}
}
else
{
if (local_now >= ac->next)
{
ac->next = local_now + AC_SAMP_SEC;
ac->n_total = ac->n_comp = 0;
ac->compress_state = false;
}
}
if (ac->compress_state != save)
{
dmsg(D_COMP_LOW, "Adaptive compression state %s", (ac->compress_state ? "OFF" : "ON"));
}
return !ac->compress_state;
}
static inline void
lzo_adaptive_compress_data(struct lzo_adaptive_compress *ac, int n_total, int n_comp)
{
ac->n_total += n_total;
ac->n_comp += n_comp;
}
static void
lzo_compress_init(struct compress_context *compctx)
{
msg(D_INIT_MEDIUM, "LZO compression initializing");
ASSERT(!(compctx->flags & COMP_F_SWAP));
compctx->wu.lzo.wmem_size = LZO_WORKSPACE;
int lzo_status = lzo_init();
if (lzo_status != LZO_E_OK)
{
msg(M_FATAL, "Cannot initialize LZO compression library (lzo_init() returns %d)", lzo_status);
}
compctx->wu.lzo.wmem = (lzo_voidp) lzo_malloc(compctx->wu.lzo.wmem_size);
check_malloc_return(compctx->wu.lzo.wmem);
}
static void
lzo_compress_uninit(struct compress_context *compctx)
{
lzo_free(compctx->wu.lzo.wmem);
compctx->wu.lzo.wmem = NULL;
}
static inline bool
lzo_compression_enabled(struct compress_context *compctx)
{
if (!(compctx->flags & COMP_F_ALLOW_COMPRESS))
{
return false;
}
else
{
if (compctx->flags & COMP_F_ADAPTIVE)
{
return lzo_adaptive_compress_test(&compctx->wu.lzo.ac);
}
else
{
return true;
}
}
}
static void
lzo_compress(struct buffer *buf, struct buffer work,
struct compress_context *compctx,
const struct frame *frame)
{
lzo_uint zlen = 0;
int err;
bool compressed = false;
if (buf->len <= 0)
{
return;
}
/*
* In order to attempt compression, length must be at least COMPRESS_THRESHOLD,
* and our adaptive level must give the OK.
*/
if (buf->len >= COMPRESS_THRESHOLD && lzo_compression_enabled(compctx))
{
const size_t ps = PAYLOAD_SIZE(frame);
ASSERT(buf_init(&work, FRAME_HEADROOM(frame)));
ASSERT(buf_safe(&work, ps + COMP_EXTRA_BUFFER(ps)));
if (buf->len > ps)
{
dmsg(D_COMP_ERRORS, "LZO compression buffer overflow");
buf->len = 0;
return;
}
err = LZO_COMPRESS(BPTR(buf), BLEN(buf), BPTR(&work), &zlen, compctx->wu.lzo.wmem);
if (err != LZO_E_OK)
{
dmsg(D_COMP_ERRORS, "LZO compression error: %d", err);
buf->len = 0;
return;
}
ASSERT(buf_safe(&work, zlen));
work.len = zlen;
compressed = true;
dmsg(D_COMP, "LZO compress %d -> %d", buf->len, work.len);
compctx->pre_compress += buf->len;
compctx->post_compress += work.len;
/* tell adaptive level about our success or lack thereof in getting any size reduction */
if (compctx->flags & COMP_F_ADAPTIVE)
{
lzo_adaptive_compress_data(&compctx->wu.lzo.ac, buf->len, work.len);
}
}
/* did compression save us anything ? */
if (compressed && work.len < buf->len)
{
uint8_t *header = buf_prepend(&work, 1);
*header = LZO_COMPRESS_BYTE;
*buf = work;
}
else
{
uint8_t *header = buf_prepend(buf, 1);
*header = NO_COMPRESS_BYTE;
}
}
static void
lzo_decompress(struct buffer *buf, struct buffer work,
struct compress_context *compctx,
const struct frame *frame)
{
lzo_uint zlen = EXPANDED_SIZE(frame);
int err;
uint8_t c; /* flag indicating whether or not our peer compressed */
if (buf->len <= 0)
{
return;
}
ASSERT(buf_init(&work, FRAME_HEADROOM(frame)));
c = *BPTR(buf);
ASSERT(buf_advance(buf, 1));
if (c == LZO_COMPRESS_BYTE) /* packet was compressed */
{
ASSERT(buf_safe(&work, zlen));
err = LZO_DECOMPRESS(BPTR(buf), BLEN(buf), BPTR(&work), &zlen,
compctx->wu.lzo.wmem);
if (err != LZO_E_OK)
{
dmsg(D_COMP_ERRORS, "LZO decompression error: %d", err);
buf->len = 0;
return;
}
ASSERT(buf_safe(&work, zlen));
work.len = zlen;
dmsg(D_COMP, "LZO decompress %d -> %d", buf->len, work.len);
compctx->pre_decompress += buf->len;
compctx->post_decompress += work.len;
*buf = work;
}
else if (c == NO_COMPRESS_BYTE) /* packet was not compressed */
{
}
else
{
dmsg(D_COMP_ERRORS, "Bad LZO decompression header byte: %d", c);
buf->len = 0;
}
}
const struct compress_alg lzo_alg = {
"lzo",
lzo_compress_init,
lzo_compress_uninit,
lzo_compress,
lzo_decompress
};
#else /* if defined(ENABLE_LZO) */
static void
dummy(void)
{
}
#endif /* ENABLE_LZO */