blob: 929ac9a6ebb312d177662003a6ed1a5096e223a9 [file] [log] [blame]
/****************************************************************************
**
** Copyright (C) 2017 The Qt Company Ltd.
** Contact: http://www.qt.io/licensing/
**
** This file is part of the QtSerialBus module of the Qt Toolkit.
**
** $QT_BEGIN_LICENSE:LGPL3$
** Commercial License Usage
** Licensees holding valid commercial Qt licenses may use this file in
** accordance with the commercial license agreement provided with the
** Software or, alternatively, in accordance with the terms contained in
** a written agreement between you and The Qt Company. For licensing terms
** and conditions see http://www.qt.io/terms-conditions. For further
** information use the contact form at http://www.qt.io/contact-us.
**
** GNU Lesser General Public License Usage
** Alternatively, this file may be used under the terms of the GNU Lesser
** General Public License version 3 as published by the Free Software
** Foundation and appearing in the file LICENSE.LGPLv3 included in the
** packaging of this file. Please review the following information to
** ensure the GNU Lesser General Public License version 3 requirements
** will be met: https://www.gnu.org/licenses/lgpl.html.
**
** GNU General Public License Usage
** Alternatively, this file may be used under the terms of the GNU
** General Public License version 2.0 or later as published by the Free
** Software Foundation and appearing in the file LICENSE.GPL included in
** the packaging of this file. Please review the following information to
** ensure the GNU General Public License version 2.0 requirements will be
** met: http://www.gnu.org/licenses/gpl-2.0.html.
**
** $QT_END_LICENSE$
**
****************************************************************************/
#include "qmodbusdeviceidentification.h"
#include "qmodbusserver.h"
#include "qmodbusserver_p.h"
#include "qmodbus_symbols_p.h"
#include <QtCore/qbitarray.h>
#include <QtCore/qdebug.h>
#include <QtCore/qloggingcategory.h>
#include <QtCore/qvector.h>
#include <algorithm>
QT_BEGIN_NAMESPACE
Q_DECLARE_LOGGING_CATEGORY(QT_MODBUS)
/*!
\class QModbusServer
\inmodule QtSerialBus
\since 5.8
\brief The QModbusServer class is the interface to receive and process Modbus requests.
Modbus networks can have multiple Modbus servers. Modbus Servers are read/written by a
Modbus client represented by \l QModbusClient. QModbusServer communicates with a Modbus
backend, providing users with a convenient API.
*/
/*!
\enum QModbusServer::Option
Each Modbus server has a set of values associated with it, each with its own option.
The general purpose options (and the associated types) are:
\value DiagnosticRegister The diagnostic register of the server. \c quint16
\value ExceptionStatusOffset The exception status byte offset of the server. \c quint16
\value DeviceBusy Flag to signal the server is engaged in processing a
long-duration program command. \c quint16
\value AsciiInputDelimiter The Modbus ASCII end of message delimiter. \c char
\value ListenOnlyMode Flag to set listen only mode of the server.
This function is typically supported only
by Modbus serial devices. \c bool
\value ServerIdentifier The identifier of the server, \b not the server address. \c quint8
\value RunIndicatorStatus The run indicator of the server. \c quint8
\value AdditionalData The additional data of the server. \c QByteArray
\value DeviceIdentification The physical and functional description of the server. \c QModbusDeviceIdentification
User options:
\value UserOption The first option that can be used for user-specific purposes.
For user options, it is up to the developer to decide which types to use and ensure that
components use the correct types when accessing and setting values.
*/
/*!
Constructs a Modbus server with the specified \a parent.
*/
QModbusServer::QModbusServer(QObject *parent) :
QModbusDevice(*new QModbusServerPrivate, parent)
{
}
/*!
\internal
*/
QModbusServer::~QModbusServer()
{
}
/*!
\internal
*/
QModbusServer::QModbusServer(QModbusServerPrivate &dd, QObject *parent) :
QModbusDevice(dd, parent)
{
}
/*!
Sets the registered map structure for requests from other ModBus clients to \a map.
The register values are initialized with zero. Returns \c true on success; otherwise \c false.
If this function is not called before connecting, a default register with zero
entries is setup.
\note Calling this function discards any register value that was previously set.
*/
bool QModbusServer::setMap(const QModbusDataUnitMap &map)
{
return d_func()->setMap(map);
}
/*!
Sets the address for this Modbus server instance to \a serverAddress.
\sa serverAddress()
*/
void QModbusServer::setServerAddress(int serverAddress)
{
Q_D(QModbusServer);
d->m_serverAddress = serverAddress;
}
/*!
Returns the address of this Mobus server instance.
\sa setServerAddress()
*/
int QModbusServer::serverAddress() const
{
Q_D(const QModbusServer);
return d->m_serverAddress;
}
/*!
Returns the value for \a option or an invalid \c QVariant if the option is
not set.
\table
\header
\li Option
\li Description
\row
\li \l QModbusServer::DiagnosticRegister
\li Returns the diagnostic register value of the server. The
diagnostic register contains device specific contents where
each bit has a specific meaning.
\row
\li \l QModbusServer::ExceptionStatusOffset
\li Returns the offset address of the exception status byte
location in the coils register.
\row
\li \l QModbusServer::DeviceBusy
\li Returns a flag that signals if the server is engaged in
processing a long-duration program command.
\row
\li \l QModbusServer::AsciiInputDelimiter
\li Returns a end of message delimiter of Modbus ASCII messages.
\row
\li \l QModbusServer::ListenOnlyMode
\li Returns the server's listen only state. Messages are monitored
but no response will be sent.
\row
\li \l QModbusServer::ServerIdentifier
\li Returns the server manufacturer's identifier code. This can be
an arbitrary value in the range of \c 0x00 to 0xff.
\row
\li \l QModbusServer::RunIndicatorStatus
\li Returns the server's run indicator status. This data is used as
addendum by the \l QModbusPdu::ReportServerId function code.
\row
\li \l QModbusServer::AdditionalData
\li Returns the server's additional data. This data is used as
addendum by the \l QModbusPdu::ReportServerId function code.
\row
\li \l QModbusServer::DeviceIdentification
\li Returns the server's physical and functional description.
\row
\li \l QModbusServer::UserOption
\li Returns the value of a user option.
\note For user options, it is up to the developer to decide
which types to use and ensure that components use the correct
types when accessing and setting values.
\endtable
*/
QVariant QModbusServer::value(int option) const
{
Q_D(const QModbusServer);
switch (option) {
case DiagnosticRegister:
return d->m_serverOptions.value(option, quint16(0x0000));
case ExceptionStatusOffset:
return d->m_serverOptions.value(option, quint16(0x0000));
case DeviceBusy:
return d->m_serverOptions.value(option, quint16(0x0000));
case AsciiInputDelimiter:
return d->m_serverOptions.value(option, '\n');
case ListenOnlyMode:
return d->m_serverOptions.value(option, false);
case ServerIdentifier:
return d->m_serverOptions.value(option, quint8(0x0a));
case RunIndicatorStatus:
return d->m_serverOptions.value(option, quint8(0xff));
case AdditionalData:
return d->m_serverOptions.value(option, QByteArray("Qt Modbus Server"));
case DeviceIdentification:
return d->m_serverOptions.value(option, QVariant());
};
if (option < UserOption)
return QVariant();
return d->m_serverOptions.value(option, QVariant());
}
/*!
Sets the \a newValue for \a option and returns \c true on success; \c false
otherwise.
\note If the option's associated type is \c quint8 or \c quint16 and the
type of \a newValue is larger, the data will be truncated or conversation
will fail.
\table
\header
\li Key
\li Description
\row
\li \l QModbusServer::DiagnosticRegister
\li Sets the diagnostic register of the server in a device specific
encoding to \a newValue. The default value preset is \c 0x0000.
The bit values of the register need device specific documentation.
\row
\li \l QModbusServer::ExceptionStatusOffset
\li Sets the exception status byte offset of the server to
\a newValue which is the absolute offset address in the coils
(0x register). Modbus register table starting with \c 0x0000h.
The default value preset is \c 0x0000, using the exception
status coils similar to Modicon 984 CPUs (coils 1-8).
The function returns \c true if the coils register contains the
8 bits required for storing and retrieving the status coils,
otherwise \c false.
\row
\li \l QModbusServer::DeviceBusy
\li Sets a flag that signals that the server is engaged in
processing a long-duration program command. Valid values are
\c 0x0000 (not busy) and \c 0xffff (busy).
The default value preset is \c 0x0000.
\row
\li \l QModbusServer::AsciiInputDelimiter
\li The \a newValue becomes the end of message delimiter for future
Modbus ASCII messages. The default value preset is \c {\n}.
\row
\li \l QModbusServer::ListenOnlyMode
\li Ss the server's listen only state to \a newValue. If listen only
mode is set to \c true, messages are monitored but no response
will be sent. The default value preset is \c false.
\row
\li \l QModbusServer::ServerIdentifier
\li Sets the server's manufacturer identifier to \a newValue.
Possible values are in the range of \c 0x00 to 0xff.
The default value preset is \c 0x0a.
\row
\li \l QModbusServer::RunIndicatorStatus
\li Sets the servers' run indicator status to \a newValue. This
data is used as addendum by the \l QModbusPdu::ReportServerId
function code. Valid values are \c 0x00 (OFF) and \c 0xff (ON).
The default value preset is \c 0xff (ON).
\row
\li \l QModbusServer::AdditionalData
\li Sets the server's additional data to \a newValue. This data is
used as addendum by the \l QModbusPdu::ReportServerId function
code. The maximum data size cannot exceed 249 bytes to match
response message size restrictions.
The default value preset is \c {Qt Modbus Server}.
\row
\li \l QModbusServer::DeviceIdentification
\li Sets the server's physical and functional description. By default
there is no additional device identification data set.
\row
\li \l QModbusServer::UserOption
\li Sets the value of a user option to \a newValue.
\note For user options, it is up to the developer to decide
which types to use and ensure that components use the correct
types when accessing and setting values.
\endtable
*/
bool QModbusServer::setValue(int option, const QVariant &newValue)
{
#define CHECK_INT_OR_UINT(val) \
do { \
if ((val.type() != QVariant::Int) && (val.type() != QVariant::UInt)) \
return false; \
} while (0)
Q_D(QModbusServer);
switch (option) {
case DiagnosticRegister:
CHECK_INT_OR_UINT(newValue);
d->m_serverOptions.insert(option, newValue);
return true;
case ExceptionStatusOffset: {
CHECK_INT_OR_UINT(newValue);
const quint16 tmp = newValue.value<quint16>();
QModbusDataUnit coils(QModbusDataUnit::Coils, tmp, 8);
if (!data(&coils))
return false;
d->m_serverOptions.insert(option, tmp);
return true;
}
case DeviceBusy: {
CHECK_INT_OR_UINT(newValue);
const quint16 tmp = newValue.value<quint16>();
if ((tmp != 0x0000) && (tmp != 0xffff))
return false;
d->m_serverOptions.insert(option, tmp);
return true;
}
case AsciiInputDelimiter: {
CHECK_INT_OR_UINT(newValue);
bool ok = false;
if (newValue.toUInt(&ok) > 0xff || !ok)
return false;
d->m_serverOptions.insert(option, newValue);
return true;
}
case ListenOnlyMode: {
if (newValue.type() != QVariant::Bool)
return false;
d->m_serverOptions.insert(option, newValue);
return true;
}
case ServerIdentifier:
CHECK_INT_OR_UINT(newValue);
d->m_serverOptions.insert(option, newValue);
return true;
case RunIndicatorStatus: {
CHECK_INT_OR_UINT(newValue);
const quint8 tmp = newValue.value<quint8>();
if ((tmp != 0x00) && (tmp != 0xff))
return false;
d->m_serverOptions.insert(option, tmp);
return true;
}
case AdditionalData: {
if (newValue.type() != QVariant::ByteArray)
return false;
const QByteArray additionalData = newValue.toByteArray();
if (additionalData.size() > 249)
return false;
d->m_serverOptions.insert(option, additionalData);
return true;
}
case DeviceIdentification:
if (!newValue.canConvert<QModbusDeviceIdentification>())
return false;
d->m_serverOptions.insert(option, newValue);
return true;
default:
break;
};
if (option < UserOption)
return false;
d->m_serverOptions.insert(option, newValue);
return true;
#undef CHECK_INT_OR_UINT
}
/*!
\fn bool QModbusServer::processesBroadcast() const
Subclasses should implement this function if the transport layer shall handle broadcasts.
The implementation then should return \c true if the currently processed request is a
broadcast request; otherwise \c false. The default implementation returns always \c false.
\note The return value of this function only makes sense from within processRequest() or
processPrivateRequest(), otherwise it can only tell that the last request processed
was a broadcast request.
*/
/*!
Reads data stored in the Modbus server. A Modbus server has four tables (\a table) and each
have a unique \a address field, which is used to read \a data from the desired field.
See QModbusDataUnit::RegisterType for more information about the different tables.
Returns \c false if address is outside of the map range or the register type is not even defined.
\sa QModbusDataUnit::RegisterType, setData()
*/
bool QModbusServer::data(QModbusDataUnit::RegisterType table, quint16 address, quint16 *data) const
{
QModbusDataUnit unit(table, address, 1u);
if (data && readData(&unit)) {
*data = unit.value(0);
return true;
}
return false;
}
/*!
Returns the values in the register range given by \a newData.
\a newData must provide a valid register type, start address
and valueCount. The returned \a newData will contain the register values
associated with the given range.
If \a newData contains a valid register type but a negative start address
the entire register map is returned and \a newData appropriately sized.
*/
bool QModbusServer::data(QModbusDataUnit *newData) const
{
return readData(newData);
}
/*!
Writes data to the Modbus server. A Modbus server has four tables (\a table) and each have a
unique \a address field, which is used to write \a data to the desired field.
Returns \c false if address outside of the map range.
If the call was successful the \l dataWritten() signal is emitted. Note that
the signal is not emitted when \a data has not changed. Nevertheless this function
returns \c true in such cases.
\sa QModbusDataUnit::RegisterType, data(), dataWritten()
*/
bool QModbusServer::setData(QModbusDataUnit::RegisterType table, quint16 address, quint16 data)
{
return writeData(QModbusDataUnit(table, address, QVector<quint16>() << data));
}
/*!
Writes \a newData to the Modbus server map.
Returns \c false if the \a newData range is outside of the map range.
If the call was successful the \l dataWritten() signal is emitted. Note that
the signal is not emitted when the addressed register has not changed. This
may happen when \a newData contains exactly the same values as the
register already. Nevertheless this function returns \c true in such cases.
\sa data()
*/
bool QModbusServer::setData(const QModbusDataUnit &newData)
{
return writeData(newData);
}
/*!
Writes \a newData to the Modbus server map. Returns \c true on success,
or \c false if the \a newData range is outside of the map range or the
registerType() does not exist.
\note Sub-classes that implement writing to a different backing store
then default one, also need to implement setMap() and readData(). The
dataWritten() signal needs to be emitted from within the functions
implementation as well.
\sa setMap(), readData(), dataWritten()
*/
bool QModbusServer::writeData(const QModbusDataUnit &newData)
{
Q_D(QModbusServer);
if (!d->m_modbusDataUnitMap.contains(newData.registerType()))
return false;
QModbusDataUnit &current = d->m_modbusDataUnitMap[newData.registerType()];
if (!current.isValid())
return false;
// check range start is within internal map range
int internalRangeEndAddress = current.startAddress() + current.valueCount() - 1;
if (newData.startAddress() < current.startAddress()
|| newData.startAddress() > internalRangeEndAddress) {
return false;
}
// check range end is within internal map range
int rangeEndAddress = newData.startAddress() + newData.valueCount() - 1;
if (rangeEndAddress < current.startAddress() || rangeEndAddress > internalRangeEndAddress)
return false;
bool changeRequired = false;
for (uint i = 0; i < newData.valueCount(); i++) {
const quint16 newValue = newData.value(i);
const int translatedIndex = newData.startAddress() - current.startAddress() + i;
changeRequired |= (current.value(translatedIndex) != newValue);
current.setValue(translatedIndex, newValue);
}
if (changeRequired)
emit dataWritten(newData.registerType(), newData.startAddress(), newData.valueCount());
return true;
}
/*!
Reads the values in the register range given by \a newData and writes the
data back to \a newData. Returns \c true on success or \c false if
\a newData is \c 0, the \a newData range is outside of the map range or the
registerType() does not exist.
\note Sub-classes that implement reading from a different backing store
then default one, also need to implement setMap() and writeData().
\sa setMap(), writeData()
*/
bool QModbusServer::readData(QModbusDataUnit *newData) const
{
Q_D(const QModbusServer);
if ((!newData) || (!d->m_modbusDataUnitMap.contains(newData->registerType())))
return false;
const QModbusDataUnit &current = d->m_modbusDataUnitMap.value(newData->registerType());
if (!current.isValid())
return false;
// return entire map for given type
if (newData->startAddress() < 0) {
*newData = current;
return true;
}
// check range start is within internal map range
int internalRangeEndAddress = current.startAddress() + current.valueCount() - 1;
if (newData->startAddress() < current.startAddress()
|| newData->startAddress() > internalRangeEndAddress) {
return false;
}
// check range end is within internal map range
const int rangeEndAddress = newData->startAddress() + newData->valueCount() - 1;
if (rangeEndAddress < current.startAddress() || rangeEndAddress > internalRangeEndAddress)
return false;
newData->setValues(current.values().mid(newData->startAddress() - current.startAddress(), newData->valueCount()));
return true;
}
/*!
\fn void QModbusServer::dataWritten(QModbusDataUnit::RegisterType table, int address, int size)
This signal is emitted when a Modbus client has written one or more fields of data to the
Modbus server. The signal contains information about the fields that were written:
\list
\li Register type (\a table) that was written,
\li \a address of the first field that was written,
\li and \a size of consecutive fields that were written starting from \a address.
\endlist
The signal is not emitted when the to-be-written fields have not changed
due to no change in value.
*/
/*!
Processes a Modbus client \a request and returns a Modbus response.
This function returns a \l QModbusResponse or \l QModbusExceptionResponse depending
on the nature of the request.
The default implementation of this function handles all standard Modbus
function codes as defined by the Modbus Application Protocol Specification 1.1b.
All other Modbus function codes not included in the specification are forwarded to
\l processPrivateRequest().
The default handling of the standard Modbus function code requests can be overwritten
by reimplementing this function. The override must handle the request type
in question and return the appropriate \l QModbusResponse. A common reason might be to
filter out function code requests for data values to limit read/write access and
function codes not desired in particular implementations such as serial line diagnostics
on ethernet or Modbus Plus transport layers. Every other request type should be
forwarded to this default implementation.
\note This function should not be overridden to provide a custom implementation for
non-standard Modbus request types.
\sa processPrivateRequest()
*/
QModbusResponse QModbusServer::processRequest(const QModbusPdu &request)
{
return d_func()->processRequest(request);
}
/*!
This function should be implemented by custom Modbus servers. It is
called by \l processRequest() if the given \a request is not a standard
Modbus request.
Overwriting this function allows handling of additional function codes and
subfunction-codes not specified in the Modbus Application Protocol
Specification 1.1b. Reimplementations should call this function again to
ensure an exception response is returned for all unknown function codes the
custom Modbus implementation does not handle.
This default implementation returns a \c QModbusExceptionResponse with the
\a request function code and error code set to illegal function.
\sa processRequest()
*/
QModbusResponse QModbusServer::processPrivateRequest(const QModbusPdu &request)
{
return QModbusExceptionResponse(request.functionCode(),
QModbusExceptionResponse::IllegalFunction);
}
// -- QModbusServerPrivate
bool QModbusServerPrivate::setMap(const QModbusDataUnitMap &map)
{
m_modbusDataUnitMap = map;
return true;
}
QModbusResponse QModbusServerPrivate::processRequest(const QModbusPdu &request)
{
switch (request.functionCode()) {
case QModbusRequest::ReadCoils:
return processReadCoilsRequest(request);
case QModbusRequest::ReadDiscreteInputs:
return processReadDiscreteInputsRequest(request);
case QModbusRequest::ReadHoldingRegisters:
return processReadHoldingRegistersRequest(request);
case QModbusRequest::ReadInputRegisters:
return processReadInputRegistersRequest(request);
case QModbusRequest::WriteSingleCoil:
return processWriteSingleCoilRequest(request);
case QModbusRequest::WriteSingleRegister:
return processWriteSingleRegisterRequest(request);
case QModbusRequest::ReadExceptionStatus:
return processReadExceptionStatusRequest(request);
case QModbusRequest::Diagnostics:
return processDiagnosticsRequest(request);
case QModbusRequest::GetCommEventCounter:
return processGetCommEventCounterRequest(request);
case QModbusRequest::GetCommEventLog:
return processGetCommEventLogRequest(request);
case QModbusRequest::WriteMultipleCoils:
return processWriteMultipleCoilsRequest(request);
case QModbusRequest::WriteMultipleRegisters:
return processWriteMultipleRegistersRequest(request);
case QModbusRequest::ReportServerId:
return processReportServerIdRequest(request);
case QModbusRequest::ReadFileRecord: // TODO: Implement.
case QModbusRequest::WriteFileRecord: // TODO: Implement.
return QModbusExceptionResponse(request.functionCode(),
QModbusExceptionResponse::IllegalFunction);
case QModbusRequest::MaskWriteRegister:
return processMaskWriteRegisterRequest(request);
case QModbusRequest::ReadWriteMultipleRegisters:
return processReadWriteMultipleRegistersRequest(request);
case QModbusRequest::ReadFifoQueue:
return processReadFifoQueueRequest(request);
case QModbusRequest::EncapsulatedInterfaceTransport:
return processEncapsulatedInterfaceTransportRequest(request);
default:
break;
}
return q_func()->processPrivateRequest(request);
}
#define CHECK_SIZE_EQUALS(req) \
do { \
if (req.dataSize() != QModbusRequest::minimumDataSize(req)) { \
qCDebug(QT_MODBUS) << "(Server) The request's data size does not equal the expected size."; \
return QModbusExceptionResponse(req.functionCode(), \
QModbusExceptionResponse::IllegalDataValue); \
} \
} while (0)
#define CHECK_SIZE_LESS_THAN(req) \
do { \
if (req.dataSize() < QModbusRequest::minimumDataSize(req)) { \
qCDebug(QT_MODBUS) << "(Server) The request's data size is less than the expected size."; \
return QModbusExceptionResponse(req.functionCode(), \
QModbusExceptionResponse::IllegalDataValue); \
} \
} while (0)
QModbusResponse QModbusServerPrivate::processReadCoilsRequest(const QModbusRequest &request)
{
return readBits(request, QModbusDataUnit::Coils);
}
QModbusResponse QModbusServerPrivate::processReadDiscreteInputsRequest(const QModbusRequest &rqst)
{
return readBits(rqst, QModbusDataUnit::DiscreteInputs);
}
QModbusResponse QModbusServerPrivate::readBits(const QModbusPdu &request,
QModbusDataUnit::RegisterType unitType)
{
CHECK_SIZE_EQUALS(request);
quint16 address, count;
request.decodeData(&address, &count);
if ((count < 0x0001) || (count > 0x07D0)) {
return QModbusExceptionResponse(request.functionCode(),
QModbusExceptionResponse::IllegalDataValue);
}
// Get the requested range out of the registers.
QModbusDataUnit unit(unitType, address, count);
if (!q_func()->data(&unit)) {
return QModbusExceptionResponse(request.functionCode(),
QModbusExceptionResponse::IllegalDataAddress);
}
quint8 byteCount = count / 8;
if ((count % 8) != 0) {
byteCount += 1;
// If the range is not a multiple of 8, resize.
unit.setValueCount(byteCount * 8);
}
// Using byteCount * 8 so the remaining bits in the last byte are zero
QBitArray bytes(byteCount * 8);
address = 0; // The data range now starts with zero.
for ( ; address < count; ++address)
bytes.setBit(address, unit.value(address));
QByteArray payload = QByteArray::fromRawData(bytes.bits(), byteCount);
payload.prepend(char(byteCount));
return QModbusResponse(request.functionCode(), payload);
}
QModbusResponse QModbusServerPrivate::processReadHoldingRegistersRequest(const QModbusRequest &rqst)
{
return readBytes(rqst, QModbusDataUnit::HoldingRegisters);
}
QModbusResponse QModbusServerPrivate::processReadInputRegistersRequest(const QModbusRequest &rqst)
{
return readBytes(rqst, QModbusDataUnit::InputRegisters);
}
QModbusResponse QModbusServerPrivate::readBytes(const QModbusPdu &request,
QModbusDataUnit::RegisterType unitType)
{
CHECK_SIZE_EQUALS(request);
quint16 address, count;
request.decodeData(&address, &count);
if ((count < 0x0001) || (count > 0x007D)) {
return QModbusExceptionResponse(request.functionCode(),
QModbusExceptionResponse::IllegalDataValue);
}
// Get the requested range out of the registers.
QModbusDataUnit unit(unitType, address, count);
if (!q_func()->data(&unit)) {
return QModbusExceptionResponse(request.functionCode(),
QModbusExceptionResponse::IllegalDataAddress);
}
return QModbusResponse(request.functionCode(), quint8(count * 2), unit.values());
}
QModbusResponse QModbusServerPrivate::processWriteSingleCoilRequest(const QModbusRequest &request)
{
return writeSingle(request, QModbusDataUnit::Coils);
}
QModbusResponse QModbusServerPrivate::processWriteSingleRegisterRequest(const QModbusRequest &rqst)
{
return writeSingle(rqst, QModbusDataUnit::HoldingRegisters);
}
QModbusResponse QModbusServerPrivate::writeSingle(const QModbusPdu &request,
QModbusDataUnit::RegisterType unitType)
{
CHECK_SIZE_EQUALS(request);
quint16 address, value;
request.decodeData(&address, &value);
if ((unitType == QModbusDataUnit::Coils) && ((value != Coil::Off) && (value != Coil::On))) {
return QModbusExceptionResponse(request.functionCode(),
QModbusExceptionResponse::IllegalDataValue);
}
quint16 reg; // Get the requested register, but deliberately ignore.
if (!q_func()->data(unitType, address, &reg)) {
return QModbusExceptionResponse(request.functionCode(),
QModbusExceptionResponse::IllegalDataAddress);
}
if (!q_func()->setData(unitType, address, value)) {
return QModbusExceptionResponse(request.functionCode(),
QModbusExceptionResponse::ServerDeviceFailure);
}
return QModbusResponse(request.functionCode(), address, value);
}
QModbusResponse QModbusServerPrivate::processReadExceptionStatusRequest(const QModbusRequest &request)
{
CHECK_SIZE_EQUALS(request);
// Get the requested range out of the registers.
const QVariant tmp = q_func()->value(QModbusServer::ExceptionStatusOffset);
if (tmp.isNull() || (!tmp.isValid())) {
return QModbusExceptionResponse(request.functionCode(),
QModbusExceptionResponse::ServerDeviceFailure);
}
const quint16 exceptionStatusOffset = tmp.value<quint16>();
QModbusDataUnit coils(QModbusDataUnit::Coils, exceptionStatusOffset, 8);
if (!q_func()->data(&coils)) {
return QModbusExceptionResponse(request.functionCode(),
QModbusExceptionResponse::IllegalDataAddress);
}
quint16 address = 0;
quint8 byte = 0;
for (int currentBit = 0; currentBit < 8; ++currentBit)
if (coils.value(address++)) // The padding happens inside value().
byte |= (1U << currentBit);
return QModbusResponse(request.functionCode(), byte);
}
QModbusResponse QModbusServerPrivate::processDiagnosticsRequest(const QModbusRequest &request)
{
#define CHECK_SIZE_AND_CONDITION(req, condition) \
CHECK_SIZE_EQUALS(req); \
do { \
if ((condition)) { \
return QModbusExceptionResponse(req.functionCode(), \
QModbusExceptionResponse::IllegalDataValue); \
} \
} while (0)
quint16 subFunctionCode, data = 0xffff;
request.decodeData(&subFunctionCode, &data);
switch (subFunctionCode) {
case Diagnostics::ReturnQueryData:
return QModbusResponse(request.functionCode(), request.data());
case Diagnostics::RestartCommunicationsOption: {
CHECK_SIZE_AND_CONDITION(request, ((data != 0xff00) && (data != 0x0000)));
// Restarts the communication by closing the connection and re-opening. After closing,
// all communication counters are cleared and the listen only mode set to false. This
// function is the only way to remotely clear the listen only mode and bring the device
// back into communication. If data is 0xff00, the event log history is also cleared.
q_func()->disconnectDevice();
if (data == 0xff00)
m_commEventLog.clear();
resetCommunicationCounters();
q_func()->setValue(QModbusServer::ListenOnlyMode, false);
storeModbusCommEvent(QModbusCommEvent::InitiatedCommunicationRestart);
if (!q_func()->connectDevice()) {
qCWarning(QT_MODBUS) << "(Server) Cannot restart server communication";
return QModbusExceptionResponse(request.functionCode(),
QModbusExceptionResponse::ServerDeviceFailure);
}
return QModbusResponse(request.functionCode(), request.data());
} break;
case Diagnostics::ChangeAsciiInputDelimiter: {
const QByteArray data = request.data().mid(2, 2);
CHECK_SIZE_AND_CONDITION(request, (data[1] != 0x00));
q_func()->setValue(QModbusServer::AsciiInputDelimiter, data[0]);
return QModbusResponse(request.functionCode(), request.data());
} break;
case Diagnostics::ForceListenOnlyMode:
CHECK_SIZE_AND_CONDITION(request, (data != 0x0000));
q_func()->setValue(QModbusServer::ListenOnlyMode, true);
storeModbusCommEvent(QModbusCommEvent::EnteredListenOnlyMode);
return QModbusResponse();
case Diagnostics::ClearCountersAndDiagnosticRegister:
CHECK_SIZE_AND_CONDITION(request, (data != 0x0000));
resetCommunicationCounters();
q_func()->setValue(QModbusServer::DiagnosticRegister, 0x0000);
return QModbusResponse(request.functionCode(), request.data());
case Diagnostics::ReturnDiagnosticRegister:
case Diagnostics::ReturnBusMessageCount:
case Diagnostics::ReturnBusCommunicationErrorCount:
case Diagnostics::ReturnBusExceptionErrorCount:
case Diagnostics::ReturnServerMessageCount:
case Diagnostics::ReturnServerNoResponseCount:
case Diagnostics::ReturnServerNAKCount:
case Diagnostics::ReturnServerBusyCount:
case Diagnostics::ReturnBusCharacterOverrunCount:
CHECK_SIZE_AND_CONDITION(request, (data != 0x0000));
return QModbusResponse(request.functionCode(), subFunctionCode,
m_counters[static_cast<Counter> (subFunctionCode)]);
case Diagnostics::ClearOverrunCounterAndFlag: {
CHECK_SIZE_AND_CONDITION(request, (data != 0x0000));
m_counters[Diagnostics::ReturnBusCharacterOverrunCount] = 0;
quint16 reg = q_func()->value(QModbusServer::DiagnosticRegister).value<quint16>();
q_func()->setValue(QModbusServer::DiagnosticRegister, reg &~ 1); // clear first bit
return QModbusResponse(request.functionCode(), request.data());
}
}
return QModbusExceptionResponse(request.functionCode(),
QModbusExceptionResponse::IllegalFunction);
#undef CHECK_SIZE_AND_CONDITION
}
QModbusResponse QModbusServerPrivate::processGetCommEventCounterRequest(const QModbusRequest &request)
{
CHECK_SIZE_EQUALS(request);
const QVariant tmp = q_func()->value(QModbusServer::DeviceBusy);
if (tmp.isNull() || (!tmp.isValid())) {
return QModbusExceptionResponse(request.functionCode(),
QModbusExceptionResponse::ServerDeviceFailure);
}
const quint16 deviceBusy = tmp.value<quint16>();
return QModbusResponse(request.functionCode(), deviceBusy, m_counters[Counter::CommEvent]);
}
QModbusResponse QModbusServerPrivate::processGetCommEventLogRequest(const QModbusRequest &request)
{
CHECK_SIZE_EQUALS(request);
const QVariant tmp = q_func()->value(QModbusServer::DeviceBusy);
if (tmp.isNull() || (!tmp.isValid())) {
return QModbusExceptionResponse(request.functionCode(),
QModbusExceptionResponse::ServerDeviceFailure);
}
const quint16 deviceBusy = tmp.value<quint16>();
QVector<quint8> eventLog(int(m_commEventLog.size()));
std::copy(m_commEventLog.cbegin(), m_commEventLog.cend(), eventLog.begin());
// 6 -> 3 x 2 Bytes (Status, Event Count and Message Count)
return QModbusResponse(request.functionCode(), quint8(eventLog.size() + 6), deviceBusy,
m_counters[Counter::CommEvent], m_counters[Counter::BusMessage], eventLog);
}
QModbusResponse QModbusServerPrivate::processWriteMultipleCoilsRequest(const QModbusRequest &request)
{
CHECK_SIZE_LESS_THAN(request);
quint16 address, numberOfCoils;
quint8 byteCount;
request.decodeData(&address, &numberOfCoils, &byteCount);
// byte count does not match number of data bytes following
if (byteCount != (request.dataSize() - 5 )) {
return QModbusExceptionResponse(request.functionCode(),
QModbusExceptionResponse::IllegalDataValue);
}
quint8 expectedBytes = numberOfCoils / 8;
if ((numberOfCoils % 8) != 0)
expectedBytes += 1;
if ((numberOfCoils < 0x0001) || (numberOfCoils > 0x07B0) || (expectedBytes != byteCount)) {
return QModbusExceptionResponse(request.functionCode(),
QModbusExceptionResponse::IllegalDataValue);
}
// Get the requested range out of the registers.
QModbusDataUnit coils(QModbusDataUnit::Coils, address, numberOfCoils);
if (!q_func()->data(&coils)) {
return QModbusExceptionResponse(request.functionCode(),
QModbusExceptionResponse::IllegalDataAddress);
}
QVector<quint8> bytes;
const QByteArray payload = request.data().mid(5);
for (qint32 i = payload.size() - 1; i >= 0; --i)
bytes.append(quint8(payload[i]));
// Since we picked the coils at start address, data
// range is numberOfCoils and therefore index too.
quint16 coil = numberOfCoils;
qint32 currentBit = 8 - ((byteCount * 8) - numberOfCoils);
for (quint8 currentByte : qAsConst(bytes)) {
for (currentBit -= 1; currentBit >= 0; --currentBit)
coils.setValue(--coil, currentByte & (1U << currentBit) ? 1 : 0);
currentBit = 8;
}
if (!q_func()->setData(coils)) {
return QModbusExceptionResponse(request.functionCode(),
QModbusExceptionResponse::ServerDeviceFailure);
}
return QModbusResponse(request.functionCode(), address, numberOfCoils);
}
QModbusResponse QModbusServerPrivate::processWriteMultipleRegistersRequest(
const QModbusRequest &request)
{
CHECK_SIZE_LESS_THAN(request);
quint16 address, numberOfRegisters;
quint8 byteCount;
request.decodeData(&address, &numberOfRegisters, &byteCount);
// byte count does not match number of data bytes following or register count
if ((byteCount != (request.dataSize() - 5 )) || (byteCount != (numberOfRegisters * 2))) {
return QModbusExceptionResponse(request.functionCode(),
QModbusExceptionResponse::IllegalDataValue);
}
if ((numberOfRegisters < 0x0001) || (numberOfRegisters > 0x007B)) {
return QModbusExceptionResponse(request.functionCode(),
QModbusExceptionResponse::IllegalDataValue);
}
// Get the requested range out of the registers.
QModbusDataUnit registers(QModbusDataUnit::HoldingRegisters, address, numberOfRegisters);
if (!q_func()->data(&registers)) {
return QModbusExceptionResponse(request.functionCode(),
QModbusExceptionResponse::IllegalDataAddress);
}
const QByteArray pduData = request.data().remove(0,5);
QDataStream stream(pduData);
QVector<quint16> values;
quint16 tmp;
for (int i = 0; i < numberOfRegisters; i++) {
stream >> tmp;
values.append(tmp);
}
registers.setValues(values);
if (!q_func()->setData(registers)) {
return QModbusExceptionResponse(request.functionCode(),
QModbusExceptionResponse::ServerDeviceFailure);
}
return QModbusResponse(request.functionCode(), address, numberOfRegisters);
}
QModbusResponse QModbusServerPrivate::processReportServerIdRequest(const QModbusRequest &request)
{
CHECK_SIZE_EQUALS(request);
Q_Q(QModbusServer);
QByteArray data;
QVariant tmp = q->value(QModbusServer::ServerIdentifier);
if (tmp.isNull() || (!tmp.isValid())) {
return QModbusExceptionResponse(request.functionCode(),
QModbusExceptionResponse::ServerDeviceFailure);
}
data.append(tmp.value<quint8>());
tmp = q->value(QModbusServer::RunIndicatorStatus);
if (tmp.isNull() || (!tmp.isValid())) {
return QModbusExceptionResponse(request.functionCode(),
QModbusExceptionResponse::ServerDeviceFailure);
}
data.append(tmp.value<quint8>());
tmp = q->value(QModbusServer::AdditionalData);
if (!tmp.isNull() && tmp.isValid())
data.append(tmp.toByteArray());
data.prepend(data.size()); // byte count
return QModbusResponse(request.functionCode(), data);
}
QModbusResponse QModbusServerPrivate::processMaskWriteRegisterRequest(const QModbusRequest &request)
{
CHECK_SIZE_EQUALS(request);
quint16 address, andMask, orMask;
request.decodeData(&address, &andMask, &orMask);
quint16 reg;
if (!q_func()->data(QModbusDataUnit::HoldingRegisters, address, &reg)) {
return QModbusExceptionResponse(request.functionCode(),
QModbusExceptionResponse::IllegalDataAddress);
}
const quint16 result = (reg & andMask) | (orMask & (~ andMask));
if (!q_func()->setData(QModbusDataUnit::HoldingRegisters, address, result)) {
return QModbusExceptionResponse(request.functionCode(),
QModbusExceptionResponse::ServerDeviceFailure);
}
return QModbusResponse(request.functionCode(), request.data());
}
QModbusResponse QModbusServerPrivate::processReadWriteMultipleRegistersRequest(
const QModbusRequest &request)
{
CHECK_SIZE_LESS_THAN(request);
quint16 readStartAddress, readQuantity, writeStartAddress, writeQuantity;
quint8 byteCount;
request.decodeData(&readStartAddress, &readQuantity,
&writeStartAddress, &writeQuantity, &byteCount);
// byte count does not match number of data bytes following or register count
if ((byteCount != (request.dataSize() - 9 )) || (byteCount != (writeQuantity * 2))) {
return QModbusExceptionResponse(request.functionCode(),
QModbusExceptionResponse::IllegalDataValue);
}
if ((readQuantity < 0x0001) || (readQuantity > 0x007B)
|| (writeQuantity < 0x0001) || (writeQuantity > 0x0079)) {
return QModbusExceptionResponse(request.functionCode(),
QModbusExceptionResponse::IllegalDataValue);
}
// According to spec, write operation is executed before the read operation
// Get the requested range out of the registers.
QModbusDataUnit writeRegisters(QModbusDataUnit::HoldingRegisters, writeStartAddress,
writeQuantity);
if (!q_func()->data(&writeRegisters)) {
return QModbusExceptionResponse(request.functionCode(),
QModbusExceptionResponse::IllegalDataAddress);
}
const QByteArray pduData = request.data().remove(0,9);
QDataStream stream(pduData);
QVector<quint16> values;
quint16 tmp;
for (int i = 0; i < writeQuantity; i++) {
stream >> tmp;
values.append(tmp);
}
writeRegisters.setValues(values);
if (!q_func()->setData(writeRegisters)) {
return QModbusExceptionResponse(request.functionCode(),
QModbusExceptionResponse::ServerDeviceFailure);
}
// Get the requested range out of the registers.
QModbusDataUnit readRegisters(QModbusDataUnit::HoldingRegisters, readStartAddress,
readQuantity);
if (!q_func()->data(&readRegisters)) {
return QModbusExceptionResponse(request.functionCode(),
QModbusExceptionResponse::IllegalDataAddress);
}
return QModbusResponse(request.functionCode(), quint8(readQuantity * 2),
readRegisters.values());
}
QModbusResponse QModbusServerPrivate::processReadFifoQueueRequest(const QModbusRequest &request)
{
CHECK_SIZE_LESS_THAN(request);
quint16 address;
request.decodeData(&address);
quint16 fifoCount;
if (!q_func()->data(QModbusDataUnit::HoldingRegisters, address, &fifoCount)) {
return QModbusExceptionResponse(request.functionCode(),
QModbusExceptionResponse::IllegalDataAddress);
}
if (fifoCount > 31u) {
return QModbusExceptionResponse(request.functionCode(),
QModbusExceptionResponse::IllegalDataValue);
}
QModbusDataUnit fifoRegisters(QModbusDataUnit::HoldingRegisters, address + 1u, fifoCount);
if (!q_func()->data(&fifoRegisters)) {
return QModbusExceptionResponse(request.functionCode(),
QModbusExceptionResponse::IllegalDataAddress);
}
return QModbusResponse(request.functionCode(), quint16((fifoCount * 2) + 2u), fifoCount,
fifoRegisters.values());
}
QModbusResponse QModbusServerPrivate::processEncapsulatedInterfaceTransportRequest(
const QModbusRequest &request)
{
CHECK_SIZE_LESS_THAN(request);
quint8 MEIType;
request.decodeData(&MEIType);
switch (MEIType) {
case EncapsulatedInterfaceTransport::CanOpenGeneralReference:
break;
case EncapsulatedInterfaceTransport::ReadDeviceIdentification: {
if (request.dataSize() != 3u) {
return QModbusExceptionResponse(request.functionCode(),
QModbusExceptionResponse::IllegalDataValue);
}
const QVariant tmp = q_func()->value(QModbusServer::DeviceIdentification);
if (tmp.isNull() || (!tmp.isValid())) {
// TODO: Is this correct?
return QModbusExceptionResponse(request.functionCode(),
QModbusExceptionResponse::ServerDeviceFailure);
}
QModbusDeviceIdentification objectPool = tmp.value<QModbusDeviceIdentification>();
if (!objectPool.isValid()) {
// TODO: Is this correct?
return QModbusExceptionResponse(request.functionCode(),
QModbusExceptionResponse::ServerDeviceFailure);
}
quint8 readDeviceIdCode, objectId;
request.decodeData(&MEIType, &readDeviceIdCode, &objectId);
if (!objectPool.contains(objectId)) {
// Individual access requires the object Id to be present, so we will always fail.
// For all other cases we will reevaluate object Id after we reset it as per spec.
objectId = QModbusDeviceIdentification::VendorNameObjectId;
if (readDeviceIdCode == QModbusDeviceIdentification::IndividualReadDeviceIdCode
|| !objectPool.contains(objectId)) {
return QModbusExceptionResponse(request.functionCode(),
QModbusExceptionResponse::IllegalDataAddress);
}
}
auto payload = [MEIType, readDeviceIdCode, objectId, objectPool](int lastObjectId) {
// TODO: Take conformity level into account.
QByteArray payload(6, Qt::Uninitialized);
payload[0] = MEIType;
payload[1] = readDeviceIdCode;
payload[2] = quint8(objectPool.conformityLevel());
payload[3] = quint8(0x00); // no more follows
payload[4] = quint8(0x00); // next object id
payload[5] = quint8(0x00); // number of objects
const QList<int> objectIds = objectPool.objectIds();
for (int id : objectIds) {
if (id < objectId)
continue;
if (id > lastObjectId)
break;
const QByteArray object = objectPool.value(id);
QByteArray objectData(2, Qt::Uninitialized);
objectData[0] = id;
objectData[1] = quint8(object.size());
objectData += object;
if (payload.size() + objectData.size() > 253) {
payload[3] = char(0xff); // more follows
payload[4] = id; // next object id
break;
}
payload.append(objectData);
payload[5] = payload[5] + 1u; // number of objects
}
return payload;
};
switch (readDeviceIdCode) {
case QModbusDeviceIdentification::BasicReadDeviceIdCode:
// TODO: How to handle a valid Id <> VendorName ... MajorMinorRevision
return QModbusResponse(request.functionCode(),
payload(QModbusDeviceIdentification::MajorMinorRevisionObjectId));
case QModbusDeviceIdentification::RegularReadDeviceIdCode:
// TODO: How to handle a valid Id <> VendorUrl ... UserApplicationName
return QModbusResponse(request.functionCode(),
payload(QModbusDeviceIdentification::UserApplicationNameObjectId));
case QModbusDeviceIdentification::ExtendedReadDeviceIdCode:
// TODO: How to handle a valid Id < ProductDependent
return QModbusResponse(request.functionCode(),
payload(QModbusDeviceIdentification::UndefinedObjectId));
case QModbusDeviceIdentification::IndividualReadDeviceIdCode: {
// TODO: Take conformity level into account.
const QByteArray object = objectPool.value(objectId);
QByteArray header(8, Qt::Uninitialized);
header[0] = MEIType;
header[1] = readDeviceIdCode;
header[2] = quint8(objectPool.conformityLevel());
header[3] = quint8(0x00); // no more follows
header[4] = quint8(0x00); // next object id
header[5] = quint8(0x01); // number of objects
header[6] = objectId;
header[7] = quint8(object.length());
return QModbusResponse(request.functionCode(), QByteArray(header + object));
}
default:
return QModbusExceptionResponse(request.functionCode(),
QModbusExceptionResponse::IllegalDataValue);
}
} break;
}
return QModbusExceptionResponse(request.functionCode(),
QModbusExceptionResponse::IllegalFunction);
}
void QModbusServerPrivate::storeModbusCommEvent(const QModbusCommEvent &eventByte)
{
// Inserts an event byte at the start of the event log. If the event log
// is already full, the byte at the end of the log will be removed. The
// event log size is 64 bytes, starting at index 0.
m_commEventLog.push_front(eventByte);
if (m_commEventLog.size() > 64)
m_commEventLog.pop_back();
}
#undef CHECK_SIZE_EQUALS
#undef CHECK_SIZE_LESS_THAN
QT_END_NAMESPACE