blob: d8efda1ecca4efb71ac68b94507121100cf59a9c [file] [log] [blame]
/****************************************************************************
**
** Copyright (C) 2016 The Qt Company Ltd.
** Contact: https://www.qt.io/licensing/
**
** This file is part of the QtQuick module of the Qt Toolkit.
**
** $QT_BEGIN_LICENSE:LGPL$
** Commercial License Usage
** Licensees holding valid commercial Qt licenses may use this file in
** accordance with the commercial license agreement provided with the
** Software or, alternatively, in accordance with the terms contained in
** a written agreement between you and The Qt Company. For licensing terms
** and conditions see https://www.qt.io/terms-conditions. For further
** information use the contact form at https://www.qt.io/contact-us.
**
** GNU Lesser General Public License Usage
** Alternatively, this file may be used under the terms of the GNU Lesser
** General Public License version 3 as published by the Free Software
** Foundation and appearing in the file LICENSE.LGPL3 included in the
** packaging of this file. Please review the following information to
** ensure the GNU Lesser General Public License version 3 requirements
** will be met: https://www.gnu.org/licenses/lgpl-3.0.html.
**
** GNU General Public License Usage
** Alternatively, this file may be used under the terms of the GNU
** General Public License version 2.0 or (at your option) the GNU General
** Public license version 3 or any later version approved by the KDE Free
** Qt Foundation. The licenses are as published by the Free Software
** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3
** included in the packaging of this file. Please review the following
** information to ensure the GNU General Public License requirements will
** be met: https://www.gnu.org/licenses/gpl-2.0.html and
** https://www.gnu.org/licenses/gpl-3.0.html.
**
** $QT_END_LICENSE$
**
****************************************************************************/
#include "qsgbasicinternalimagenode_p.h"
#include <QtCore/qvarlengtharray.h>
#include <QtCore/qmath.h>
QT_BEGIN_NAMESPACE
namespace
{
struct SmoothVertex
{
float x, y, u, v;
float dx, dy, du, dv;
};
const QSGGeometry::AttributeSet &smoothAttributeSet()
{
static QSGGeometry::Attribute data[] = {
QSGGeometry::Attribute::createWithAttributeType(0, 2, QSGGeometry::FloatType, QSGGeometry::PositionAttribute),
QSGGeometry::Attribute::createWithAttributeType(1, 2, QSGGeometry::FloatType, QSGGeometry::TexCoordAttribute),
QSGGeometry::Attribute::createWithAttributeType(2, 2, QSGGeometry::FloatType, QSGGeometry::TexCoord1Attribute),
QSGGeometry::Attribute::createWithAttributeType(3, 2, QSGGeometry::FloatType, QSGGeometry::TexCoord2Attribute)
};
static QSGGeometry::AttributeSet attrs = { 4, sizeof(SmoothVertex), data };
return attrs;
}
}
QSGBasicInternalImageNode::QSGBasicInternalImageNode()
: m_innerSourceRect(0, 0, 1, 1)
, m_subSourceRect(0, 0, 1, 1)
, m_antialiasing(false)
, m_mirror(false)
, m_dirtyGeometry(false)
, m_geometry(QSGGeometry::defaultAttributes_TexturedPoint2D(), 4)
, m_dynamicTexture(nullptr)
{
setGeometry(&m_geometry);
#ifdef QSG_RUNTIME_DESCRIPTION
qsgnode_set_description(this, QLatin1String("internalimage"));
#endif
}
void QSGBasicInternalImageNode::setTargetRect(const QRectF &rect)
{
if (rect == m_targetRect)
return;
m_targetRect = rect;
m_dirtyGeometry = true;
}
void QSGBasicInternalImageNode::setInnerTargetRect(const QRectF &rect)
{
if (rect == m_innerTargetRect)
return;
m_innerTargetRect = rect;
m_dirtyGeometry = true;
}
void QSGBasicInternalImageNode::setInnerSourceRect(const QRectF &rect)
{
if (rect == m_innerSourceRect)
return;
m_innerSourceRect = rect;
m_dirtyGeometry = true;
}
void QSGBasicInternalImageNode::setSubSourceRect(const QRectF &rect)
{
if (rect == m_subSourceRect)
return;
m_subSourceRect = rect;
m_dirtyGeometry = true;
}
void QSGBasicInternalImageNode::setTexture(QSGTexture *texture)
{
Q_ASSERT(texture);
setMaterialTexture(texture);
updateMaterialBlending();
markDirty(DirtyMaterial);
// Because the texture can be a different part of the atlas, we need to update it...
m_dirtyGeometry = true;
}
void QSGBasicInternalImageNode::setAntialiasing(bool antialiasing)
{
if (antialiasing == m_antialiasing)
return;
m_antialiasing = antialiasing;
if (m_antialiasing) {
setGeometry(new QSGGeometry(smoothAttributeSet(), 0));
setFlag(OwnsGeometry, true);
} else {
setGeometry(&m_geometry);
setFlag(OwnsGeometry, false);
}
updateMaterialAntialiasing();
m_dirtyGeometry = true;
}
void QSGBasicInternalImageNode::setMirror(bool mirror)
{
if (mirror == m_mirror)
return;
m_mirror = mirror;
m_dirtyGeometry = true;
}
void QSGBasicInternalImageNode::update()
{
if (m_dirtyGeometry)
updateGeometry();
}
void QSGBasicInternalImageNode::preprocess()
{
bool doDirty = false;
QSGDynamicTexture *t = qobject_cast<QSGDynamicTexture *>(materialTexture());
if (t) {
doDirty = t->updateTexture();
if (doDirty) {
// The geometry may need updating. This is expensive however, so do
// it only when something relevant has changed.
if (t != m_dynamicTexture
|| t->textureSize() != m_dynamicTextureSize
|| t->normalizedTextureSubRect() != m_dynamicTextureSubRect) {
updateGeometry();
m_dynamicTextureSize = t->textureSize();
m_dynamicTextureSubRect = t->normalizedTextureSubRect();
}
}
}
m_dynamicTexture = t;
if (updateMaterialBlending())
doDirty = true;
if (doDirty)
markDirty(DirtyMaterial);
}
namespace {
struct X { float x, tx; };
struct Y { float y, ty; };
}
static inline void appendQuad(int indexType, void **indexData,
int topLeft, int topRight,
int bottomLeft, int bottomRight)
{
if (indexType == QSGGeometry::UnsignedIntType) {
quint32 *indices = static_cast<quint32 *>(*indexData);
*indices++ = topLeft;
*indices++ = bottomLeft;
*indices++ = bottomRight;
*indices++ = bottomRight;
*indices++ = topRight;
*indices++ = topLeft;
*indexData = indices;
} else {
Q_ASSERT(indexType == QSGGeometry::UnsignedShortType);
quint16 *indices = static_cast<quint16 *>(*indexData);
*indices++ = topLeft;
*indices++ = bottomLeft;
*indices++ = bottomRight;
*indices++ = bottomRight;
*indices++ = topRight;
*indices++ = topLeft;
*indexData = indices;
}
}
QSGGeometry *QSGBasicInternalImageNode::updateGeometry(const QRectF &targetRect,
const QRectF &innerTargetRect,
const QRectF &sourceRect,
const QRectF &innerSourceRect,
const QRectF &subSourceRect,
QSGGeometry *geometry,
bool mirror,
bool antialiasing)
{
int floorLeft = qFloor(subSourceRect.left());
int ceilRight = qCeil(subSourceRect.right());
int floorTop = qFloor(subSourceRect.top());
int ceilBottom = qCeil(subSourceRect.bottom());
int hTiles = ceilRight - floorLeft;
int vTiles = ceilBottom - floorTop;
int hCells = hTiles;
int vCells = vTiles;
if (innerTargetRect.width() == 0)
hCells = 0;
if (innerTargetRect.left() != targetRect.left())
++hCells;
if (innerTargetRect.right() != targetRect.right())
++hCells;
if (innerTargetRect.height() == 0)
vCells = 0;
if (innerTargetRect.top() != targetRect.top())
++vCells;
if (innerTargetRect.bottom() != targetRect.bottom())
++vCells;
QVarLengthArray<X, 32> xData(2 * hCells);
QVarLengthArray<Y, 32> yData(2 * vCells);
X *xs = xData.data();
Y *ys = yData.data();
if (innerTargetRect.left() != targetRect.left()) {
xs[0].x = targetRect.left();
xs[0].tx = sourceRect.left();
xs[1].x = innerTargetRect.left();
xs[1].tx = innerSourceRect.left();
xs += 2;
}
if (innerTargetRect.width() != 0 && hTiles > 0) {
xs[0].x = innerTargetRect.left();
xs[0].tx = innerSourceRect.x() + (subSourceRect.left() - floorLeft) * innerSourceRect.width();
++xs;
float b = innerTargetRect.width() / subSourceRect.width();
float a = innerTargetRect.x() - subSourceRect.x() * b;
for (int i = floorLeft + 1; i <= ceilRight - 1; ++i) {
xs[0].x = xs[1].x = a + b * i;
xs[0].tx = innerSourceRect.right();
xs[1].tx = innerSourceRect.left();
xs += 2;
}
xs[0].x = innerTargetRect.right();
xs[0].tx = innerSourceRect.x() + (subSourceRect.right() - ceilRight + 1) * innerSourceRect.width();
++xs;
}
if (innerTargetRect.right() != targetRect.right()) {
xs[0].x = innerTargetRect.right();
xs[0].tx = innerSourceRect.right();
xs[1].x = targetRect.right();
xs[1].tx = sourceRect.right();
xs += 2;
}
Q_ASSERT(xs == xData.data() + xData.size());
if (mirror) {
float leftPlusRight = targetRect.left() + targetRect.right();
int count = xData.size();
xs = xData.data();
for (int i = 0; i < (count >> 1); ++i)
qSwap(xs[i], xs[count - 1 - i]);
for (int i = 0; i < count; ++i)
xs[i].x = leftPlusRight - xs[i].x;
}
if (innerTargetRect.top() != targetRect.top()) {
ys[0].y = targetRect.top();
ys[0].ty = sourceRect.top();
ys[1].y = innerTargetRect.top();
ys[1].ty = innerSourceRect.top();
ys += 2;
}
if (innerTargetRect.height() != 0 && vTiles > 0) {
ys[0].y = innerTargetRect.top();
ys[0].ty = innerSourceRect.y() + (subSourceRect.top() - floorTop) * innerSourceRect.height();
++ys;
float b = innerTargetRect.height() / subSourceRect.height();
float a = innerTargetRect.y() - subSourceRect.y() * b;
for (int i = floorTop + 1; i <= ceilBottom - 1; ++i) {
ys[0].y = ys[1].y = a + b * i;
ys[0].ty = innerSourceRect.bottom();
ys[1].ty = innerSourceRect.top();
ys += 2;
}
ys[0].y = innerTargetRect.bottom();
ys[0].ty = innerSourceRect.y() + (subSourceRect.bottom() - ceilBottom + 1) * innerSourceRect.height();
++ys;
}
if (innerTargetRect.bottom() != targetRect.bottom()) {
ys[0].y = innerTargetRect.bottom();
ys[0].ty = innerSourceRect.bottom();
ys[1].y = targetRect.bottom();
ys[1].ty = sourceRect.bottom();
ys += 2;
}
Q_ASSERT(ys == yData.data() + yData.size());
QSGGeometry::Type indexType = QSGGeometry::UnsignedShortType;
// We can handled up to 0xffff indices, but keep the limit lower here to
// merge better in the batch renderer.
if (hCells * vCells * 4 > 0x7fff)
indexType = QSGGeometry::UnsignedIntType;
if (antialiasing) {
if (!geometry || geometry->indexType() != indexType) {
geometry = new QSGGeometry(smoothAttributeSet(),
hCells * vCells * 4 + (hCells + vCells - 1) * 4,
hCells * vCells * 6 + (hCells + vCells) * 12,
indexType);
} else {
geometry->allocate(hCells * vCells * 4 + (hCells + vCells - 1) * 4,
hCells * vCells * 6 + (hCells + vCells) * 12);
}
QSGGeometry *g = geometry;
Q_ASSERT(g);
g->setDrawingMode(QSGGeometry::DrawTriangles);
SmoothVertex *vertices = reinterpret_cast<SmoothVertex *>(g->vertexData());
memset(vertices, 0, g->vertexCount() * g->sizeOfVertex());
void *indexData = g->indexData();
// The deltas are how much the fuzziness can reach into the image.
// Only the border vertices are moved by the vertex shader, so the fuzziness
// can't reach further into the image than the closest interior vertices.
float leftDx = xData.at(1).x - xData.at(0).x;
float rightDx = xData.at(xData.size() - 1).x - xData.at(xData.size() - 2).x;
float topDy = yData.at(1).y - yData.at(0).y;
float bottomDy = yData.at(yData.size() - 1).y - yData.at(yData.size() - 2).y;
float leftDu = xData.at(1).tx - xData.at(0).tx;
float rightDu = xData.at(xData.size() - 1).tx - xData.at(xData.size() - 2).tx;
float topDv = yData.at(1).ty - yData.at(0).ty;
float bottomDv = yData.at(yData.size() - 1).ty - yData.at(yData.size() - 2).ty;
if (hCells == 1) {
leftDx = rightDx *= 0.5f;
leftDu = rightDu *= 0.5f;
}
if (vCells == 1) {
topDy = bottomDy *= 0.5f;
topDv = bottomDv *= 0.5f;
}
// This delta is how much the fuzziness can reach out from the image.
float delta = float(qAbs(targetRect.width()) < qAbs(targetRect.height())
? targetRect.width() : targetRect.height()) * 0.5f;
int index = 0;
ys = yData.data();
for (int j = 0; j < vCells; ++j, ys += 2) {
xs = xData.data();
bool isTop = j == 0;
bool isBottom = j == vCells - 1;
for (int i = 0; i < hCells; ++i, xs += 2) {
bool isLeft = i == 0;
bool isRight = i == hCells - 1;
SmoothVertex *v = vertices + index;
int topLeft = index;
for (int k = (isTop || isLeft ? 2 : 1); k--; ++v, ++index) {
v->x = xs[0].x;
v->u = xs[0].tx;
v->y = ys[0].y;
v->v = ys[0].ty;
}
int topRight = index;
for (int k = (isTop || isRight ? 2 : 1); k--; ++v, ++index) {
v->x = xs[1].x;
v->u = xs[1].tx;
v->y = ys[0].y;
v->v = ys[0].ty;
}
int bottomLeft = index;
for (int k = (isBottom || isLeft ? 2 : 1); k--; ++v, ++index) {
v->x = xs[0].x;
v->u = xs[0].tx;
v->y = ys[1].y;
v->v = ys[1].ty;
}
int bottomRight = index;
for (int k = (isBottom || isRight ? 2 : 1); k--; ++v, ++index) {
v->x = xs[1].x;
v->u = xs[1].tx;
v->y = ys[1].y;
v->v = ys[1].ty;
}
appendQuad(g->indexType(), &indexData, topLeft, topRight, bottomLeft, bottomRight);
if (isTop) {
vertices[topLeft].dy = vertices[topRight].dy = topDy;
vertices[topLeft].dv = vertices[topRight].dv = topDv;
vertices[topLeft + 1].dy = vertices[topRight + 1].dy = -delta;
appendQuad(g->indexType(), &indexData, topLeft + 1, topRight + 1, topLeft, topRight);
}
if (isBottom) {
vertices[bottomLeft].dy = vertices[bottomRight].dy = -bottomDy;
vertices[bottomLeft].dv = vertices[bottomRight].dv = -bottomDv;
vertices[bottomLeft + 1].dy = vertices[bottomRight + 1].dy = delta;
appendQuad(g->indexType(), &indexData, bottomLeft, bottomRight, bottomLeft + 1, bottomRight + 1);
}
if (isLeft) {
vertices[topLeft].dx = vertices[bottomLeft].dx = leftDx;
vertices[topLeft].du = vertices[bottomLeft].du = leftDu;
vertices[topLeft + 1].dx = vertices[bottomLeft + 1].dx = -delta;
appendQuad(g->indexType(), &indexData, topLeft + 1, topLeft, bottomLeft + 1, bottomLeft);
}
if (isRight) {
vertices[topRight].dx = vertices[bottomRight].dx = -rightDx;
vertices[topRight].du = vertices[bottomRight].du = -rightDu;
vertices[topRight + 1].dx = vertices[bottomRight + 1].dx = delta;
appendQuad(g->indexType(), &indexData, topRight, topRight + 1, bottomRight, bottomRight + 1);
}
}
}
Q_ASSERT(index == g->vertexCount());
} else {
if (!geometry || geometry->indexType() != indexType) {
geometry = new QSGGeometry(QSGGeometry::defaultAttributes_TexturedPoint2D(),
hCells * vCells * 4, hCells * vCells * 6,
indexType);
} else {
geometry->allocate(hCells * vCells * 4, hCells * vCells * 6);
}
geometry->setDrawingMode(QSGGeometry::DrawTriangles);
QSGGeometry::TexturedPoint2D *vertices = geometry->vertexDataAsTexturedPoint2D();
ys = yData.data();
for (int j = 0; j < vCells; ++j, ys += 2) {
xs = xData.data();
for (int i = 0; i < hCells; ++i, xs += 2) {
vertices[0].x = vertices[2].x = xs[0].x;
vertices[0].tx = vertices[2].tx = xs[0].tx;
vertices[1].x = vertices[3].x = xs[1].x;
vertices[1].tx = vertices[3].tx = xs[1].tx;
vertices[0].y = vertices[1].y = ys[0].y;
vertices[0].ty = vertices[1].ty = ys[0].ty;
vertices[2].y = vertices[3].y = ys[1].y;
vertices[2].ty = vertices[3].ty = ys[1].ty;
vertices += 4;
}
}
void *indexData = geometry->indexData();
for (int i = 0; i < 4 * vCells * hCells; i += 4)
appendQuad(geometry->indexType(), &indexData, i, i + 1, i + 2, i + 3);
}
return geometry;
}
void QSGBasicInternalImageNode::updateGeometry()
{
Q_ASSERT(!m_targetRect.isEmpty());
const QSGTexture *t = materialTexture();
if (!t) {
QSGGeometry *g = geometry();
g->allocate(4);
g->setDrawingMode(QSGGeometry::DrawTriangleStrip);
memset(g->vertexData(), 0, g->sizeOfVertex() * 4);
} else {
QRectF sourceRect = t->normalizedTextureSubRect();
QRectF innerSourceRect(sourceRect.x() + m_innerSourceRect.x() * sourceRect.width(),
sourceRect.y() + m_innerSourceRect.y() * sourceRect.height(),
m_innerSourceRect.width() * sourceRect.width(),
m_innerSourceRect.height() * sourceRect.height());
bool hasMargins = m_targetRect != m_innerTargetRect;
int floorLeft = qFloor(m_subSourceRect.left());
int ceilRight = qCeil(m_subSourceRect.right());
int floorTop = qFloor(m_subSourceRect.top());
int ceilBottom = qCeil(m_subSourceRect.bottom());
int hTiles = ceilRight - floorLeft;
int vTiles = ceilBottom - floorTop;
bool hasTiles = hTiles > 1 || vTiles > 1;
bool fullTexture = innerSourceRect == QRectF(0, 0, 1, 1);
// An image can be rendered as a single quad if:
// - There are no margins, and either:
// - the image isn't repeated
// - the source rectangle fills the entire texture so that texture wrapping can be used,
// and NPOT is supported
if (!hasMargins && (!hasTiles || (fullTexture && supportsWrap(t->textureSize())))) {
QRectF sr;
if (!fullTexture) {
sr = QRectF(innerSourceRect.x() + (m_subSourceRect.left() - floorLeft) * innerSourceRect.width(),
innerSourceRect.y() + (m_subSourceRect.top() - floorTop) * innerSourceRect.height(),
m_subSourceRect.width() * innerSourceRect.width(),
m_subSourceRect.height() * innerSourceRect.height());
} else {
sr = QRectF(m_subSourceRect.left() - floorLeft, m_subSourceRect.top() - floorTop,
m_subSourceRect.width(), m_subSourceRect.height());
}
if (m_mirror) {
qreal oldLeft = sr.left();
sr.setLeft(sr.right());
sr.setRight(oldLeft);
}
if (m_antialiasing) {
QSGGeometry *g = geometry();
Q_ASSERT(g != &m_geometry);
if (g->indexType() != QSGGeometry::UnsignedShortType) {
setGeometry(new QSGGeometry(smoothAttributeSet(), 0));
g = geometry();
}
g->allocate(8, 14);
g->setDrawingMode(QSGGeometry::DrawTriangleStrip);
SmoothVertex *vertices = reinterpret_cast<SmoothVertex *>(g->vertexData());
float delta = float(qAbs(m_targetRect.width()) < qAbs(m_targetRect.height())
? m_targetRect.width() : m_targetRect.height()) * 0.5f;
float sx = float(sr.width() / m_targetRect.width());
float sy = float(sr.height() / m_targetRect.height());
for (int d = -1; d <= 1; d += 2) {
for (int j = 0; j < 2; ++j) {
for (int i = 0; i < 2; ++i, ++vertices) {
vertices->x = m_targetRect.x() + i * m_targetRect.width();
vertices->y = m_targetRect.y() + j * m_targetRect.height();
vertices->u = sr.x() + i * sr.width();
vertices->v = sr.y() + j * sr.height();
vertices->dx = (i == 0 ? delta : -delta) * d;
vertices->dy = (j == 0 ? delta : -delta) * d;
vertices->du = (d < 0 ? 0 : vertices->dx * sx);
vertices->dv = (d < 0 ? 0 : vertices->dy * sy);
}
}
}
Q_ASSERT(vertices - g->vertexCount() == g->vertexData());
static const quint16 indices[] = {
0, 4, 1, 5, 3, 7, 2, 6, 0, 4,
4, 6, 5, 7
};
Q_ASSERT(g->sizeOfIndex() * g->indexCount() == sizeof(indices));
memcpy(g->indexDataAsUShort(), indices, sizeof(indices));
} else {
m_geometry.allocate(4);
m_geometry.setDrawingMode(QSGGeometry::DrawTriangleStrip);
QSGGeometry::updateTexturedRectGeometry(&m_geometry, m_targetRect, sr);
}
} else {
QSGGeometry *g = geometry();
g = updateGeometry(m_targetRect, m_innerTargetRect,
sourceRect, innerSourceRect, m_subSourceRect,
g, m_mirror, m_antialiasing);
if (g != geometry()) {
setGeometry(g);
setFlag(OwnsGeometry, true);
}
}
}
markDirty(DirtyGeometry);
m_dirtyGeometry = false;
}
QT_END_NAMESPACE