blob: c246028b4d7e96f8e838ec3792528e97bc8d738b [file] [log] [blame]
/****************************************************************************
**
** Copyright (C) 2016 The Qt Company Ltd.
** Copyright (C) 2016 Intel Corporation.
** Contact: https://www.qt.io/licensing/
**
** This file is part of the QtCore module of the Qt Toolkit.
**
** $QT_BEGIN_LICENSE:LGPL$
** Commercial License Usage
** Licensees holding valid commercial Qt licenses may use this file in
** accordance with the commercial license agreement provided with the
** Software or, alternatively, in accordance with the terms contained in
** a written agreement between you and The Qt Company. For licensing terms
** and conditions see https://www.qt.io/terms-conditions. For further
** information use the contact form at https://www.qt.io/contact-us.
**
** GNU Lesser General Public License Usage
** Alternatively, this file may be used under the terms of the GNU Lesser
** General Public License version 3 as published by the Free Software
** Foundation and appearing in the file LICENSE.LGPL3 included in the
** packaging of this file. Please review the following information to
** ensure the GNU Lesser General Public License version 3 requirements
** will be met: https://www.gnu.org/licenses/lgpl-3.0.html.
**
** GNU General Public License Usage
** Alternatively, this file may be used under the terms of the GNU
** General Public License version 2.0 or (at your option) the GNU General
** Public license version 3 or any later version approved by the KDE Free
** Qt Foundation. The licenses are as published by the Free Software
** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3
** included in the packaging of this file. Please review the following
** information to ensure the GNU General Public License requirements will
** be met: https://www.gnu.org/licenses/gpl-2.0.html and
** https://www.gnu.org/licenses/gpl-3.0.html.
**
** $QT_END_LICENSE$
**
****************************************************************************/
#include "qlocale_tools_p.h"
#include "qdoublescanprint_p.h"
#include "qlocale_p.h"
#include "qstring.h"
#include <private/qnumeric_p.h>
#include <ctype.h>
#include <errno.h>
#include <float.h>
#include <limits.h>
#include <math.h>
#include <stdlib.h>
#include <time.h>
#if defined(Q_OS_LINUX) && !defined(__UCLIBC__)
# include <fenv.h>
#endif
// Sizes as defined by the ISO C99 standard - fallback
#ifndef LLONG_MAX
# define LLONG_MAX Q_INT64_C(0x7fffffffffffffff)
#endif
#ifndef LLONG_MIN
# define LLONG_MIN (-LLONG_MAX - Q_INT64_C(1))
#endif
#ifndef ULLONG_MAX
# define ULLONG_MAX Q_UINT64_C(0xffffffffffffffff)
#endif
QT_BEGIN_NAMESPACE
#include "../../3rdparty/freebsd/strtoull.c"
#include "../../3rdparty/freebsd/strtoll.c"
QT_CLOCALE_HOLDER
void qt_doubleToAscii(double d, QLocaleData::DoubleForm form, int precision, char *buf, int bufSize,
bool &sign, int &length, int &decpt)
{
if (bufSize == 0) {
decpt = 0;
sign = d < 0;
length = 0;
return;
}
// Detect special numbers (nan, +/-inf)
// We cannot use the high-level API of libdouble-conversion as we need to apply locale-specific
// formatting, such as decimal points, thousands-separators, etc. Because of this, we have to
// check for infinity and NaN before calling DoubleToAscii.
if (qt_is_inf(d)) {
sign = d < 0;
if (bufSize >= 3) {
buf[0] = 'i';
buf[1] = 'n';
buf[2] = 'f';
length = 3;
} else {
length = 0;
}
return;
} else if (qt_is_nan(d)) {
if (bufSize >= 3) {
buf[0] = 'n';
buf[1] = 'a';
buf[2] = 'n';
length = 3;
} else {
length = 0;
}
return;
}
if (form == QLocaleData::DFSignificantDigits && precision == 0)
precision = 1; // 0 significant digits is silently converted to 1
#if !defined(QT_NO_DOUBLECONVERSION) && !defined(QT_BOOTSTRAPPED)
// one digit before the decimal dot, counts as significant digit for DoubleToStringConverter
if (form == QLocaleData::DFExponent && precision >= 0)
++precision;
double_conversion::DoubleToStringConverter::DtoaMode mode;
if (precision == QLocale::FloatingPointShortest) {
mode = double_conversion::DoubleToStringConverter::SHORTEST;
} else if (form == QLocaleData::DFSignificantDigits || form == QLocaleData::DFExponent) {
mode = double_conversion::DoubleToStringConverter::PRECISION;
} else {
mode = double_conversion::DoubleToStringConverter::FIXED;
}
double_conversion::DoubleToStringConverter::DoubleToAscii(d, mode, precision, buf, bufSize,
&sign, &length, &decpt);
#else // QT_NO_DOUBLECONVERSION || QT_BOOTSTRAPPED
// Cut the precision at 999, to fit it into the format string. We can't get more than 17
// significant digits, so anything after that is mostly noise. You do get closer to the "middle"
// of the range covered by the given double with more digits, so to a degree it does make sense
// to honor higher precisions. We define that at more than 999 digits that is not the case.
if (precision > 999)
precision = 999;
else if (precision == QLocale::FloatingPointShortest)
precision = QLocaleData::DoubleMaxSignificant; // "shortest" mode not supported by snprintf
if (isZero(d)) {
// Negative zero is expected as simple "0", not "-0". We cannot do d < 0, though.
sign = false;
buf[0] = '0';
length = 1;
decpt = 1;
return;
} else if (d < 0) {
sign = true;
d = -d;
} else {
sign = false;
}
const int formatLength = 7; // '%', '.', 3 digits precision, 'f', '\0'
char format[formatLength];
format[formatLength - 1] = '\0';
format[0] = '%';
format[1] = '.';
format[2] = char((precision / 100) % 10) + '0';
format[3] = char((precision / 10) % 10) + '0';
format[4] = char(precision % 10) + '0';
int extraChars;
switch (form) {
case QLocaleData::DFDecimal:
format[formatLength - 2] = 'f';
// <anything> '.' <precision> '\0' - optimize for numbers smaller than 512k
extraChars = (d > (1 << 19) ? QLocaleData::DoubleMaxDigitsBeforeDecimal : 6) + 2;
break;
case QLocaleData::DFExponent:
format[formatLength - 2] = 'e';
// '.', 'e', '-', <exponent> '\0'
extraChars = 7;
break;
case QLocaleData::DFSignificantDigits:
format[formatLength - 2] = 'g';
// either the same as in the 'e' case, or '.' and '\0'
// precision covers part before '.'
extraChars = 7;
break;
default:
Q_UNREACHABLE();
}
QVarLengthArray<char> target(precision + extraChars);
length = qDoubleSnprintf(target.data(), target.size(), QT_CLOCALE, format, d);
int firstSignificant = 0;
int decptInTarget = length;
// Find the first significant digit (not 0), and note any '.' we encounter.
// There is no '-' at the front of target because we made sure d > 0 above.
while (firstSignificant < length) {
if (target[firstSignificant] == '.')
decptInTarget = firstSignificant;
else if (target[firstSignificant] != '0')
break;
++firstSignificant;
}
// If no '.' found so far, search the rest of the target buffer for it.
if (decptInTarget == length)
decptInTarget = std::find(target.data() + firstSignificant, target.data() + length, '.') -
target.data();
int eSign = length;
if (form != QLocaleData::DFDecimal) {
// In 'e' or 'g' form, look for the 'e'.
eSign = std::find(target.data() + firstSignificant, target.data() + length, 'e') -
target.data();
if (eSign < length) {
// If 'e' is found, the final decimal point is determined by the number after 'e'.
// Mind that the final decimal point, decpt, is the offset of the decimal point from the
// start of the resulting string in buf. It may be negative or larger than bufSize, in
// which case the missing digits are zeroes. In the 'e' case decptInTarget is always 1,
// as variants of snprintf always generate numbers with one digit before the '.' then.
// This is why the final decimal point is offset by 1, relative to the number after 'e'.
bool ok;
const char *endptr;
decpt = qstrtoll(target.data() + eSign + 1, &endptr, 10, &ok) + 1;
Q_ASSERT(ok);
Q_ASSERT(endptr - target.data() <= length);
} else {
// No 'e' found, so it's the 'f' form. Variants of snprintf generate numbers with
// potentially multiple digits before the '.', but without decimal exponent then. So we
// get the final decimal point from the position of the '.'. The '.' itself takes up one
// character. We adjust by 1 below if that gets in the way.
decpt = decptInTarget - firstSignificant;
}
} else {
// In 'f' form, there can not be an 'e', so it's enough to look for the '.'
// (and possibly adjust by 1 below)
decpt = decptInTarget - firstSignificant;
}
// Move the actual digits from the snprintf target to the actual buffer.
if (decptInTarget > firstSignificant) {
// First move the digits before the '.', if any
int lengthBeforeDecpt = decptInTarget - firstSignificant;
memcpy(buf, target.data() + firstSignificant, qMin(lengthBeforeDecpt, bufSize));
if (eSign > decptInTarget && lengthBeforeDecpt < bufSize) {
// Then move any remaining digits, until 'e'
memcpy(buf + lengthBeforeDecpt, target.data() + decptInTarget + 1,
qMin(eSign - decptInTarget - 1, bufSize - lengthBeforeDecpt));
// The final length of the output is the distance between the first significant digit
// and 'e' minus 1, for the '.', except if the buffer is smaller.
length = qMin(eSign - firstSignificant - 1, bufSize);
} else {
// 'e' was before the decpt or things didn't fit. Don't subtract the '.' from the length.
length = qMin(eSign - firstSignificant, bufSize);
}
} else {
if (eSign > firstSignificant) {
// If there are any significant digits at all, they are all after the '.' now.
// Just copy them straight away.
memcpy(buf, target.data() + firstSignificant, qMin(eSign - firstSignificant, bufSize));
// The decimal point was before the first significant digit, so we were one off above.
// Consider 0.1 - buf will be just '1', and decpt should be 0. But
// "decptInTarget - firstSignificant" will yield -1.
++decpt;
length = qMin(eSign - firstSignificant, bufSize);
} else {
// No significant digits means the number is just 0.
buf[0] = '0';
length = 1;
decpt = 1;
}
}
#endif // QT_NO_DOUBLECONVERSION || QT_BOOTSTRAPPED
while (length > 1 && buf[length - 1] == '0') // drop trailing zeroes
--length;
}
double qt_asciiToDouble(const char *num, int numLen, bool &ok, int &processed,
StrayCharacterMode strayCharMode)
{
if (*num == '\0') {
ok = false;
processed = 0;
return 0.0;
}
ok = true;
// We have to catch NaN before because we need NaN as marker for "garbage" in the
// libdouble-conversion case and, in contrast to libdouble-conversion or sscanf, we don't allow
// "-nan" or "+nan"
if (qstrcmp(num, "nan") == 0) {
processed = 3;
return qt_qnan();
} else if ((num[0] == '-' || num[0] == '+') && qstrcmp(num + 1, "nan") == 0) {
processed = 0;
ok = false;
return 0.0;
}
// Infinity values are implementation defined in the sscanf case. In the libdouble-conversion
// case we need infinity as overflow marker.
if (qstrcmp(num, "+inf") == 0) {
processed = 4;
return qt_inf();
} else if (qstrcmp(num, "inf") == 0) {
processed = 3;
return qt_inf();
} else if (qstrcmp(num, "-inf") == 0) {
processed = 4;
return -qt_inf();
}
double d = 0.0;
#if !defined(QT_NO_DOUBLECONVERSION) && !defined(QT_BOOTSTRAPPED)
int conv_flags = double_conversion::StringToDoubleConverter::NO_FLAGS;
if (strayCharMode == TrailingJunkAllowed) {
conv_flags = double_conversion::StringToDoubleConverter::ALLOW_TRAILING_JUNK;
} else if (strayCharMode == WhitespacesAllowed) {
conv_flags = double_conversion::StringToDoubleConverter::ALLOW_LEADING_SPACES
| double_conversion::StringToDoubleConverter::ALLOW_TRAILING_SPACES;
}
double_conversion::StringToDoubleConverter conv(conv_flags, 0.0, qt_qnan(), 0, 0);
d = conv.StringToDouble(num, numLen, &processed);
if (!qIsFinite(d)) {
ok = false;
if (qIsNaN(d)) {
// Garbage found. We don't accept it and return 0.
processed = 0;
return 0.0;
} else {
// Overflow. That's not OK, but we still return infinity.
return d;
}
}
#else
if (qDoubleSscanf(num, QT_CLOCALE, "%lf%n", &d, &processed) < 1)
processed = 0;
if ((strayCharMode == TrailingJunkProhibited && processed != numLen) || qIsNaN(d)) {
// Implementation defined nan symbol or garbage found. We don't accept it.
processed = 0;
ok = false;
return 0.0;
}
if (!qIsFinite(d)) {
// Overflow. Check for implementation-defined infinity symbols and reject them.
// We assume that any infinity symbol has to contain a character that cannot be part of a
// "normal" number (that is 0-9, ., -, +, e).
ok = false;
for (int i = 0; i < processed; ++i) {
char c = num[i];
if ((c < '0' || c > '9') && c != '.' && c != '-' && c != '+' && c != 'e' && c != 'E') {
// Garbage found
processed = 0;
return 0.0;
}
}
return d;
}
#endif // !defined(QT_NO_DOUBLECONVERSION) && !defined(QT_BOOTSTRAPPED)
// Otherwise we would have gotten NaN or sorted it out above.
Q_ASSERT(strayCharMode == TrailingJunkAllowed || processed == numLen);
// Check if underflow has occurred.
if (isZero(d)) {
for (int i = 0; i < processed; ++i) {
if (num[i] >= '1' && num[i] <= '9') {
// if a digit before any 'e' is not 0, then a non-zero number was intended.
ok = false;
return 0.0;
} else if (num[i] == 'e' || num[i] == 'E') {
break;
}
}
}
return d;
}
unsigned long long
qstrtoull(const char * nptr, const char **endptr, int base, bool *ok)
{
// strtoull accepts negative numbers. We don't.
// Use a different variable so we pass the original nptr to strtoul
// (we need that so endptr may be nptr in case of failure)
const char *begin = nptr;
while (ascii_isspace(*begin))
++begin;
if (*begin == '-') {
*ok = false;
return 0;
}
*ok = true;
errno = 0;
char *endptr2 = nullptr;
unsigned long long result = qt_strtoull(nptr, &endptr2, base);
if (endptr)
*endptr = endptr2;
if ((result == 0 || result == std::numeric_limits<unsigned long long>::max())
&& (errno || endptr2 == nptr)) {
*ok = false;
return 0;
}
return result;
}
long long
qstrtoll(const char * nptr, const char **endptr, int base, bool *ok)
{
*ok = true;
errno = 0;
char *endptr2 = nullptr;
long long result = qt_strtoll(nptr, &endptr2, base);
if (endptr)
*endptr = endptr2;
if ((result == 0 || result == std::numeric_limits<long long>::min()
|| result == std::numeric_limits<long long>::max())
&& (errno || nptr == endptr2)) {
*ok = false;
return 0;
}
return result;
}
QString qulltoa(qulonglong l, int base, const QChar _zero)
{
ushort buff[65]; // length of MAX_ULLONG in base 2
ushort *p = buff + 65;
if (base != 10 || _zero.unicode() == '0') {
while (l != 0) {
int c = l % base;
--p;
if (c < 10)
*p = '0' + c;
else
*p = c - 10 + 'a';
l /= base;
}
}
else {
while (l != 0) {
int c = l % base;
*(--p) = _zero.unicode() + c;
l /= base;
}
}
return QString(reinterpret_cast<QChar *>(p), 65 - (p - buff));
}
QString &decimalForm(QChar zero, QChar decimal, QChar group,
QString &digits, int decpt, int precision,
PrecisionMode pm,
bool always_show_decpt,
bool thousands_group)
{
if (decpt < 0) {
for (int i = 0; i < -decpt; ++i)
digits.prepend(zero);
decpt = 0;
}
else if (decpt > digits.length()) {
for (int i = digits.length(); i < decpt; ++i)
digits.append(zero);
}
if (pm == PMDecimalDigits) {
uint decimal_digits = digits.length() - decpt;
for (int i = decimal_digits; i < precision; ++i)
digits.append(zero);
}
else if (pm == PMSignificantDigits) {
for (int i = digits.length(); i < precision; ++i)
digits.append(zero);
}
else { // pm == PMChopTrailingZeros
}
if (always_show_decpt || decpt < digits.length())
digits.insert(decpt, decimal);
if (thousands_group) {
for (int i = decpt - 3; i > 0; i -= 3)
digits.insert(i, group);
}
if (decpt == 0)
digits.prepend(zero);
return digits;
}
QString &exponentForm(QChar zero, QChar decimal, QChar exponential,
QChar group, QChar plus, QChar minus,
QString &digits, int decpt, int precision,
PrecisionMode pm,
bool always_show_decpt,
bool leading_zero_in_exponent)
{
int exp = decpt - 1;
if (pm == PMDecimalDigits) {
for (int i = digits.length(); i < precision + 1; ++i)
digits.append(zero);
}
else if (pm == PMSignificantDigits) {
for (int i = digits.length(); i < precision; ++i)
digits.append(zero);
}
else { // pm == PMChopTrailingZeros
}
if (always_show_decpt || digits.length() > 1)
digits.insert(1, decimal);
digits.append(exponential);
digits.append(QLocaleData::longLongToString(zero, group, plus, minus,
exp, leading_zero_in_exponent ? 2 : 1, 10, -1, QLocaleData::AlwaysShowSign));
return digits;
}
double qstrtod(const char *s00, const char **se, bool *ok)
{
const int len = static_cast<int>(strlen(s00));
Q_ASSERT(len >= 0);
return qstrntod(s00, len, se, ok);
}
/*!
\internal
Converts the initial portion of the string pointed to by \a s00 to a double, using the 'C' locale.
*/
double qstrntod(const char *s00, int len, const char **se, bool *ok)
{
int processed = 0;
bool nonNullOk = false;
double d = qt_asciiToDouble(s00, len, nonNullOk, processed, TrailingJunkAllowed);
if (se)
*se = s00 + processed;
if (ok)
*ok = nonNullOk;
return d;
}
QString qdtoa(qreal d, int *decpt, int *sign)
{
bool nonNullSign = false;
int nonNullDecpt = 0;
int length = 0;
// Some versions of libdouble-conversion like an extra digit, probably for '\0'
char result[QLocaleData::DoubleMaxSignificant + 1];
qt_doubleToAscii(d, QLocaleData::DFSignificantDigits, QLocale::FloatingPointShortest, result,
QLocaleData::DoubleMaxSignificant + 1, nonNullSign, length, nonNullDecpt);
if (sign)
*sign = nonNullSign ? 1 : 0;
if (decpt)
*decpt = nonNullDecpt;
return QLatin1String(result, length);
}
QT_END_NAMESPACE