blob: b3330d6cea1c1b120a83774688aaed288c524871 [file] [log] [blame]
/****************************************************************************
**
** Copyright (C) 2016 The Qt Company Ltd.
** Contact: https://www.qt.io/licensing/
**
** This file is part of the QtCore module of the Qt Toolkit.
**
** $QT_BEGIN_LICENSE:LGPL$
** Commercial License Usage
** Licensees holding valid commercial Qt licenses may use this file in
** accordance with the commercial license agreement provided with the
** Software or, alternatively, in accordance with the terms contained in
** a written agreement between you and The Qt Company. For licensing terms
** and conditions see https://www.qt.io/terms-conditions. For further
** information use the contact form at https://www.qt.io/contact-us.
**
** GNU Lesser General Public License Usage
** Alternatively, this file may be used under the terms of the GNU Lesser
** General Public License version 3 as published by the Free Software
** Foundation and appearing in the file LICENSE.LGPL3 included in the
** packaging of this file. Please review the following information to
** ensure the GNU Lesser General Public License version 3 requirements
** will be met: https://www.gnu.org/licenses/lgpl-3.0.html.
**
** GNU General Public License Usage
** Alternatively, this file may be used under the terms of the GNU
** General Public License version 2.0 or (at your option) the GNU General
** Public license version 3 or any later version approved by the KDE Free
** Qt Foundation. The licenses are as published by the Free Software
** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3
** included in the packaging of this file. Please review the following
** information to ensure the GNU General Public License requirements will
** be met: https://www.gnu.org/licenses/gpl-2.0.html and
** https://www.gnu.org/licenses/gpl-3.0.html.
**
** $QT_END_LICENSE$
**
****************************************************************************/
#include "qdatastream.h"
#include "qdatastream_p.h"
#if !defined(QT_NO_DATASTREAM) || defined(QT_BOOTSTRAPPED)
#include "qbuffer.h"
#include "qfloat16.h"
#include "qstring.h"
#include <stdio.h>
#include <ctype.h>
#include <stdlib.h>
#include "qendian.h"
QT_BEGIN_NAMESPACE
/*!
\class QDataStream
\inmodule QtCore
\reentrant
\brief The QDataStream class provides serialization of binary data
to a QIODevice.
\ingroup io
A data stream is a binary stream of encoded information which is
100% independent of the host computer's operating system, CPU or
byte order. For example, a data stream that is written by a PC
under Windows can be read by a Sun SPARC running Solaris.
You can also use a data stream to read/write \l{raw}{raw
unencoded binary data}. If you want a "parsing" input stream, see
QTextStream.
The QDataStream class implements the serialization of C++'s basic
data types, like \c char, \c short, \c int, \c{char *}, etc.
Serialization of more complex data is accomplished by breaking up
the data into primitive units.
A data stream cooperates closely with a QIODevice. A QIODevice
represents an input/output medium one can read data from and write
data to. The QFile class is an example of an I/O device.
Example (write binary data to a stream):
\snippet code/src_corelib_io_qdatastream.cpp 0
Example (read binary data from a stream):
\snippet code/src_corelib_io_qdatastream.cpp 1
Each item written to the stream is written in a predefined binary
format that varies depending on the item's type. Supported Qt
types include QBrush, QColor, QDateTime, QFont, QPixmap, QString,
QVariant and many others. For the complete list of all Qt types
supporting data streaming see \l{Serializing Qt Data Types}.
For integers it is best to always cast to a Qt integer type for
writing, and to read back into the same Qt integer type. This
ensures that you get integers of the size you want and insulates
you from compiler and platform differences.
Enumerations can be serialized through QDataStream without the
need of manually defining streaming operators. Enum classes are
serialized using the declared size.
To take one example, a \c{char *} string is written as a 32-bit
integer equal to the length of the string including the '\\0' byte,
followed by all the characters of the string including the
'\\0' byte. When reading a \c{char *} string, 4 bytes are read to
create the 32-bit length value, then that many characters for the
\c {char *} string including the '\\0' terminator are read.
The initial I/O device is usually set in the constructor, but can be
changed with setDevice(). If you've reached the end of the data
(or if there is no I/O device set) atEnd() will return true.
\section1 Versioning
QDataStream's binary format has evolved since Qt 1.0, and is
likely to continue evolving to reflect changes done in Qt. When
inputting or outputting complex types, it's very important to
make sure that the same version of the stream (version()) is used
for reading and writing. If you need both forward and backward
compatibility, you can hardcode the version number in the
application:
\snippet code/src_corelib_io_qdatastream.cpp 2
If you are producing a new binary data format, such as a file
format for documents created by your application, you could use a
QDataStream to write the data in a portable format. Typically, you
would write a brief header containing a magic string and a version
number to give yourself room for future expansion. For example:
\snippet code/src_corelib_io_qdatastream.cpp 3
Then read it in with:
\snippet code/src_corelib_io_qdatastream.cpp 4
You can select which byte order to use when serializing data. The
default setting is big endian (MSB first). Changing it to little
endian breaks the portability (unless the reader also changes to
little endian). We recommend keeping this setting unless you have
special requirements.
\target raw
\section1 Reading and Writing Raw Binary Data
You may wish to read/write your own raw binary data to/from the
data stream directly. Data may be read from the stream into a
preallocated \c{char *} using readRawData(). Similarly data can be
written to the stream using writeRawData(). Note that any
encoding/decoding of the data must be done by you.
A similar pair of functions is readBytes() and writeBytes(). These
differ from their \e raw counterparts as follows: readBytes()
reads a quint32 which is taken to be the length of the data to be
read, then that number of bytes is read into the preallocated
\c{char *}; writeBytes() writes a quint32 containing the length of the
data, followed by the data. Note that any encoding/decoding of
the data (apart from the length quint32) must be done by you.
\section1 Reading and Writing Qt Collection Classes
The Qt container classes can also be serialized to a QDataStream.
These include QList, QLinkedList, QVector, QSet, QHash, and QMap.
The stream operators are declared as non-members of the classes.
\target Serializing Qt Classes
\section1 Reading and Writing Other Qt Classes
In addition to the overloaded stream operators documented here,
any Qt classes that you might want to serialize to a QDataStream
will have appropriate stream operators declared as non-member of
the class:
\snippet code/src_corelib_serialization_qdatastream.cpp 0
For example, here are the stream operators declared as non-members
of the QImage class:
\snippet code/src_corelib_serialization_qdatastream.cpp 1
To see if your favorite Qt class has similar stream operators
defined, check the \b {Related Non-Members} section of the
class's documentation page.
\section1 Using Read Transactions
When a data stream operates on an asynchronous device, the chunks of data
can arrive at arbitrary points in time. The QDataStream class implements
a transaction mechanism that provides the ability to read the data
atomically with a series of stream operators. As an example, you can
handle incomplete reads from a socket by using a transaction in a slot
connected to the readyRead() signal:
\snippet code/src_corelib_io_qdatastream.cpp 6
If no full packet is received, this code restores the stream to the
initial position, after which you need to wait for more data to arrive.
\sa QTextStream, QVariant
*/
/*!
\enum QDataStream::ByteOrder
The byte order used for reading/writing the data.
\value BigEndian Most significant byte first (the default)
\value LittleEndian Least significant byte first
*/
/*!
\enum QDataStream::FloatingPointPrecision
The precision of floating point numbers used for reading/writing the data. This will only have
an effect if the version of the data stream is Qt_4_6 or higher.
\warning The floating point precision must be set to the same value on the object that writes
and the object that reads the data stream.
\value SinglePrecision All floating point numbers in the data stream have 32-bit precision.
\value DoublePrecision All floating point numbers in the data stream have 64-bit precision.
\sa setFloatingPointPrecision(), floatingPointPrecision()
*/
/*!
\enum QDataStream::Status
This enum describes the current status of the data stream.
\value Ok The data stream is operating normally.
\value ReadPastEnd The data stream has read past the end of the
data in the underlying device.
\value ReadCorruptData The data stream has read corrupt data.
\value WriteFailed The data stream cannot write to the underlying device.
*/
/*****************************************************************************
QDataStream member functions
*****************************************************************************/
#define Q_VOID
#undef CHECK_STREAM_PRECOND
#ifndef QT_NO_DEBUG
#define CHECK_STREAM_PRECOND(retVal) \
if (!dev) { \
qWarning("QDataStream: No device"); \
return retVal; \
}
#else
#define CHECK_STREAM_PRECOND(retVal) \
if (!dev) { \
return retVal; \
}
#endif
#define CHECK_STREAM_WRITE_PRECOND(retVal) \
CHECK_STREAM_PRECOND(retVal) \
if (q_status != Ok) \
return retVal;
#define CHECK_STREAM_TRANSACTION_PRECOND(retVal) \
if (!d || d->transactionDepth == 0) { \
qWarning("QDataStream: No transaction in progress"); \
return retVal; \
}
/*!
Constructs a data stream that has no I/O device.
\sa setDevice()
*/
QDataStream::QDataStream()
{
dev = nullptr;
owndev = false;
byteorder = BigEndian;
ver = Qt_DefaultCompiledVersion;
noswap = QSysInfo::ByteOrder == QSysInfo::BigEndian;
q_status = Ok;
}
/*!
Constructs a data stream that uses the I/O device \a d.
\sa setDevice(), device()
*/
QDataStream::QDataStream(QIODevice *d)
{
dev = d; // set device
owndev = false;
byteorder = BigEndian; // default byte order
ver = Qt_DefaultCompiledVersion;
noswap = QSysInfo::ByteOrder == QSysInfo::BigEndian;
q_status = Ok;
}
/*!
\fn QDataStream::QDataStream(QByteArray *a, QIODevice::OpenMode mode)
Constructs a data stream that operates on a byte array, \a a. The
\a mode describes how the device is to be used.
Alternatively, you can use QDataStream(const QByteArray &) if you
just want to read from a byte array.
Since QByteArray is not a QIODevice subclass, internally a QBuffer
is created to wrap the byte array.
*/
QDataStream::QDataStream(QByteArray *a, QIODevice::OpenMode flags)
{
QBuffer *buf = new QBuffer(a);
#ifndef QT_NO_QOBJECT
buf->blockSignals(true);
#endif
buf->open(flags);
dev = buf;
owndev = true;
byteorder = BigEndian;
ver = Qt_DefaultCompiledVersion;
noswap = QSysInfo::ByteOrder == QSysInfo::BigEndian;
q_status = Ok;
}
/*!
Constructs a read-only data stream that operates on byte array \a a.
Use QDataStream(QByteArray*, int) if you want to write to a byte
array.
Since QByteArray is not a QIODevice subclass, internally a QBuffer
is created to wrap the byte array.
*/
QDataStream::QDataStream(const QByteArray &a)
{
QBuffer *buf = new QBuffer;
#ifndef QT_NO_QOBJECT
buf->blockSignals(true);
#endif
buf->setData(a);
buf->open(QIODevice::ReadOnly);
dev = buf;
owndev = true;
byteorder = BigEndian;
ver = Qt_DefaultCompiledVersion;
noswap = QSysInfo::ByteOrder == QSysInfo::BigEndian;
q_status = Ok;
}
/*!
Destroys the data stream.
The destructor will not affect the current I/O device, unless it is
an internal I/O device (e.g. a QBuffer) processing a QByteArray
passed in the \e constructor, in which case the internal I/O device
is destroyed.
*/
QDataStream::~QDataStream()
{
if (owndev)
delete dev;
}
/*!
\fn QIODevice *QDataStream::device() const
Returns the I/O device currently set, or \nullptr if no
device is currently set.
\sa setDevice()
*/
/*!
void QDataStream::setDevice(QIODevice *d)
Sets the I/O device to \a d, which can be \nullptr
to unset to current I/O device.
\sa device()
*/
void QDataStream::setDevice(QIODevice *d)
{
if (owndev) {
delete dev;
owndev = false;
}
dev = d;
}
#if QT_DEPRECATED_SINCE(5, 13)
/*!
\obsolete
Unsets the I/O device.
Use setDevice(nullptr) instead.
*/
void QDataStream::unsetDevice()
{
setDevice(nullptr);
}
#endif
/*!
\fn bool QDataStream::atEnd() const
Returns \c true if the I/O device has reached the end position (end of
the stream or file) or if there is no I/O device set; otherwise
returns \c false.
\sa QIODevice::atEnd()
*/
bool QDataStream::atEnd() const
{
return dev ? dev->atEnd() : true;
}
/*!
Returns the floating point precision of the data stream.
\since 4.6
\sa FloatingPointPrecision, setFloatingPointPrecision()
*/
QDataStream::FloatingPointPrecision QDataStream::floatingPointPrecision() const
{
return d ? d->floatingPointPrecision : QDataStream::DoublePrecision;
}
/*!
Sets the floating point precision of the data stream to \a precision. If the floating point precision is
DoublePrecision and the version of the data stream is Qt_4_6 or higher, all floating point
numbers will be written and read with 64-bit precision. If the floating point precision is
SinglePrecision and the version is Qt_4_6 or higher, all floating point numbers will be written
and read with 32-bit precision.
For versions prior to Qt_4_6, the precision of floating point numbers in the data stream depends
on the stream operator called.
The default is DoublePrecision.
Note that this property does not affect the serialization or deserialization of \c qfloat16
instances.
\warning This property must be set to the same value on the object that writes and the object
that reads the data stream.
\since 4.6
*/
void QDataStream::setFloatingPointPrecision(QDataStream::FloatingPointPrecision precision)
{
if (!d)
d.reset(new QDataStreamPrivate());
d->floatingPointPrecision = precision;
}
/*!
Returns the status of the data stream.
\sa Status, setStatus(), resetStatus()
*/
QDataStream::Status QDataStream::status() const
{
return q_status;
}
/*!
Resets the status of the data stream.
\sa Status, status(), setStatus()
*/
void QDataStream::resetStatus()
{
q_status = Ok;
}
/*!
Sets the status of the data stream to the \a status given.
Subsequent calls to setStatus() are ignored until resetStatus()
is called.
\sa Status, status(), resetStatus()
*/
void QDataStream::setStatus(Status status)
{
if (q_status == Ok)
q_status = status;
}
/*!
\fn int QDataStream::byteOrder() const
Returns the current byte order setting -- either BigEndian or
LittleEndian.
\sa setByteOrder()
*/
/*!
Sets the serialization byte order to \a bo.
The \a bo parameter can be QDataStream::BigEndian or
QDataStream::LittleEndian.
The default setting is big endian. We recommend leaving this
setting unless you have special requirements.
\sa byteOrder()
*/
void QDataStream::setByteOrder(ByteOrder bo)
{
byteorder = bo;
if (QSysInfo::ByteOrder == QSysInfo::BigEndian)
noswap = (byteorder == BigEndian);
else
noswap = (byteorder == LittleEndian);
}
/*!
\enum QDataStream::Version
This enum provides symbolic synonyms for the data serialization
format version numbers.
\value Qt_1_0 Version 1 (Qt 1.x)
\value Qt_2_0 Version 2 (Qt 2.0)
\value Qt_2_1 Version 3 (Qt 2.1, 2.2, 2.3)
\value Qt_3_0 Version 4 (Qt 3.0)
\value Qt_3_1 Version 5 (Qt 3.1, 3.2)
\value Qt_3_3 Version 6 (Qt 3.3)
\value Qt_4_0 Version 7 (Qt 4.0, Qt 4.1)
\value Qt_4_1 Version 7 (Qt 4.0, Qt 4.1)
\value Qt_4_2 Version 8 (Qt 4.2)
\value Qt_4_3 Version 9 (Qt 4.3)
\value Qt_4_4 Version 10 (Qt 4.4)
\value Qt_4_5 Version 11 (Qt 4.5)
\value Qt_4_6 Version 12 (Qt 4.6, Qt 4.7, Qt 4.8)
\value Qt_4_7 Same as Qt_4_6.
\value Qt_4_8 Same as Qt_4_6.
\value Qt_4_9 Same as Qt_4_6.
\value Qt_5_0 Version 13 (Qt 5.0)
\value Qt_5_1 Version 14 (Qt 5.1)
\value Qt_5_2 Version 15 (Qt 5.2)
\value Qt_5_3 Same as Qt_5_2
\value Qt_5_4 Version 16 (Qt 5.4)
\value Qt_5_5 Same as Qt_5_4
\value Qt_5_6 Version 17 (Qt 5.6)
\value Qt_5_7 Same as Qt_5_6
\value Qt_5_8 Same as Qt_5_6
\value Qt_5_9 Same as Qt_5_6
\value Qt_5_10 Same as Qt_5_6
\value Qt_5_11 Same as Qt_5_6
\value Qt_5_12 Version 18 (Qt 5.12)
\value Qt_5_13 Version 19 (Qt 5.13)
\value Qt_5_14 Same as Qt_5_13
\omitvalue Qt_DefaultCompiledVersion
\sa setVersion(), version()
*/
/*!
\fn int QDataStream::version() const
Returns the version number of the data serialization format.
\sa setVersion(), Version
*/
/*!
\fn void QDataStream::setVersion(int v)
Sets the version number of the data serialization format to \a v,
a value of the \l Version enum.
You don't \e have to set a version if you are using the current
version of Qt, but for your own custom binary formats we
recommend that you do; see \l{Versioning} in the Detailed
Description.
To accommodate new functionality, the datastream serialization
format of some Qt classes has changed in some versions of Qt. If
you want to read data that was created by an earlier version of
Qt, or write data that can be read by a program that was compiled
with an earlier version of Qt, use this function to modify the
serialization format used by QDataStream.
The \l Version enum provides symbolic constants for the different
versions of Qt. For example:
\snippet code/src_corelib_io_qdatastream.cpp 5
\sa version(), Version
*/
/*!
\since 5.7
Starts a new read transaction on the stream.
Defines a restorable point within the sequence of read operations. For
sequential devices, read data will be duplicated internally to allow
recovery in case of incomplete reads. For random-access devices,
this function saves the current position of the stream. Call
commitTransaction(), rollbackTransaction(), or abortTransaction() to
finish the current transaction.
Once a transaction is started, subsequent calls to this function will make
the transaction recursive. Inner transactions act as agents of the
outermost transaction (i.e., report the status of read operations to the
outermost transaction, which can restore the position of the stream).
\note Restoring to the point of the nested startTransaction() call is not
supported.
When an error occurs during a transaction (including an inner transaction
failing), reading from the data stream is suspended (all subsequent read
operations return empty/zero values) and subsequent inner transactions are
forced to fail. Starting a new outermost transaction recovers from this
state. This behavior makes it unnecessary to error-check every read
operation separately.
\sa commitTransaction(), rollbackTransaction(), abortTransaction()
*/
void QDataStream::startTransaction()
{
CHECK_STREAM_PRECOND(Q_VOID)
if (!d)
d.reset(new QDataStreamPrivate());
if (++d->transactionDepth == 1) {
dev->startTransaction();
resetStatus();
}
}
/*!
\since 5.7
Completes a read transaction. Returns \c true if no read errors have
occurred during the transaction; otherwise returns \c false.
If called on an inner transaction, committing will be postponed until
the outermost commitTransaction(), rollbackTransaction(), or
abortTransaction() call occurs.
Otherwise, if the stream status indicates reading past the end of the
data, this function restores the stream data to the point of the
startTransaction() call. When this situation occurs, you need to wait for
more data to arrive, after which you start a new transaction. If the data
stream has read corrupt data or any of the inner transactions was aborted,
this function aborts the transaction.
\sa startTransaction(), rollbackTransaction(), abortTransaction()
*/
bool QDataStream::commitTransaction()
{
CHECK_STREAM_TRANSACTION_PRECOND(false)
if (--d->transactionDepth == 0) {
CHECK_STREAM_PRECOND(false)
if (q_status == ReadPastEnd) {
dev->rollbackTransaction();
return false;
}
dev->commitTransaction();
}
return q_status == Ok;
}
/*!
\since 5.7
Reverts a read transaction.
This function is commonly used to rollback the transaction when an
incomplete read was detected prior to committing the transaction.
If called on an inner transaction, reverting is delegated to the outermost
transaction, and subsequently started inner transactions are forced to
fail.
For the outermost transaction, restores the stream data to the point of
the startTransaction() call. If the data stream has read corrupt data or
any of the inner transactions was aborted, this function aborts the
transaction.
If the preceding stream operations were successful, sets the status of the
data stream to \value ReadPastEnd.
\sa startTransaction(), commitTransaction(), abortTransaction()
*/
void QDataStream::rollbackTransaction()
{
setStatus(ReadPastEnd);
CHECK_STREAM_TRANSACTION_PRECOND(Q_VOID)
if (--d->transactionDepth != 0)
return;
CHECK_STREAM_PRECOND(Q_VOID)
if (q_status == ReadPastEnd)
dev->rollbackTransaction();
else
dev->commitTransaction();
}
/*!
\since 5.7
Aborts a read transaction.
This function is commonly used to discard the transaction after
higher-level protocol errors or loss of stream synchronization.
If called on an inner transaction, aborting is delegated to the outermost
transaction, and subsequently started inner transactions are forced to
fail.
For the outermost transaction, discards the restoration point and any
internally duplicated data of the stream. Will not affect the current
read position of the stream.
Sets the status of the data stream to \value ReadCorruptData.
\sa startTransaction(), commitTransaction(), rollbackTransaction()
*/
void QDataStream::abortTransaction()
{
q_status = ReadCorruptData;
CHECK_STREAM_TRANSACTION_PRECOND(Q_VOID)
if (--d->transactionDepth != 0)
return;
CHECK_STREAM_PRECOND(Q_VOID)
dev->commitTransaction();
}
/*****************************************************************************
QDataStream read functions
*****************************************************************************/
/*!
\internal
*/
int QDataStream::readBlock(char *data, int len)
{
// Disable reads on failure in transacted stream
if (q_status != Ok && dev->isTransactionStarted())
return -1;
const int readResult = dev->read(data, len);
if (readResult != len)
setStatus(ReadPastEnd);
return readResult;
}
/*!
\fn QDataStream &QDataStream::operator>>(std::nullptr_t &ptr)
\since 5.9
\overload
Simulates reading a \c{std::nullptr_t} from the stream into \a ptr and
returns a reference to the stream. This function does not actually read
anything from the stream, as \c{std::nullptr_t} values are stored as 0
bytes.
*/
/*!
\fn QDataStream &QDataStream::operator>>(quint8 &i)
\overload
Reads an unsigned byte from the stream into \a i, and returns a
reference to the stream.
*/
/*!
Reads a signed byte from the stream into \a i, and returns a
reference to the stream.
*/
QDataStream &QDataStream::operator>>(qint8 &i)
{
i = 0;
CHECK_STREAM_PRECOND(*this)
char c;
if (readBlock(&c, 1) == 1)
i = qint8(c);
return *this;
}
/*!
\fn QDataStream &QDataStream::operator>>(quint16 &i)
\overload
Reads an unsigned 16-bit integer from the stream into \a i, and
returns a reference to the stream.
*/
/*!
\overload
Reads a signed 16-bit integer from the stream into \a i, and
returns a reference to the stream.
*/
QDataStream &QDataStream::operator>>(qint16 &i)
{
i = 0;
CHECK_STREAM_PRECOND(*this)
if (readBlock(reinterpret_cast<char *>(&i), 2) != 2) {
i = 0;
} else {
if (!noswap) {
i = qbswap(i);
}
}
return *this;
}
/*!
\fn QDataStream &QDataStream::operator>>(quint32 &i)
\overload
Reads an unsigned 32-bit integer from the stream into \a i, and
returns a reference to the stream.
*/
/*!
\overload
Reads a signed 32-bit integer from the stream into \a i, and
returns a reference to the stream.
*/
QDataStream &QDataStream::operator>>(qint32 &i)
{
i = 0;
CHECK_STREAM_PRECOND(*this)
if (readBlock(reinterpret_cast<char *>(&i), 4) != 4) {
i = 0;
} else {
if (!noswap) {
i = qbswap(i);
}
}
return *this;
}
/*!
\fn QDataStream &QDataStream::operator>>(quint64 &i)
\overload
Reads an unsigned 64-bit integer from the stream, into \a i, and
returns a reference to the stream.
*/
/*!
\overload
Reads a signed 64-bit integer from the stream into \a i, and
returns a reference to the stream.
*/
QDataStream &QDataStream::operator>>(qint64 &i)
{
i = qint64(0);
CHECK_STREAM_PRECOND(*this)
if (version() < 6) {
quint32 i1, i2;
*this >> i2 >> i1;
i = ((quint64)i1 << 32) + i2;
} else {
if (readBlock(reinterpret_cast<char *>(&i), 8) != 8) {
i = qint64(0);
} else {
if (!noswap) {
i = qbswap(i);
}
}
}
return *this;
}
/*!
Reads a boolean value from the stream into \a i. Returns a
reference to the stream.
*/
QDataStream &QDataStream::operator>>(bool &i)
{
qint8 v;
*this >> v;
i = !!v;
return *this;
}
/*!
\overload
Reads a floating point number from the stream into \a f,
using the standard IEEE 754 format. Returns a reference to the
stream.
\sa setFloatingPointPrecision()
*/
QDataStream &QDataStream::operator>>(float &f)
{
if (version() >= QDataStream::Qt_4_6
&& floatingPointPrecision() == QDataStream::DoublePrecision) {
double d;
*this >> d;
f = d;
return *this;
}
f = 0.0f;
CHECK_STREAM_PRECOND(*this)
if (readBlock(reinterpret_cast<char *>(&f), 4) != 4) {
f = 0.0f;
} else {
if (!noswap) {
union {
float val1;
quint32 val2;
} x;
x.val2 = qbswap(*reinterpret_cast<quint32 *>(&f));
f = x.val1;
}
}
return *this;
}
/*!
\overload
Reads a floating point number from the stream into \a f,
using the standard IEEE 754 format. Returns a reference to the
stream.
\sa setFloatingPointPrecision()
*/
QDataStream &QDataStream::operator>>(double &f)
{
if (version() >= QDataStream::Qt_4_6
&& floatingPointPrecision() == QDataStream::SinglePrecision) {
float d;
*this >> d;
f = d;
return *this;
}
f = 0.0;
CHECK_STREAM_PRECOND(*this)
if (readBlock(reinterpret_cast<char *>(&f), 8) != 8) {
f = 0.0;
} else {
if (!noswap) {
union {
double val1;
quint64 val2;
} x;
x.val2 = qbswap(*reinterpret_cast<quint64 *>(&f));
f = x.val1;
}
}
return *this;
}
/*!
\overload
\since 5.9
Reads a floating point number from the stream into \a f,
using the standard IEEE 754 format. Returns a reference to the
stream.
*/
QDataStream &QDataStream::operator>>(qfloat16 &f)
{
return *this >> reinterpret_cast<qint16&>(f);
}
/*!
\overload
Reads the '\\0'-terminated string \a s from the stream and returns
a reference to the stream.
The string is deserialized using \c{readBytes()}.
Space for the string is allocated using \c{new []} -- the caller must
destroy it with \c{delete []}.
\sa readBytes(), readRawData()
*/
QDataStream &QDataStream::operator>>(char *&s)
{
uint len = 0;
return readBytes(s, len);
}
/*!
Reads the buffer \a s from the stream and returns a reference to
the stream.
The buffer \a s is allocated using \c{new []}. Destroy it with the
\c{delete []} operator.
The \a l parameter is set to the length of the buffer. If the
string read is empty, \a l is set to 0 and \a s is set to \nullptr.
The serialization format is a quint32 length specifier first,
then \a l bytes of data.
\sa readRawData(), writeBytes()
*/
QDataStream &QDataStream::readBytes(char *&s, uint &l)
{
s = nullptr;
l = 0;
CHECK_STREAM_PRECOND(*this)
quint32 len;
*this >> len;
if (len == 0)
return *this;
const quint32 Step = 1024 * 1024;
quint32 allocated = 0;
char *prevBuf = nullptr;
char *curBuf = nullptr;
do {
int blockSize = qMin(Step, len - allocated);
prevBuf = curBuf;
curBuf = new char[allocated + blockSize + 1];
if (prevBuf) {
memcpy(curBuf, prevBuf, allocated);
delete [] prevBuf;
}
if (readBlock(curBuf + allocated, blockSize) != blockSize) {
delete [] curBuf;
return *this;
}
allocated += blockSize;
} while (allocated < len);
s = curBuf;
s[len] = '\0';
l = (uint)len;
return *this;
}
/*!
Reads at most \a len bytes from the stream into \a s and returns the number of
bytes read. If an error occurs, this function returns -1.
The buffer \a s must be preallocated. The data is \e not decoded.
\sa readBytes(), QIODevice::read(), writeRawData()
*/
int QDataStream::readRawData(char *s, int len)
{
CHECK_STREAM_PRECOND(-1)
return readBlock(s, len);
}
/*****************************************************************************
QDataStream write functions
*****************************************************************************/
/*!
\fn QDataStream &QDataStream::operator<<(std::nullptr_t ptr)
\since 5.9
\overload
Simulates writing a \c{std::nullptr_t}, \a ptr, to the stream and returns a
reference to the stream. This function does not actually write anything to
the stream, as \c{std::nullptr_t} values are stored as 0 bytes.
*/
/*!
\fn QDataStream &QDataStream::operator<<(quint8 i)
\overload
Writes an unsigned byte, \a i, to the stream and returns a
reference to the stream.
*/
/*!
Writes a signed byte, \a i, to the stream and returns a reference
to the stream.
*/
QDataStream &QDataStream::operator<<(qint8 i)
{
CHECK_STREAM_WRITE_PRECOND(*this)
if (!dev->putChar(i))
q_status = WriteFailed;
return *this;
}
/*!
\fn QDataStream &QDataStream::operator<<(quint16 i)
\overload
Writes an unsigned 16-bit integer, \a i, to the stream and returns
a reference to the stream.
*/
/*!
\overload
Writes a signed 16-bit integer, \a i, to the stream and returns a
reference to the stream.
*/
QDataStream &QDataStream::operator<<(qint16 i)
{
CHECK_STREAM_WRITE_PRECOND(*this)
if (!noswap) {
i = qbswap(i);
}
if (dev->write((char *)&i, sizeof(qint16)) != sizeof(qint16))
q_status = WriteFailed;
return *this;
}
/*!
\overload
Writes a signed 32-bit integer, \a i, to the stream and returns a
reference to the stream.
*/
QDataStream &QDataStream::operator<<(qint32 i)
{
CHECK_STREAM_WRITE_PRECOND(*this)
if (!noswap) {
i = qbswap(i);
}
if (dev->write((char *)&i, sizeof(qint32)) != sizeof(qint32))
q_status = WriteFailed;
return *this;
}
/*!
\fn QDataStream &QDataStream::operator<<(quint64 i)
\overload
Writes an unsigned 64-bit integer, \a i, to the stream and returns a
reference to the stream.
*/
/*!
\overload
Writes a signed 64-bit integer, \a i, to the stream and returns a
reference to the stream.
*/
QDataStream &QDataStream::operator<<(qint64 i)
{
CHECK_STREAM_WRITE_PRECOND(*this)
if (version() < 6) {
quint32 i1 = i & 0xffffffff;
quint32 i2 = i >> 32;
*this << i2 << i1;
} else {
if (!noswap) {
i = qbswap(i);
}
if (dev->write((char *)&i, sizeof(qint64)) != sizeof(qint64))
q_status = WriteFailed;
}
return *this;
}
/*!
\fn QDataStream &QDataStream::operator<<(quint32 i)
\overload
Writes an unsigned integer, \a i, to the stream as a 32-bit
unsigned integer (quint32). Returns a reference to the stream.
*/
/*!
Writes a boolean value, \a i, to the stream. Returns a reference
to the stream.
*/
QDataStream &QDataStream::operator<<(bool i)
{
CHECK_STREAM_WRITE_PRECOND(*this)
if (!dev->putChar(qint8(i)))
q_status = WriteFailed;
return *this;
}
/*!
\overload
Writes a floating point number, \a f, to the stream using
the standard IEEE 754 format. Returns a reference to the stream.
\sa setFloatingPointPrecision()
*/
QDataStream &QDataStream::operator<<(float f)
{
if (version() >= QDataStream::Qt_4_6
&& floatingPointPrecision() == QDataStream::DoublePrecision) {
*this << double(f);
return *this;
}
CHECK_STREAM_WRITE_PRECOND(*this)
float g = f; // fixes float-on-stack problem
if (!noswap) {
union {
float val1;
quint32 val2;
} x;
x.val1 = g;
x.val2 = qbswap(x.val2);
if (dev->write((char *)&x.val2, sizeof(float)) != sizeof(float))
q_status = WriteFailed;
return *this;
}
if (dev->write((char *)&g, sizeof(float)) != sizeof(float))
q_status = WriteFailed;
return *this;
}
/*!
\overload
Writes a floating point number, \a f, to the stream using
the standard IEEE 754 format. Returns a reference to the stream.
\sa setFloatingPointPrecision()
*/
QDataStream &QDataStream::operator<<(double f)
{
if (version() >= QDataStream::Qt_4_6
&& floatingPointPrecision() == QDataStream::SinglePrecision) {
*this << float(f);
return *this;
}
CHECK_STREAM_WRITE_PRECOND(*this)
if (noswap) {
if (dev->write((char *)&f, sizeof(double)) != sizeof(double))
q_status = WriteFailed;
} else {
union {
double val1;
quint64 val2;
} x;
x.val1 = f;
x.val2 = qbswap(x.val2);
if (dev->write((char *)&x.val2, sizeof(double)) != sizeof(double))
q_status = WriteFailed;
}
return *this;
}
/*!
\fn QDataStream &QDataStream::operator<<(qfloat16 f)
\overload
\since 5.9
Writes a floating point number, \a f, to the stream using
the standard IEEE 754 format. Returns a reference to the stream.
*/
QDataStream &QDataStream::operator<<(qfloat16 f)
{
return *this << reinterpret_cast<qint16&>(f);
}
/*!
\overload
Writes the '\\0'-terminated string \a s to the stream and returns a
reference to the stream.
The string is serialized using \c{writeBytes()}.
\sa writeBytes(), writeRawData()
*/
QDataStream &QDataStream::operator<<(const char *s)
{
if (!s) {
*this << (quint32)0;
return *this;
}
uint len = qstrlen(s) + 1; // also write null terminator
*this << (quint32)len; // write length specifier
writeRawData(s, len);
return *this;
}
/*!
Writes the length specifier \a len and the buffer \a s to the
stream and returns a reference to the stream.
The \a len is serialized as a quint32, followed by \a len bytes
from \a s. Note that the data is \e not encoded.
\sa writeRawData(), readBytes()
*/
QDataStream &QDataStream::writeBytes(const char *s, uint len)
{
CHECK_STREAM_WRITE_PRECOND(*this)
*this << (quint32)len; // write length specifier
if (len)
writeRawData(s, len);
return *this;
}
/*!
Writes \a len bytes from \a s to the stream. Returns the
number of bytes actually written, or -1 on error.
The data is \e not encoded.
\sa writeBytes(), QIODevice::write(), readRawData()
*/
int QDataStream::writeRawData(const char *s, int len)
{
CHECK_STREAM_WRITE_PRECOND(-1)
int ret = dev->write(s, len);
if (ret != len)
q_status = WriteFailed;
return ret;
}
/*!
\since 4.1
Skips \a len bytes from the device. Returns the number of bytes
actually skipped, or -1 on error.
This is equivalent to calling readRawData() on a buffer of length
\a len and ignoring the buffer.
\sa QIODevice::seek()
*/
int QDataStream::skipRawData(int len)
{
CHECK_STREAM_PRECOND(-1)
if (q_status != Ok && dev->isTransactionStarted())
return -1;
const int skipResult = dev->skip(len);
if (skipResult != len)
setStatus(ReadPastEnd);
return skipResult;
}
QT_END_NAMESPACE
#endif // QT_NO_DATASTREAM