blob: 0143e9b6027e868c40d9c58cbd071635bf0f7144 [file] [log] [blame]
/****************************************************************************
**
** Copyright (C) 2016 The Qt Company Ltd.
** Contact: https://www.qt.io/licensing/
**
** This file is part of the QtGui module of the Qt Toolkit.
**
** $QT_BEGIN_LICENSE:LGPL$
** Commercial License Usage
** Licensees holding valid commercial Qt licenses may use this file in
** accordance with the commercial license agreement provided with the
** Software or, alternatively, in accordance with the terms contained in
** a written agreement between you and The Qt Company. For licensing terms
** and conditions see https://www.qt.io/terms-conditions. For further
** information use the contact form at https://www.qt.io/contact-us.
**
** GNU Lesser General Public License Usage
** Alternatively, this file may be used under the terms of the GNU Lesser
** General Public License version 3 as published by the Free Software
** Foundation and appearing in the file LICENSE.LGPL3 included in the
** packaging of this file. Please review the following information to
** ensure the GNU Lesser General Public License version 3 requirements
** will be met: https://www.gnu.org/licenses/lgpl-3.0.html.
**
** GNU General Public License Usage
** Alternatively, this file may be used under the terms of the GNU
** General Public License version 2.0 or (at your option) the GNU General
** Public license version 3 or any later version approved by the KDE Free
** Qt Foundation. The licenses are as published by the Free Software
** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3
** included in the packaging of this file. Please review the following
** information to ensure the GNU General Public License requirements will
** be met: https://www.gnu.org/licenses/gpl-2.0.html and
** https://www.gnu.org/licenses/gpl-3.0.html.
**
** $QT_END_LICENSE$
**
****************************************************************************/
/***************************************************************************/
/* */
/* qgrayraster.c, derived from ftgrays.c */
/* */
/* A new `perfect' anti-aliasing renderer (body). */
/* */
/* Copyright 2000-2016 by */
/* David Turner, Robert Wilhelm, and Werner Lemberg. */
/* */
/* This file is part of the FreeType project, and may only be used, */
/* modified, and distributed under the terms of the FreeType project */
/* license, ../../3rdparty/freetype/docs/FTL.TXT. By continuing to use, */
/* modify, or distribute this file you indicate that you have read */
/* the license and understand and accept it fully. */
/* */
/***************************************************************************/
/*************************************************************************/
/* */
/* This file can be compiled without the rest of the FreeType engine, by */
/* defining the _STANDALONE_ macro when compiling it. You also need to */
/* put the files `ftgrays.h' and `ftimage.h' into the current */
/* compilation directory. Typically, you could do something like */
/* */
/* - copy `src/smooth/ftgrays.c' (this file) to your current directory */
/* */
/* - copy `include/freetype/ftimage.h' and `src/smooth/ftgrays.h' to the */
/* same directory */
/* */
/* - compile `ftgrays' with the _STANDALONE_ macro defined, as in */
/* */
/* cc -c -D_STANDALONE_ ftgrays.c */
/* */
/* The renderer can be initialized with a call to */
/* `qt_ft_gray_raster.raster_new'; an anti-aliased bitmap can be generated */
/* with a call to `qt_ft_gray_raster.raster_render'. */
/* */
/* See the comments and documentation in the file `ftimage.h' for more */
/* details on how the raster works. */
/* */
/*************************************************************************/
/*************************************************************************/
/* */
/* This is a new anti-aliasing scan-converter for FreeType 2. The */
/* algorithm used here is _very_ different from the one in the standard */
/* `ftraster' module. Actually, `ftgrays' computes the _exact_ */
/* coverage of the outline on each pixel cell. */
/* */
/* It is based on ideas that I initially found in Raph Levien's */
/* excellent LibArt graphics library (see http://www.levien.com/libart */
/* for more information, though the web pages do not tell anything */
/* about the renderer; you'll have to dive into the source code to */
/* understand how it works). */
/* */
/* Note, however, that this is a _very_ different implementation */
/* compared to Raph's. Coverage information is stored in a very */
/* different way, and I don't use sorted vector paths. Also, it doesn't */
/* use floating point values. */
/* */
/* This renderer has the following advantages: */
/* */
/* - It doesn't need an intermediate bitmap. Instead, one can supply a */
/* callback function that will be called by the renderer to draw gray */
/* spans on any target surface. You can thus do direct composition on */
/* any kind of bitmap, provided that you give the renderer the right */
/* callback. */
/* */
/* - A perfect anti-aliaser, i.e., it computes the _exact_ coverage on */
/* each pixel cell. */
/* */
/* - It performs a single pass on the outline (the `standard' FT2 */
/* renderer makes two passes). */
/* */
/* - It can easily be modified to render to _any_ number of gray levels */
/* cheaply. */
/* */
/* - For small (< 20) pixel sizes, it is faster than the standard */
/* renderer. */
/* */
/*************************************************************************/
/*************************************************************************/
/* */
/* The macro QT_FT_COMPONENT is used in trace mode. It is an implicit */
/* parameter of the QT_FT_TRACE() and QT_FT_ERROR() macros, used to print/log */
/* messages during execution. */
/* */
#undef QT_FT_COMPONENT
#define QT_FT_COMPONENT trace_smooth
/* Auxiliary macros for token concatenation. */
#define QT_FT_ERR_XCAT( x, y ) x ## y
#define QT_FT_ERR_CAT( x, y ) QT_FT_ERR_XCAT( x, y )
#define QT_FT_BEGIN_STMNT do {
#define QT_FT_END_STMNT } while ( 0 )
#define QT_FT_MAX( a, b ) ( (a) > (b) ? (a) : (b) )
#define QT_FT_ABS( a ) ( (a) < 0 ? -(a) : (a) )
/*
* Approximate sqrt(x*x+y*y) using the `alpha max plus beta min'
* algorithm. We use alpha = 1, beta = 3/8, giving us results with a
* largest error less than 7% compared to the exact value.
*/
#define QT_FT_HYPOT( x, y ) \
( x = QT_FT_ABS( x ), \
y = QT_FT_ABS( y ), \
x > y ? x + ( 3 * y >> 3 ) \
: y + ( 3 * x >> 3 ) )
#define ErrRaster_MemoryOverflow -4
#if defined(VXWORKS)
# include <vxWorksCommon.h> /* needed for setjmp.h */
#endif
#include <string.h> /* for qt_ft_memcpy() */
#include <setjmp.h>
#include <limits.h>
#define QT_FT_UINT_MAX UINT_MAX
#define qt_ft_memset memset
#define qt_ft_setjmp setjmp
#define qt_ft_longjmp longjmp
#define qt_ft_jmp_buf jmp_buf
#include <stddef.h>
typedef ptrdiff_t QT_FT_PtrDist;
#define ErrRaster_Invalid_Mode -2
#define ErrRaster_Invalid_Outline -1
#define ErrRaster_Invalid_Argument -3
#define ErrRaster_Memory_Overflow -4
#define ErrRaster_OutOfMemory -6
#define QT_FT_BEGIN_HEADER
#define QT_FT_END_HEADER
#include <private/qrasterdefs_p.h>
#include <private/qgrayraster_p.h>
#include <qcompilerdetection.h>
#include <stdlib.h>
#include <stdio.h>
#define QT_FT_UNUSED( x ) (void) x
#define QT_FT_TRACE5( x ) do { } while ( 0 ) /* nothing */
#define QT_FT_TRACE7( x ) do { } while ( 0 ) /* nothing */
#define QT_FT_ERROR( x ) do { } while ( 0 ) /* nothing */
#define QT_FT_THROW( e ) QT_FT_ERR_CAT( ErrRaster_, e )
#ifndef QT_FT_MEM_SET
#define QT_FT_MEM_SET( d, s, c ) qt_ft_memset( d, s, c )
#endif
#ifndef QT_FT_MEM_ZERO
#define QT_FT_MEM_ZERO( dest, count ) QT_FT_MEM_SET( dest, 0, count )
#endif
#define RAS_ARG PWorker worker
#define RAS_ARG_ PWorker worker,
#define RAS_VAR worker
#define RAS_VAR_ worker,
#define ras (*worker)
/* must be at least 6 bits! */
#define PIXEL_BITS 8
#define ONE_PIXEL ( 1L << PIXEL_BITS )
#define TRUNC( x ) ( (TCoord)( (x) >> PIXEL_BITS ) )
#define SUBPIXELS( x ) ( (TPos)(x) * ONE_PIXEL )
#define FLOOR( x ) ( (x) & -ONE_PIXEL )
#define CEILING( x ) ( ( (x) + ONE_PIXEL - 1 ) & -ONE_PIXEL )
#define ROUND( x ) ( ( (x) + ONE_PIXEL / 2 ) & -ONE_PIXEL )
#if PIXEL_BITS >= 6
#define UPSCALE( x ) ( (x) * ( ONE_PIXEL >> 6 ) )
#define DOWNSCALE( x ) ( (x) >> ( PIXEL_BITS - 6 ) )
#else
#define UPSCALE( x ) ( (x) >> ( 6 - PIXEL_BITS ) )
#define DOWNSCALE( x ) ( (x) * ( 64 >> PIXEL_BITS ) )
#endif
/* Compute `dividend / divisor' and return both its quotient and */
/* remainder, cast to a specific type. This macro also ensures that */
/* the remainder is always positive. */
#define QT_FT_DIV_MOD( type, dividend, divisor, quotient, remainder ) \
QT_FT_BEGIN_STMNT \
(quotient) = (type)( (dividend) / (divisor) ); \
(remainder) = (type)( (dividend) % (divisor) ); \
if ( (remainder) < 0 ) \
{ \
(quotient)--; \
(remainder) += (type)(divisor); \
} \
QT_FT_END_STMNT
/* These macros speed up repetitive divisions by replacing them */
/* with multiplications and right shifts. */
#define QT_FT_UDIVPREP( b ) \
long b ## _r = (long)( ULONG_MAX >> PIXEL_BITS ) / ( b )
#define QT_FT_UDIV( a, b ) \
( ( (unsigned long)( a ) * (unsigned long)( b ## _r ) ) >> \
( sizeof( long ) * CHAR_BIT - PIXEL_BITS ) )
/*************************************************************************/
/* */
/* TYPE DEFINITIONS */
/* */
/* don't change the following types to QT_FT_Int or QT_FT_Pos, since we might */
/* need to define them to "float" or "double" when experimenting with */
/* new algorithms */
typedef long TCoord; /* integer scanline/pixel coordinate */
typedef long TPos; /* sub-pixel coordinate */
typedef long TArea ; /* cell areas, coordinate products */
/* maximal number of gray spans in a call to the span callback */
#define QT_FT_MAX_GRAY_SPANS 256
typedef struct TCell_* PCell;
typedef struct TCell_
{
int x;
int cover;
TArea area;
PCell next;
} TCell;
typedef struct TWorker_
{
TCoord ex, ey;
TPos min_ex, max_ex;
TPos min_ey, max_ey;
TPos count_ex, count_ey;
TArea area;
int cover;
int invalid;
PCell cells;
QT_FT_PtrDist max_cells;
QT_FT_PtrDist num_cells;
TPos x, y;
QT_FT_Outline outline;
QT_FT_Bitmap target;
QT_FT_BBox clip_box;
QT_FT_Span gray_spans[QT_FT_MAX_GRAY_SPANS];
int num_gray_spans;
QT_FT_Raster_Span_Func render_span;
void* render_span_data;
int band_size;
int band_shoot;
qt_ft_jmp_buf jump_buffer;
void* buffer;
long buffer_size;
PCell* ycells;
TPos ycount;
int skip_spans;
} TWorker, *PWorker;
typedef struct TRaster_
{
void* buffer;
long buffer_size;
long buffer_allocated_size;
int band_size;
void* memory;
PWorker worker;
} TRaster, *PRaster;
int q_gray_rendered_spans(TRaster *raster)
{
if ( raster && raster->worker )
return raster->worker->skip_spans > 0 ? 0 : -raster->worker->skip_spans;
return 0;
}
/*************************************************************************/
/* */
/* Initialize the cells table. */
/* */
static void
gray_init_cells( RAS_ARG_ void* buffer,
long byte_size )
{
ras.buffer = buffer;
ras.buffer_size = byte_size;
ras.ycells = (PCell*) buffer;
ras.cells = NULL;
ras.max_cells = 0;
ras.num_cells = 0;
ras.area = 0;
ras.cover = 0;
ras.invalid = 1;
}
/*************************************************************************/
/* */
/* Compute the outline bounding box. */
/* */
static void
gray_compute_cbox( RAS_ARG )
{
QT_FT_Outline* outline = &ras.outline;
QT_FT_Vector* vec = outline->points;
QT_FT_Vector* limit = vec + outline->n_points;
if ( outline->n_points <= 0 )
{
ras.min_ex = ras.max_ex = 0;
ras.min_ey = ras.max_ey = 0;
return;
}
ras.min_ex = ras.max_ex = vec->x;
ras.min_ey = ras.max_ey = vec->y;
vec++;
for ( ; vec < limit; vec++ )
{
TPos x = vec->x;
TPos y = vec->y;
if ( x < ras.min_ex ) ras.min_ex = x;
if ( x > ras.max_ex ) ras.max_ex = x;
if ( y < ras.min_ey ) ras.min_ey = y;
if ( y > ras.max_ey ) ras.max_ey = y;
}
/* truncate the bounding box to integer pixels */
ras.min_ex = ras.min_ex >> 6;
ras.min_ey = ras.min_ey >> 6;
ras.max_ex = ( ras.max_ex + 63 ) >> 6;
ras.max_ey = ( ras.max_ey + 63 ) >> 6;
}
/*************************************************************************/
/* */
/* Record the current cell in the table. */
/* */
static PCell
gray_find_cell( RAS_ARG )
{
PCell *pcell, cell;
TPos x = ras.ex;
if ( x > ras.count_ex )
x = ras.count_ex;
pcell = &ras.ycells[ras.ey];
for (;;)
{
cell = *pcell;
if ( cell == NULL || cell->x > x )
break;
if ( cell->x == x )
goto Exit;
pcell = &cell->next;
}
if ( ras.num_cells >= ras.max_cells )
qt_ft_longjmp( ras.jump_buffer, 1 );
cell = ras.cells + ras.num_cells++;
cell->x = x;
cell->area = 0;
cell->cover = 0;
cell->next = *pcell;
*pcell = cell;
Exit:
return cell;
}
static void
gray_record_cell( RAS_ARG )
{
if ( ras.area | ras.cover )
{
PCell cell = gray_find_cell( RAS_VAR );
cell->area += ras.area;
cell->cover += ras.cover;
}
}
/*************************************************************************/
/* */
/* Set the current cell to a new position. */
/* */
static void
gray_set_cell( RAS_ARG_ TCoord ex,
TCoord ey )
{
/* Move the cell pointer to a new position. We set the `invalid' */
/* flag to indicate that the cell isn't part of those we're interested */
/* in during the render phase. This means that: */
/* */
/* . the new vertical position must be within min_ey..max_ey-1. */
/* . the new horizontal position must be strictly less than max_ex */
/* */
/* Note that if a cell is to the left of the clipping region, it is */
/* actually set to the (min_ex-1) horizontal position. */
/* All cells that are on the left of the clipping region go to the */
/* min_ex - 1 horizontal position. */
ey -= ras.min_ey;
if ( ex > ras.max_ex )
ex = ras.max_ex;
ex -= ras.min_ex;
if ( ex < 0 )
ex = -1;
/* are we moving to a different cell ? */
if ( ex != ras.ex || ey != ras.ey )
{
/* record the current one if it is valid */
if ( !ras.invalid )
gray_record_cell( RAS_VAR );
ras.area = 0;
ras.cover = 0;
ras.ex = ex;
ras.ey = ey;
}
ras.invalid = ( (unsigned int)ey >= (unsigned int)ras.count_ey ||
ex >= ras.count_ex );
}
/*************************************************************************/
/* */
/* Start a new contour at a given cell. */
/* */
static void
gray_start_cell( RAS_ARG_ TCoord ex,
TCoord ey )
{
if ( ex > ras.max_ex )
ex = (TCoord)( ras.max_ex );
if ( ex < ras.min_ex )
ex = (TCoord)( ras.min_ex - 1 );
ras.area = 0;
ras.cover = 0;
ras.ex = ex - ras.min_ex;
ras.ey = ey - ras.min_ey;
ras.invalid = 0;
gray_set_cell( RAS_VAR_ ex, ey );
}
// The new render-line implementation is not yet used
#if 1
/*************************************************************************/
/* */
/* Render a scanline as one or more cells. */
/* */
static void
gray_render_scanline( RAS_ARG_ TCoord ey,
TPos x1,
TCoord y1,
TPos x2,
TCoord y2 )
{
TCoord ex1, ex2, fx1, fx2, delta, mod;
int p, first, dx;
int incr;
dx = x2 - x1;
ex1 = TRUNC( x1 );
ex2 = TRUNC( x2 );
fx1 = (TCoord)( x1 - SUBPIXELS( ex1 ) );
fx2 = (TCoord)( x2 - SUBPIXELS( ex2 ) );
/* trivial case. Happens often */
if ( y1 == y2 )
{
gray_set_cell( RAS_VAR_ ex2, ey );
return;
}
/* everything is located in a single cell. That is easy! */
/* */
if ( ex1 == ex2 )
{
delta = y2 - y1;
ras.area += (TArea)( fx1 + fx2 ) * delta;
ras.cover += delta;
return;
}
/* ok, we'll have to render a run of adjacent cells on the same */
/* scanline... */
/* */
p = ( ONE_PIXEL - fx1 ) * ( y2 - y1 );
first = ONE_PIXEL;
incr = 1;
if ( dx < 0 )
{
p = fx1 * ( y2 - y1 );
first = 0;
incr = -1;
dx = -dx;
}
QT_FT_DIV_MOD( TCoord, p, dx, delta, mod );
ras.area += (TArea)( fx1 + first ) * delta;
ras.cover += delta;
ex1 += incr;
gray_set_cell( RAS_VAR_ ex1, ey );
y1 += delta;
if ( ex1 != ex2 )
{
TCoord lift, rem;
p = ONE_PIXEL * ( y2 - y1 + delta );
QT_FT_DIV_MOD( TCoord, p, dx, lift, rem );
mod -= (int)dx;
while ( ex1 != ex2 )
{
delta = lift;
mod += rem;
if ( mod >= 0 )
{
mod -= (TCoord)dx;
delta++;
}
ras.area += (TArea)ONE_PIXEL * delta;
ras.cover += delta;
y1 += delta;
ex1 += incr;
gray_set_cell( RAS_VAR_ ex1, ey );
}
}
delta = y2 - y1;
ras.area += (TArea)( fx2 + ONE_PIXEL - first ) * delta;
ras.cover += delta;
}
/*************************************************************************/
/* */
/* Render a given line as a series of scanlines. */
/* */
static void
gray_render_line( RAS_ARG_ TPos to_x,
TPos to_y )
{
TCoord ey1, ey2, fy1, fy2, mod;
TPos dx, dy, x, x2;
int p, first;
int delta, rem, lift, incr;
ey1 = TRUNC( ras.y );
ey2 = TRUNC( to_y ); /* if (ey2 >= ras.max_ey) ey2 = ras.max_ey-1; */
fy1 = (TCoord)( ras.y - SUBPIXELS( ey1 ) );
fy2 = (TCoord)( to_y - SUBPIXELS( ey2 ) );
dx = to_x - ras.x;
dy = to_y - ras.y;
/* perform vertical clipping */
if ( ( ey1 >= ras.max_ey && ey2 >= ras.max_ey ) ||
( ey1 < ras.min_ey && ey2 < ras.min_ey ) )
goto End;
/* everything is on a single scanline */
if ( ey1 == ey2 )
{
gray_render_scanline( RAS_VAR_ ey1, ras.x, fy1, to_x, fy2 );
goto End;
}
/* vertical line - avoid calling gray_render_scanline */
if ( dx == 0 )
{
TCoord ex = TRUNC( ras.x );
TCoord two_fx = (TCoord)( ( ras.x - SUBPIXELS( ex ) ) << 1 );
TPos area, max_ey1;
first = ONE_PIXEL;
if ( dy < 0 )
first = 0;
delta = (int)( first - fy1 );
ras.area += (TArea)two_fx * delta;
ras.cover += delta;
delta = (int)( first + first - ONE_PIXEL );
area = (TArea)two_fx * delta;
max_ey1 = ras.count_ey + ras.min_ey;
if (dy < 0) {
if (ey1 > max_ey1) {
ey1 = (max_ey1 > ey2) ? max_ey1 : ey2;
gray_set_cell( &ras, ex, ey1 );
} else {
ey1--;
gray_set_cell( &ras, ex, ey1 );
}
while ( ey1 > ey2 && ey1 >= ras.min_ey)
{
ras.area += area;
ras.cover += delta;
ey1--;
gray_set_cell( &ras, ex, ey1 );
}
if (ey1 != ey2) {
ey1 = ey2;
gray_set_cell( &ras, ex, ey1 );
}
} else {
if (ey1 < ras.min_ey) {
ey1 = (ras.min_ey < ey2) ? ras.min_ey : ey2;
gray_set_cell( &ras, ex, ey1 );
} else {
ey1++;
gray_set_cell( &ras, ex, ey1 );
}
while ( ey1 < ey2 && ey1 < max_ey1)
{
ras.area += area;
ras.cover += delta;
ey1++;
gray_set_cell( &ras, ex, ey1 );
}
if (ey1 != ey2) {
ey1 = ey2;
gray_set_cell( &ras, ex, ey1 );
}
}
delta = (int)( fy2 - ONE_PIXEL + first );
ras.area += (TArea)two_fx * delta;
ras.cover += delta;
goto End;
}
/* ok, we have to render several scanlines */
p = ( ONE_PIXEL - fy1 ) * dx;
first = ONE_PIXEL;
incr = 1;
if ( dy < 0 )
{
p = fy1 * dx;
first = 0;
incr = -1;
dy = -dy;
}
delta = (int)( p / dy );
mod = (int)( p % dy );
if ( mod < 0 )
{
delta--;
mod += (TCoord)dy;
}
x = ras.x + delta;
gray_render_scanline( RAS_VAR_ ey1, ras.x, fy1, x, (TCoord)first );
ey1 += incr;
gray_set_cell( RAS_VAR_ TRUNC( x ), ey1 );
if ( ey1 != ey2 )
{
p = ONE_PIXEL * dx;
QT_FT_DIV_MOD( int, p, dy, lift, rem );
mod -= (int)dy;
while ( ey1 != ey2 )
{
delta = lift;
mod += rem;
if ( mod >= 0 )
{
mod -= (int)dy;
delta++;
}
x2 = x + delta;
gray_render_scanline( RAS_VAR_ ey1, x,
(TCoord)( ONE_PIXEL - first ), x2,
(TCoord)first );
x = x2;
ey1 += incr;
gray_set_cell( RAS_VAR_ TRUNC( x ), ey1 );
}
}
gray_render_scanline( RAS_VAR_ ey1, x,
(TCoord)( ONE_PIXEL - first ), to_x,
fy2 );
End:
ras.x = to_x;
ras.y = to_y;
}
#else
/*************************************************************************/
/* */
/* Render a straight line across multiple cells in any direction. */
/* */
static void
gray_render_line( RAS_ARG_ TPos to_x,
TPos to_y )
{
TPos dx, dy, fx1, fy1, fx2, fy2;
TCoord ex1, ex2, ey1, ey2;
ex1 = TRUNC( ras.x );
ex2 = TRUNC( to_x );
ey1 = TRUNC( ras.y );
ey2 = TRUNC( to_y );
/* perform vertical clipping */
if ( ( ey1 >= ras.max_ey && ey2 >= ras.max_ey ) ||
( ey1 < ras.min_ey && ey2 < ras.min_ey ) )
goto End;
dx = to_x - ras.x;
dy = to_y - ras.y;
fx1 = ras.x - SUBPIXELS( ex1 );
fy1 = ras.y - SUBPIXELS( ey1 );
if ( ex1 == ex2 && ey1 == ey2 ) /* inside one cell */
;
else if ( dy == 0 ) /* ex1 != ex2 */ /* any horizontal line */
{
ex1 = ex2;
gray_set_cell( RAS_VAR_ ex1, ey1 );
}
else if ( dx == 0 )
{
if ( dy > 0 ) /* vertical line up */
do
{
fy2 = ONE_PIXEL;
ras.cover += ( fy2 - fy1 );
ras.area += ( fy2 - fy1 ) * fx1 * 2;
fy1 = 0;
ey1++;
gray_set_cell( RAS_VAR_ ex1, ey1 );
} while ( ey1 != ey2 );
else /* vertical line down */
do
{
fy2 = 0;
ras.cover += ( fy2 - fy1 );
ras.area += ( fy2 - fy1 ) * fx1 * 2;
fy1 = ONE_PIXEL;
ey1--;
gray_set_cell( RAS_VAR_ ex1, ey1 );
} while ( ey1 != ey2 );
}
else /* any other line */
{
TArea prod = dx * fy1 - dy * fx1;
QT_FT_UDIVPREP( dx );
QT_FT_UDIVPREP( dy );
/* The fundamental value `prod' determines which side and the */
/* exact coordinate where the line exits current cell. It is */
/* also easily updated when moving from one cell to the next. */
do
{
if ( prod <= 0 &&
prod - dx * ONE_PIXEL > 0 ) /* left */
{
fx2 = 0;
fy2 = (TPos)QT_FT_UDIV( -prod, -dx );
prod -= dy * ONE_PIXEL;
ras.cover += ( fy2 - fy1 );
ras.area += ( fy2 - fy1 ) * ( fx1 + fx2 );
fx1 = ONE_PIXEL;
fy1 = fy2;
ex1--;
}
else if ( prod - dx * ONE_PIXEL <= 0 &&
prod - dx * ONE_PIXEL + dy * ONE_PIXEL > 0 ) /* up */
{
prod -= dx * ONE_PIXEL;
fx2 = (TPos)QT_FT_UDIV( -prod, dy );
fy2 = ONE_PIXEL;
ras.cover += ( fy2 - fy1 );
ras.area += ( fy2 - fy1 ) * ( fx1 + fx2 );
fx1 = fx2;
fy1 = 0;
ey1++;
}
else if ( prod - dx * ONE_PIXEL + dy * ONE_PIXEL <= 0 &&
prod + dy * ONE_PIXEL >= 0 ) /* right */
{
prod += dy * ONE_PIXEL;
fx2 = ONE_PIXEL;
fy2 = (TPos)QT_FT_UDIV( prod, dx );
ras.cover += ( fy2 - fy1 );
ras.area += ( fy2 - fy1 ) * ( fx1 + fx2 );
fx1 = 0;
fy1 = fy2;
ex1++;
}
else /* ( prod + dy * ONE_PIXEL < 0 &&
prod > 0 ) down */
{
fx2 = (TPos)QT_FT_UDIV( prod, -dy );
fy2 = 0;
prod += dx * ONE_PIXEL;
ras.cover += ( fy2 - fy1 );
ras.area += ( fy2 - fy1 ) * ( fx1 + fx2 );
fx1 = fx2;
fy1 = ONE_PIXEL;
ey1--;
}
gray_set_cell( RAS_VAR_ ex1, ey1 );
} while ( ex1 != ex2 || ey1 != ey2 );
}
fx2 = to_x - SUBPIXELS( ex2 );
fy2 = to_y - SUBPIXELS( ey2 );
ras.cover += ( fy2 - fy1 );
ras.area += ( fy2 - fy1 ) * ( fx1 + fx2 );
End:
ras.x = to_x;
ras.y = to_y;
}
#endif
static void
gray_split_conic( QT_FT_Vector* base )
{
TPos a, b;
base[4].x = base[2].x;
b = base[1].x;
a = base[3].x = ( base[2].x + b ) / 2;
b = base[1].x = ( base[0].x + b ) / 2;
base[2].x = ( a + b ) / 2;
base[4].y = base[2].y;
b = base[1].y;
a = base[3].y = ( base[2].y + b ) / 2;
b = base[1].y = ( base[0].y + b ) / 2;
base[2].y = ( a + b ) / 2;
}
static void
gray_render_conic( RAS_ARG_ const QT_FT_Vector* control,
const QT_FT_Vector* to )
{
QT_FT_Vector bez_stack[16 * 2 + 1]; /* enough to accommodate bisections */
QT_FT_Vector* arc = bez_stack;
TPos dx, dy;
int draw, split;
arc[0].x = UPSCALE( to->x );
arc[0].y = UPSCALE( to->y );
arc[1].x = UPSCALE( control->x );
arc[1].y = UPSCALE( control->y );
arc[2].x = ras.x;
arc[2].y = ras.y;
/* short-cut the arc that crosses the current band */
if ( ( TRUNC( arc[0].y ) >= ras.max_ey &&
TRUNC( arc[1].y ) >= ras.max_ey &&
TRUNC( arc[2].y ) >= ras.max_ey ) ||
( TRUNC( arc[0].y ) < ras.min_ey &&
TRUNC( arc[1].y ) < ras.min_ey &&
TRUNC( arc[2].y ) < ras.min_ey ) )
{
ras.x = arc[0].x;
ras.y = arc[0].y;
return;
}
dx = QT_FT_ABS( arc[2].x + arc[0].x - 2 * arc[1].x );
dy = QT_FT_ABS( arc[2].y + arc[0].y - 2 * arc[1].y );
if ( dx < dy )
dx = dy;
/* We can calculate the number of necessary bisections because */
/* each bisection predictably reduces deviation exactly 4-fold. */
/* Even 32-bit deviation would vanish after 16 bisections. */
draw = 1;
while ( dx > ONE_PIXEL / 4 )
{
dx >>= 2;
draw <<= 1;
}
/* We use decrement counter to count the total number of segments */
/* to draw starting from 2^level. Before each draw we split as */
/* many times as there are trailing zeros in the counter. */
do
{
split = 1;
while ( ( draw & split ) == 0 )
{
gray_split_conic( arc );
arc += 2;
split <<= 1;
}
gray_render_line( RAS_VAR_ arc[0].x, arc[0].y );
arc -= 2;
} while ( --draw );
}
static void
gray_split_cubic( QT_FT_Vector* base )
{
TPos a, b, c, d;
base[6].x = base[3].x;
c = base[1].x;
d = base[2].x;
base[1].x = a = ( base[0].x + c ) / 2;
base[5].x = b = ( base[3].x + d ) / 2;
c = ( c + d ) / 2;
base[2].x = a = ( a + c ) / 2;
base[4].x = b = ( b + c ) / 2;
base[3].x = ( a + b ) / 2;
base[6].y = base[3].y;
c = base[1].y;
d = base[2].y;
base[1].y = a = ( base[0].y + c ) / 2;
base[5].y = b = ( base[3].y + d ) / 2;
c = ( c + d ) / 2;
base[2].y = a = ( a + c ) / 2;
base[4].y = b = ( b + c ) / 2;
base[3].y = ( a + b ) / 2;
}
static void
gray_render_cubic( RAS_ARG_ const QT_FT_Vector* control1,
const QT_FT_Vector* control2,
const QT_FT_Vector* to )
{
QT_FT_Vector bez_stack[16 * 3 + 1]; /* enough to accommodate bisections */
QT_FT_Vector* arc = bez_stack;
TPos dx, dy, dx_, dy_;
TPos dx1, dy1, dx2, dy2;
TPos L, s, s_limit;
arc[0].x = UPSCALE( to->x );
arc[0].y = UPSCALE( to->y );
arc[1].x = UPSCALE( control2->x );
arc[1].y = UPSCALE( control2->y );
arc[2].x = UPSCALE( control1->x );
arc[2].y = UPSCALE( control1->y );
arc[3].x = ras.x;
arc[3].y = ras.y;
/* short-cut the arc that crosses the current band */
if ( ( TRUNC( arc[0].y ) >= ras.max_ey &&
TRUNC( arc[1].y ) >= ras.max_ey &&
TRUNC( arc[2].y ) >= ras.max_ey &&
TRUNC( arc[3].y ) >= ras.max_ey ) ||
( TRUNC( arc[0].y ) < ras.min_ey &&
TRUNC( arc[1].y ) < ras.min_ey &&
TRUNC( arc[2].y ) < ras.min_ey &&
TRUNC( arc[3].y ) < ras.min_ey ) )
{
ras.x = arc[0].x;
ras.y = arc[0].y;
return;
}
for (;;)
{
/* Decide whether to split or draw. See `Rapid Termination */
/* Evaluation for Recursive Subdivision of Bezier Curves' by Thomas */
/* F. Hain, at */
/* http://www.cis.southalabama.edu/~hain/general/Publications/Bezier/Camera-ready%20CISST02%202.pdf */
/* dx and dy are x and y components of the P0-P3 chord vector. */
dx = dx_ = arc[3].x - arc[0].x;
dy = dy_ = arc[3].y - arc[0].y;
L = QT_FT_HYPOT( dx_, dy_ );
/* Avoid possible arithmetic overflow below by splitting. */
if ( L > 32767 )
goto Split;
/* Max deviation may be as much as (s/L) * 3/4 (if Hain's v = 1). */
s_limit = L * (TPos)( ONE_PIXEL / 6 );
/* s is L * the perpendicular distance from P1 to the line P0-P3. */
dx1 = arc[1].x - arc[0].x;
dy1 = arc[1].y - arc[0].y;
s = QT_FT_ABS( dy * dx1 - dx * dy1 );
if ( s > s_limit )
goto Split;
/* s is L * the perpendicular distance from P2 to the line P0-P3. */
dx2 = arc[2].x - arc[0].x;
dy2 = arc[2].y - arc[0].y;
s = QT_FT_ABS( dy * dx2 - dx * dy2 );
if ( s > s_limit )
goto Split;
/* Split super curvy segments where the off points are so far
from the chord that the angles P0-P1-P3 or P0-P2-P3 become
acute as detected by appropriate dot products. */
if ( dx1 * ( dx1 - dx ) + dy1 * ( dy1 - dy ) > 0 ||
dx2 * ( dx2 - dx ) + dy2 * ( dy2 - dy ) > 0 )
goto Split;
gray_render_line( RAS_VAR_ arc[0].x, arc[0].y );
if ( arc == bez_stack )
return;
arc -= 3;
continue;
Split:
gray_split_cubic( arc );
arc += 3;
}
}
static int
gray_move_to( const QT_FT_Vector* to,
PWorker worker )
{
TPos x, y;
/* record current cell, if any */
if ( !ras.invalid )
gray_record_cell( worker );
/* start to a new position */
x = UPSCALE( to->x );
y = UPSCALE( to->y );
gray_start_cell( worker, TRUNC( x ), TRUNC( y ) );
ras.x = x;
ras.y = y;
return 0;
}
static void
gray_render_span( int count,
const QT_FT_Span* spans,
PWorker worker )
{
unsigned char* p;
QT_FT_Bitmap* map = &worker->target;
for ( ; count > 0; count--, spans++ )
{
unsigned char coverage = spans->coverage;
/* first of all, compute the scanline offset */
p = (unsigned char*)map->buffer - spans->y * map->pitch;
if ( map->pitch >= 0 )
p += ( map->rows - 1 ) * (unsigned int)map->pitch;
if ( coverage )
{
unsigned char* q = p + spans->x;
/* For small-spans it is faster to do it by ourselves than
* calling `memset'. This is mainly due to the cost of the
* function call.
*/
switch ( spans->len )
{
case 7: *q++ = coverage; Q_FALLTHROUGH();
case 6: *q++ = coverage; Q_FALLTHROUGH();
case 5: *q++ = coverage; Q_FALLTHROUGH();
case 4: *q++ = coverage; Q_FALLTHROUGH();
case 3: *q++ = coverage; Q_FALLTHROUGH();
case 2: *q++ = coverage; Q_FALLTHROUGH();
case 1: *q = coverage; Q_FALLTHROUGH();
case 0: break;
default:
QT_FT_MEM_SET( q, coverage, spans->len );
}
}
}
}
static void
gray_hline( RAS_ARG_ TCoord x,
TCoord y,
TPos area,
int acount )
{
int coverage;
/* compute the coverage line's coverage, depending on the */
/* outline fill rule */
/* */
/* the coverage percentage is area/(PIXEL_BITS*PIXEL_BITS*2) */
/* */
coverage = (int)( area >> ( PIXEL_BITS * 2 + 1 - 8 ) );
/* use range 0..256 */
if ( coverage < 0 )
coverage = -coverage;
if ( ras.outline.flags & QT_FT_OUTLINE_EVEN_ODD_FILL )
{
coverage &= 511;
if ( coverage > 256 )
coverage = 512 - coverage;
else if ( coverage == 256 )
coverage = 255;
}
else
{
/* normal non-zero winding rule */
if ( coverage >= 256 )
coverage = 255;
}
y += (TCoord)ras.min_ey;
x += (TCoord)ras.min_ex;
/* QT_FT_Span.x is a 16-bit short, so limit our coordinates appropriately */
if ( x >= 32767 )
x = 32767;
/* QT_FT_Span.y is a 16-bit short, so limit our coordinates appropriately */
if ( y >= 32767 )
y = 32767;
if ( coverage )
{
QT_FT_Span* span;
int count;
int skip;
/* see whether we can add this span to the current list */
count = ras.num_gray_spans;
span = ras.gray_spans + count - 1;
if ( count > 0 &&
span->y == y &&
(int)span->x + span->len == (int)x &&
span->coverage == coverage )
{
span->len = (unsigned short)( span->len + acount );
return;
}
if ( count >= QT_FT_MAX_GRAY_SPANS )
{
if ( ras.render_span && count > ras.skip_spans )
{
skip = ras.skip_spans > 0 ? ras.skip_spans : 0;
ras.render_span( ras.num_gray_spans - skip,
ras.gray_spans + skip,
ras.render_span_data );
}
ras.skip_spans -= ras.num_gray_spans;
/* ras.render_span( span->y, ras.gray_spans, count ); */
#ifdef DEBUG_GRAYS
if ( 1 )
{
int n;
fprintf( stderr, "y=%3d ", y );
span = ras.gray_spans;
for ( n = 0; n < count; n++, span++ )
fprintf( stderr, "[%d..%d]:%02x ",
span->x, span->x + span->len - 1, span->coverage );
fprintf( stderr, "\n" );
}
#endif /* DEBUG_GRAYS */
ras.num_gray_spans = 0;
span = ras.gray_spans;
}
else
span++;
/* add a gray span to the current list */
span->x = (short)x;
span->len = (unsigned short)acount;
span->y = (short)y;
span->coverage = (unsigned char)coverage;
ras.num_gray_spans++;
}
}
#ifdef DEBUG_GRAYS
/* to be called while in the debugger */
gray_dump_cells( RAS_ARG )
{
int yindex;
for ( yindex = 0; yindex < ras.ycount; yindex++ )
{
PCell cell;
printf( "%3d:", yindex );
for ( cell = ras.ycells[yindex]; cell != NULL; cell = cell->next )
printf( " (%3d, c:%4d, a:%6d)", cell->x, cell->cover, cell->area );
printf( "\n" );
}
}
#endif /* DEBUG_GRAYS */
static void
gray_sweep( RAS_ARG_ const QT_FT_Bitmap* target )
{
int yindex;
QT_FT_UNUSED( target );
if ( ras.num_cells == 0 )
return;
QT_FT_TRACE7(( "gray_sweep: start\n" ));
for ( yindex = 0; yindex < ras.ycount; yindex++ )
{
PCell cell = ras.ycells[yindex];
TCoord cover = 0;
TCoord x = 0;
for ( ; cell != NULL; cell = cell->next )
{
TArea area;
if ( cell->x > x && cover != 0 )
gray_hline( RAS_VAR_ x, yindex, cover * ( ONE_PIXEL * 2 ),
cell->x - x );
cover += cell->cover;
area = cover * ( ONE_PIXEL * 2 ) - cell->area;
if ( area != 0 && cell->x >= 0 )
gray_hline( RAS_VAR_ cell->x, yindex, area, 1 );
x = cell->x + 1;
}
if ( ras.count_ex > x && cover != 0 )
gray_hline( RAS_VAR_ x, yindex, cover * ( ONE_PIXEL * 2 ),
ras.count_ex - x );
}
QT_FT_TRACE7(( "gray_sweep: end\n" ));
}
/*************************************************************************/
/* */
/* The following function should only compile in stand_alone mode, */
/* i.e., when building this component without the rest of FreeType. */
/* */
/*************************************************************************/
/*************************************************************************/
/* */
/* <Function> */
/* QT_FT_Outline_Decompose */
/* */
/* <Description> */
/* Walks over an outline's structure to decompose it into individual */
/* segments and Bezier arcs. This function is also able to emit */
/* `move to' and `close to' operations to indicate the start and end */
/* of new contours in the outline. */
/* */
/* <Input> */
/* outline :: A pointer to the source target. */
/* */
/* user :: A typeless pointer which is passed to each */
/* emitter during the decomposition. It can be */
/* used to store the state during the */
/* decomposition. */
/* */
/* <Return> */
/* Error code. 0 means success. */
/* */
static
int QT_FT_Outline_Decompose( const QT_FT_Outline* outline,
void* user )
{
#undef SCALED
#define SCALED( x ) (x)
QT_FT_Vector v_last;
QT_FT_Vector v_control;
QT_FT_Vector v_start;
QT_FT_Vector* point;
QT_FT_Vector* limit;
char* tags;
int n; /* index of contour in outline */
int first; /* index of first point in contour */
int error;
char tag; /* current point's state */
if ( !outline )
return ErrRaster_Invalid_Outline;
first = 0;
for ( n = 0; n < outline->n_contours; n++ )
{
int last; /* index of last point in contour */
last = outline->contours[n];
if ( last < 0 )
goto Invalid_Outline;
limit = outline->points + last;
v_start = outline->points[first];
v_start.x = SCALED( v_start.x );
v_start.y = SCALED( v_start.y );
v_last = outline->points[last];
v_last.x = SCALED( v_last.x );
v_last.y = SCALED( v_last.y );
v_control = v_start;
point = outline->points + first;
tags = outline->tags + first;
tag = QT_FT_CURVE_TAG( tags[0] );
/* A contour cannot start with a cubic control point! */
if ( tag == QT_FT_CURVE_TAG_CUBIC )
goto Invalid_Outline;
/* check first point to determine origin */
if ( tag == QT_FT_CURVE_TAG_CONIC )
{
/* first point is conic control. Yes, this happens. */
if ( QT_FT_CURVE_TAG( outline->tags[last] ) == QT_FT_CURVE_TAG_ON )
{
/* start at last point if it is on the curve */
v_start = v_last;
limit--;
}
else
{
/* if both first and last points are conic, */
/* start at their middle and record its position */
/* for closure */
v_start.x = ( v_start.x + v_last.x ) / 2;
v_start.y = ( v_start.y + v_last.y ) / 2;
v_last = v_start;
}
point--;
tags--;
}
QT_FT_TRACE5(( " move to (%.2f, %.2f)\n",
v_start.x / 64.0, v_start.y / 64.0 ));
error = gray_move_to( &v_start, user );
if ( error )
goto Exit;
while ( point < limit )
{
point++;
tags++;
tag = QT_FT_CURVE_TAG( tags[0] );
switch ( tag )
{
case QT_FT_CURVE_TAG_ON: /* emit a single line_to */
{
QT_FT_Vector vec;
vec.x = SCALED( point->x );
vec.y = SCALED( point->y );
QT_FT_TRACE5(( " line to (%.2f, %.2f)\n",
vec.x / 64.0, vec.y / 64.0 ));
gray_render_line(user, UPSCALE(vec.x), UPSCALE(vec.y));
continue;
}
case QT_FT_CURVE_TAG_CONIC: /* consume conic arcs */
{
v_control.x = SCALED( point->x );
v_control.y = SCALED( point->y );
Do_Conic:
if ( point < limit )
{
QT_FT_Vector vec;
QT_FT_Vector v_middle;
point++;
tags++;
tag = QT_FT_CURVE_TAG( tags[0] );
vec.x = SCALED( point->x );
vec.y = SCALED( point->y );
if ( tag == QT_FT_CURVE_TAG_ON )
{
QT_FT_TRACE5(( " conic to (%.2f, %.2f)"
" with control (%.2f, %.2f)\n",
vec.x / 64.0, vec.y / 64.0,
v_control.x / 64.0, v_control.y / 64.0 ));
gray_render_conic(user, &v_control, &vec);
continue;
}
if ( tag != QT_FT_CURVE_TAG_CONIC )
goto Invalid_Outline;
v_middle.x = ( v_control.x + vec.x ) / 2;
v_middle.y = ( v_control.y + vec.y ) / 2;
QT_FT_TRACE5(( " conic to (%.2f, %.2f)"
" with control (%.2f, %.2f)\n",
v_middle.x / 64.0, v_middle.y / 64.0,
v_control.x / 64.0, v_control.y / 64.0 ));
gray_render_conic(user, &v_control, &v_middle);
v_control = vec;
goto Do_Conic;
}
QT_FT_TRACE5(( " conic to (%.2f, %.2f)"
" with control (%.2f, %.2f)\n",
v_start.x / 64.0, v_start.y / 64.0,
v_control.x / 64.0, v_control.y / 64.0 ));
gray_render_conic(user, &v_control, &v_start);
goto Close;
}
default: /* QT_FT_CURVE_TAG_CUBIC */
{
QT_FT_Vector vec1, vec2;
if ( point + 1 > limit ||
QT_FT_CURVE_TAG( tags[1] ) != QT_FT_CURVE_TAG_CUBIC )
goto Invalid_Outline;
point += 2;
tags += 2;
vec1.x = SCALED( point[-2].x );
vec1.y = SCALED( point[-2].y );
vec2.x = SCALED( point[-1].x );
vec2.y = SCALED( point[-1].y );
if ( point <= limit )
{
QT_FT_Vector vec;
vec.x = SCALED( point->x );
vec.y = SCALED( point->y );
QT_FT_TRACE5(( " cubic to (%.2f, %.2f)"
" with controls (%.2f, %.2f) and (%.2f, %.2f)\n",
vec.x / 64.0, vec.y / 64.0,
vec1.x / 64.0, vec1.y / 64.0,
vec2.x / 64.0, vec2.y / 64.0 ));
gray_render_cubic(user, &vec1, &vec2, &vec);
continue;
}
QT_FT_TRACE5(( " cubic to (%.2f, %.2f)"
" with controls (%.2f, %.2f) and (%.2f, %.2f)\n",
v_start.x / 64.0, v_start.y / 64.0,
vec1.x / 64.0, vec1.y / 64.0,
vec2.x / 64.0, vec2.y / 64.0 ));
gray_render_cubic(user, &vec1, &vec2, &v_start);
goto Close;
}
}
}
/* close the contour with a line segment */
QT_FT_TRACE5(( " line to (%.2f, %.2f)\n",
v_start.x / 64.0, v_start.y / 64.0 ));
gray_render_line(user, UPSCALE(v_start.x), UPSCALE(v_start.y));
Close:
first = last + 1;
}
QT_FT_TRACE5(( "FT_Outline_Decompose: Done\n", n ));
return 0;
Exit:
QT_FT_TRACE5(( "FT_Outline_Decompose: Error %d\n", error ));
return error;
Invalid_Outline:
return ErrRaster_Invalid_Outline;
}
typedef struct TBand_
{
TPos min, max;
} TBand;
static int
gray_convert_glyph_inner( RAS_ARG )
{
volatile int error = 0;
if ( qt_ft_setjmp( ras.jump_buffer ) == 0 )
{
error = QT_FT_Outline_Decompose( &ras.outline, &ras );
if ( !ras.invalid )
gray_record_cell( RAS_VAR );
}
else
{
error = ErrRaster_Memory_Overflow;
}
return error;
}
static int
gray_convert_glyph( RAS_ARG )
{
TBand bands[40];
TBand* volatile band;
int volatile n, num_bands;
TPos volatile min, max, max_y;
QT_FT_BBox* clip;
int skip;
ras.num_gray_spans = 0;
/* Set up state in the raster object */
gray_compute_cbox( RAS_VAR );
/* clip to target bitmap, exit if nothing to do */
clip = &ras.clip_box;
if ( ras.max_ex <= clip->xMin || ras.min_ex >= clip->xMax ||
ras.max_ey <= clip->yMin || ras.min_ey >= clip->yMax )
return 0;
if ( ras.min_ex < clip->xMin ) ras.min_ex = clip->xMin;
if ( ras.min_ey < clip->yMin ) ras.min_ey = clip->yMin;
if ( ras.max_ex > clip->xMax ) ras.max_ex = clip->xMax;
if ( ras.max_ey > clip->yMax ) ras.max_ey = clip->yMax;
ras.count_ex = ras.max_ex - ras.min_ex;
ras.count_ey = ras.max_ey - ras.min_ey;
/* set up vertical bands */
num_bands = (int)( ( ras.max_ey - ras.min_ey ) / ras.band_size );
if ( num_bands == 0 )
num_bands = 1;
if ( num_bands >= 39 )
num_bands = 39;
ras.band_shoot = 0;
min = ras.min_ey;
max_y = ras.max_ey;
for ( n = 0; n < num_bands; n++, min = max )
{
max = min + ras.band_size;
if ( n == num_bands - 1 || max > max_y )
max = max_y;
bands[0].min = min;
bands[0].max = max;
band = bands;
while ( band >= bands )
{
TPos bottom, top, middle;
int error;
{
PCell cells_max;
int yindex;
int cell_start, cell_end, cell_mod;
ras.ycells = (PCell*)ras.buffer;
ras.ycount = band->max - band->min;
cell_start = sizeof ( PCell ) * ras.ycount;
cell_mod = cell_start % sizeof ( TCell );
if ( cell_mod > 0 )
cell_start += sizeof ( TCell ) - cell_mod;
cell_end = ras.buffer_size;
cell_end -= cell_end % sizeof( TCell );
cells_max = (PCell)( (char*)ras.buffer + cell_end );
ras.cells = (PCell)( (char*)ras.buffer + cell_start );
if ( ras.cells >= cells_max )
goto ReduceBands;
ras.max_cells = (int)(cells_max - ras.cells);
if ( ras.max_cells < 2 )
goto ReduceBands;
for ( yindex = 0; yindex < ras.ycount; yindex++ )
ras.ycells[yindex] = NULL;
}
ras.num_cells = 0;
ras.invalid = 1;
ras.min_ey = band->min;
ras.max_ey = band->max;
ras.count_ey = band->max - band->min;
error = gray_convert_glyph_inner( RAS_VAR );
if ( !error )
{
gray_sweep( RAS_VAR_ &ras.target );
band--;
continue;
}
else if ( error != ErrRaster_Memory_Overflow )
return 1;
ReduceBands:
/* render pool overflow; we will reduce the render band by half */
bottom = band->min;
top = band->max;
middle = bottom + ( ( top - bottom ) >> 1 );
/* This is too complex for a single scanline; there must */
/* be some problems. */
if ( middle == bottom )
{
#ifdef DEBUG_GRAYS
fprintf( stderr, "Rotten glyph!\n" );
#endif
return ErrRaster_OutOfMemory;
}
if ( bottom-top >= ras.band_size )
ras.band_shoot++;
band[1].min = bottom;
band[1].max = middle;
band[0].min = middle;
band[0].max = top;
band++;
}
}
if ( ras.render_span && ras.num_gray_spans > ras.skip_spans )
{
skip = ras.skip_spans > 0 ? ras.skip_spans : 0;
ras.render_span( ras.num_gray_spans - skip,
ras.gray_spans + skip,
ras.render_span_data );
}
ras.skip_spans -= ras.num_gray_spans;
if ( ras.band_shoot > 8 && ras.band_size > 16 )
ras.band_size = ras.band_size / 2;
return 0;
}
static int
gray_raster_render( QT_FT_Raster raster,
const QT_FT_Raster_Params* params )
{
const QT_FT_Outline* outline = (const QT_FT_Outline*)params->source;
const QT_FT_Bitmap* target_map = params->target;
PWorker worker;
if ( !raster || !raster->buffer || !raster->buffer_size )
return ErrRaster_Invalid_Argument;
if ( raster->worker )
raster->worker->skip_spans = params->skip_spans;
/* If raster object and raster buffer are allocated, but */
/* raster size isn't of the minimum size, indicate out of */
/* memory. */
if (raster->buffer_allocated_size < MINIMUM_POOL_SIZE )
return ErrRaster_OutOfMemory;
if ( !outline )
return ErrRaster_Invalid_Outline;
/* return immediately if the outline is empty */
if ( outline->n_points == 0 || outline->n_contours <= 0 )
return 0;
if ( !outline->contours || !outline->points )
return ErrRaster_Invalid_Outline;
if ( outline->n_points !=
outline->contours[outline->n_contours - 1] + 1 )
return ErrRaster_Invalid_Outline;
worker = raster->worker;
/* if direct mode is not set, we must have a target bitmap */
if ( ( params->flags & QT_FT_RASTER_FLAG_DIRECT ) == 0 )
{
if ( !target_map )
return ErrRaster_Invalid_Argument;
/* nothing to do */
if ( !target_map->width || !target_map->rows )
return 0;
if ( !target_map->buffer )
return ErrRaster_Invalid_Argument;
}
/* this version does not support monochrome rendering */
if ( !( params->flags & QT_FT_RASTER_FLAG_AA ) )
return ErrRaster_Invalid_Mode;
/* compute clipping box */
if ( ( params->flags & QT_FT_RASTER_FLAG_DIRECT ) == 0 )
{
/* compute clip box from target pixmap */
ras.clip_box.xMin = 0;
ras.clip_box.yMin = 0;
ras.clip_box.xMax = target_map->width;
ras.clip_box.yMax = target_map->rows;
}
else if ( params->flags & QT_FT_RASTER_FLAG_CLIP )
{
ras.clip_box = params->clip_box;
}
else
{
ras.clip_box.xMin = -32768L;
ras.clip_box.yMin = -32768L;
ras.clip_box.xMax = 32767L;
ras.clip_box.yMax = 32767L;
}
gray_init_cells( worker, raster->buffer, raster->buffer_size );
ras.outline = *outline;
ras.num_cells = 0;
ras.invalid = 1;
ras.band_size = raster->band_size;
if ( target_map )
ras.target = *target_map;
ras.render_span = (QT_FT_Raster_Span_Func)gray_render_span;
ras.render_span_data = &ras;
if ( params->flags & QT_FT_RASTER_FLAG_DIRECT )
{
ras.render_span = (QT_FT_Raster_Span_Func)params->gray_spans;
ras.render_span_data = params->user;
}
return gray_convert_glyph( worker );
}
/**** RASTER OBJECT CREATION: In standalone mode, we simply use *****/
/**** a static object. *****/
static int
gray_raster_new( QT_FT_Raster* araster )
{
*araster = malloc(sizeof(TRaster));
if (!*araster) {
*araster = 0;
return ErrRaster_Memory_Overflow;
}
QT_FT_MEM_ZERO(*araster, sizeof(TRaster));
return 0;
}
static void
gray_raster_done( QT_FT_Raster raster )
{
free(raster);
}
static void
gray_raster_reset( QT_FT_Raster raster,
char* pool_base,
long pool_size )
{
PRaster rast = (PRaster)raster;
if ( raster )
{
if ( pool_base && ( pool_size >= MINIMUM_POOL_SIZE ) )
{
PWorker worker = (PWorker)pool_base;
rast->worker = worker;
rast->buffer = pool_base +
( ( sizeof ( TWorker ) + sizeof ( TCell ) - 1 ) &
~( sizeof ( TCell ) - 1 ) );
rast->buffer_size = (long)( ( pool_base + pool_size ) -
(char*)rast->buffer ) &
~( sizeof ( TCell ) - 1 );
rast->band_size = (int)( rast->buffer_size /
( sizeof ( TCell ) * 8 ) );
}
else if ( pool_base)
{ /* Case when there is a raster pool allocated, but it */
/* doesn't have the minimum size (and so memory will be reallocated) */
rast->buffer = pool_base;
rast->worker = NULL;
rast->buffer_size = pool_size;
}
else
{
rast->buffer = NULL;
rast->buffer_size = 0;
rast->worker = NULL;
}
rast->buffer_allocated_size = pool_size;
}
}
const QT_FT_Raster_Funcs qt_ft_grays_raster =
{
QT_FT_GLYPH_FORMAT_OUTLINE,
(QT_FT_Raster_New_Func) gray_raster_new,
(QT_FT_Raster_Reset_Func) gray_raster_reset,
(QT_FT_Raster_Set_Mode_Func)0,
(QT_FT_Raster_Render_Func) gray_raster_render,
(QT_FT_Raster_Done_Func) gray_raster_done
};
/* END */