blob: 5f651cf376165bd85e26cde470e58d473d73659e [file] [log] [blame]
/****************************************************************************
**
** Copyright (C) 2016 The Qt Company Ltd.
** Contact: https://www.qt.io/licensing/
**
** This file is part of the QtGui module of the Qt Toolkit.
**
** $QT_BEGIN_LICENSE:LGPL$
** Commercial License Usage
** Licensees holding valid commercial Qt licenses may use this file in
** accordance with the commercial license agreement provided with the
** Software or, alternatively, in accordance with the terms contained in
** a written agreement between you and The Qt Company. For licensing terms
** and conditions see https://www.qt.io/terms-conditions. For further
** information use the contact form at https://www.qt.io/contact-us.
**
** GNU Lesser General Public License Usage
** Alternatively, this file may be used under the terms of the GNU Lesser
** General Public License version 3 as published by the Free Software
** Foundation and appearing in the file LICENSE.LGPL3 included in the
** packaging of this file. Please review the following information to
** ensure the GNU Lesser General Public License version 3 requirements
** will be met: https://www.gnu.org/licenses/lgpl-3.0.html.
**
** GNU General Public License Usage
** Alternatively, this file may be used under the terms of the GNU
** General Public License version 2.0 or (at your option) the GNU General
** Public license version 3 or any later version approved by the KDE Free
** Qt Foundation. The licenses are as published by the Free Software
** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3
** included in the packaging of this file. Please review the following
** information to ensure the GNU General Public License requirements will
** be met: https://www.gnu.org/licenses/gpl-2.0.html and
** https://www.gnu.org/licenses/gpl-3.0.html.
**
** $QT_END_LICENSE$
**
****************************************************************************/
#include "qvector2d.h"
#include "qvector3d.h"
#include "qvector4d.h"
#include <QtCore/qdatastream.h>
#include <QtCore/qdebug.h>
#include <QtCore/qvariant.h>
#include <QtCore/qmath.h>
QT_BEGIN_NAMESPACE
#ifndef QT_NO_VECTOR2D
Q_STATIC_ASSERT_X(std::is_standard_layout<QVector2D>::value, "QVector2D is supposed to be standard layout");
Q_STATIC_ASSERT_X(sizeof(QVector2D) == sizeof(float) * 2, "QVector2D is not supposed to have padding at the end");
// QVector2D used to be defined as class QVector2D { float x, y; };,
// now instead it is defined as classs QVector2D { float v[2]; };.
// Check that binary compatibility is preserved.
// ### Qt 6: remove all of these checks.
namespace {
struct QVector2DOld
{
float x, y;
};
struct QVector2DNew
{
float v[2];
};
Q_STATIC_ASSERT_X(std::is_standard_layout<QVector2DOld>::value, "Binary compatibility break in QVector2D");
Q_STATIC_ASSERT_X(std::is_standard_layout<QVector2DNew>::value, "Binary compatibility break in QVector2D");
Q_STATIC_ASSERT_X(sizeof(QVector2DOld) == sizeof(QVector2DNew), "Binary compatibility break in QVector2D");
// requires a constexpr offsetof
#if !defined(Q_CC_MSVC) || (_MSC_VER >= 1910)
Q_STATIC_ASSERT_X(offsetof(QVector2DOld, x) == offsetof(QVector2DNew, v) + sizeof(QVector2DNew::v[0]) * 0, "Binary compatibility break in QVector2D");
Q_STATIC_ASSERT_X(offsetof(QVector2DOld, y) == offsetof(QVector2DNew, v) + sizeof(QVector2DNew::v[0]) * 1, "Binary compatibility break in QVector2D");
#endif
} // anonymous namespace
/*!
\class QVector2D
\brief The QVector2D class represents a vector or vertex in 2D space.
\since 4.6
\ingroup painting
\ingroup painting-3D
\inmodule QtGui
The QVector2D class can also be used to represent vertices in 2D space.
We therefore do not need to provide a separate vertex class.
\sa QVector3D, QVector4D, QQuaternion
*/
/*!
\fn QVector2D::QVector2D()
Constructs a null vector, i.e. with coordinates (0, 0).
*/
/*!
\fn QVector2D::QVector2D(Qt::Initialization)
\since 5.5
\internal
Constructs a vector without initializing the contents.
*/
/*!
\fn QVector2D::QVector2D(float xpos, float ypos)
Constructs a vector with coordinates (\a xpos, \a ypos).
*/
/*!
\fn QVector2D::QVector2D(const QPoint& point)
Constructs a vector with x and y coordinates from a 2D \a point.
*/
/*!
\fn QVector2D::QVector2D(const QPointF& point)
Constructs a vector with x and y coordinates from a 2D \a point.
*/
#ifndef QT_NO_VECTOR3D
/*!
Constructs a vector with x and y coordinates from a 3D \a vector.
The z coordinate of \a vector is dropped.
\sa toVector3D()
*/
QVector2D::QVector2D(const QVector3D& vector)
{
v[0] = vector.v[0];
v[1] = vector.v[1];
}
#endif
#ifndef QT_NO_VECTOR4D
/*!
Constructs a vector with x and y coordinates from a 3D \a vector.
The z and w coordinates of \a vector are dropped.
\sa toVector4D()
*/
QVector2D::QVector2D(const QVector4D& vector)
{
v[0] = vector.v[0];
v[1] = vector.v[1];
}
#endif
/*!
\fn bool QVector2D::isNull() const
Returns \c true if the x and y coordinates are set to 0.0,
otherwise returns \c false.
*/
/*!
\fn float QVector2D::x() const
Returns the x coordinate of this point.
\sa setX(), y()
*/
/*!
\fn float QVector2D::y() const
Returns the y coordinate of this point.
\sa setY(), x()
*/
/*!
\fn void QVector2D::setX(float x)
Sets the x coordinate of this point to the given \a x coordinate.
\sa x(), setY()
*/
/*!
\fn void QVector2D::setY(float y)
Sets the y coordinate of this point to the given \a y coordinate.
\sa y(), setX()
*/
/*! \fn float &QVector2D::operator[](int i)
\since 5.2
Returns the component of the vector at index position \a i
as a modifiable reference.
\a i must be a valid index position in the vector (i.e., 0 <= \a i
< 2).
*/
/*! \fn float QVector2D::operator[](int i) const
\since 5.2
Returns the component of the vector at index position \a i.
\a i must be a valid index position in the vector (i.e., 0 <= \a i
< 2).
*/
/*!
Returns the length of the vector from the origin.
\sa lengthSquared(), normalized()
*/
float QVector2D::length() const
{
// Need some extra precision if the length is very small.
double len = double(v[0]) * double(v[0]) +
double(v[1]) * double(v[1]);
return float(std::sqrt(len));
}
/*!
Returns the squared length of the vector from the origin.
This is equivalent to the dot product of the vector with itself.
\sa length(), dotProduct()
*/
float QVector2D::lengthSquared() const
{
return v[0] * v[0] + v[1] * v[1];
}
/*!
Returns the normalized unit vector form of this vector.
If this vector is null, then a null vector is returned. If the length
of the vector is very close to 1, then the vector will be returned as-is.
Otherwise the normalized form of the vector of length 1 will be returned.
\sa length(), normalize()
*/
QVector2D QVector2D::normalized() const
{
// Need some extra precision if the length is very small.
double len = double(v[0]) * double(v[0]) +
double(v[1]) * double(v[1]);
if (qFuzzyIsNull(len - 1.0f)) {
return *this;
} else if (!qFuzzyIsNull(len)) {
double sqrtLen = std::sqrt(len);
return QVector2D(float(double(v[0]) / sqrtLen), float(double(v[1]) / sqrtLen));
} else {
return QVector2D();
}
}
/*!
Normalizes the currect vector in place. Nothing happens if this
vector is a null vector or the length of the vector is very close to 1.
\sa length(), normalized()
*/
void QVector2D::normalize()
{
// Need some extra precision if the length is very small.
double len = double(v[0]) * double(v[0]) +
double(v[1]) * double(v[1]);
if (qFuzzyIsNull(len - 1.0f) || qFuzzyIsNull(len))
return;
len = std::sqrt(len);
v[0] = float(double(v[0]) / len);
v[1] = float(double(v[1]) / len);
}
/*!
\since 5.1
Returns the distance from this vertex to a point defined by
the vertex \a point.
\sa distanceToLine()
*/
float QVector2D::distanceToPoint(const QVector2D& point) const
{
return (*this - point).length();
}
/*!
\since 5.1
Returns the distance that this vertex is from a line defined
by \a point and the unit vector \a direction.
If \a direction is a null vector, then it does not define a line.
In that case, the distance from \a point to this vertex is returned.
\sa distanceToPoint()
*/
float QVector2D::distanceToLine
(const QVector2D& point, const QVector2D& direction) const
{
if (direction.isNull())
return (*this - point).length();
QVector2D p = point + dotProduct(*this - point, direction) * direction;
return (*this - p).length();
}
/*!
\fn QVector2D &QVector2D::operator+=(const QVector2D &vector)
Adds the given \a vector to this vector and returns a reference to
this vector.
\sa operator-=()
*/
/*!
\fn QVector2D &QVector2D::operator-=(const QVector2D &vector)
Subtracts the given \a vector from this vector and returns a reference to
this vector.
\sa operator+=()
*/
/*!
\fn QVector2D &QVector2D::operator*=(float factor)
Multiplies this vector's coordinates by the given \a factor, and
returns a reference to this vector.
\sa operator/=()
*/
/*!
\fn QVector2D &QVector2D::operator*=(const QVector2D &vector)
Multiplies the components of this vector by the corresponding
components in \a vector.
*/
/*!
\fn QVector2D &QVector2D::operator/=(float divisor)
Divides this vector's coordinates by the given \a divisor, and
returns a reference to this vector.
\sa operator*=()
*/
/*!
\fn QVector2D &QVector2D::operator/=(const QVector2D &vector)
\since 5.5
Divides the components of this vector by the corresponding
components in \a vector.
\sa operator*=()
*/
/*!
Returns the dot product of \a v1 and \a v2.
*/
float QVector2D::dotProduct(const QVector2D& v1, const QVector2D& v2)
{
return v1.v[0] * v2.v[0] + v1.v[1] * v2.v[1];
}
/*!
\fn bool operator==(const QVector2D &v1, const QVector2D &v2)
\relates QVector2D
Returns \c true if \a v1 is equal to \a v2; otherwise returns \c false.
This operator uses an exact floating-point comparison.
*/
/*!
\fn bool operator!=(const QVector2D &v1, const QVector2D &v2)
\relates QVector2D
Returns \c true if \a v1 is not equal to \a v2; otherwise returns \c false.
This operator uses an exact floating-point comparison.
*/
/*!
\fn const QVector2D operator+(const QVector2D &v1, const QVector2D &v2)
\relates QVector2D
Returns a QVector2D object that is the sum of the given vectors, \a v1
and \a v2; each component is added separately.
\sa QVector2D::operator+=()
*/
/*!
\fn const QVector2D operator-(const QVector2D &v1, const QVector2D &v2)
\relates QVector2D
Returns a QVector2D object that is formed by subtracting \a v2 from \a v1;
each component is subtracted separately.
\sa QVector2D::operator-=()
*/
/*!
\fn const QVector2D operator*(float factor, const QVector2D &vector)
\relates QVector2D
Returns a copy of the given \a vector, multiplied by the given \a factor.
\sa QVector2D::operator*=()
*/
/*!
\fn const QVector2D operator*(const QVector2D &vector, float factor)
\relates QVector2D
Returns a copy of the given \a vector, multiplied by the given \a factor.
\sa QVector2D::operator*=()
*/
/*!
\fn const QVector2D operator*(const QVector2D &v1, const QVector2D &v2)
\relates QVector2D
Multiplies the components of \a v1 by the corresponding
components in \a v2.
*/
/*!
\fn const QVector2D operator-(const QVector2D &vector)
\relates QVector2D
\overload
Returns a QVector2D object that is formed by changing the sign of
the components of the given \a vector.
Equivalent to \c {QVector2D(0,0) - vector}.
*/
/*!
\fn const QVector2D operator/(const QVector2D &vector, float divisor)
\relates QVector2D
Returns the QVector2D object formed by dividing all three components of
the given \a vector by the given \a divisor.
\sa QVector2D::operator/=()
*/
/*!
\fn const QVector2D operator/(const QVector2D &vector, const QVector2D &divisor)
\relates QVector2D
\since 5.5
Returns the QVector2D object formed by dividing components of the given
\a vector by a respective components of the given \a divisor.
\sa QVector2D::operator/=()
*/
/*!
\fn bool qFuzzyCompare(const QVector2D& v1, const QVector2D& v2)
\relates QVector2D
Returns \c true if \a v1 and \a v2 are equal, allowing for a small
fuzziness factor for floating-point comparisons; false otherwise.
*/
#ifndef QT_NO_VECTOR3D
/*!
Returns the 3D form of this 2D vector, with the z coordinate set to zero.
\sa toVector4D(), toPoint()
*/
QVector3D QVector2D::toVector3D() const
{
return QVector3D(v[0], v[1], 0.0f);
}
#endif
#ifndef QT_NO_VECTOR4D
/*!
Returns the 4D form of this 2D vector, with the z and w coordinates set to zero.
\sa toVector3D(), toPoint()
*/
QVector4D QVector2D::toVector4D() const
{
return QVector4D(v[0], v[1], 0.0f, 0.0f);
}
#endif
/*!
\fn QPoint QVector2D::toPoint() const
Returns the QPoint form of this 2D vector.
\sa toPointF(), toVector3D()
*/
/*!
\fn QPointF QVector2D::toPointF() const
Returns the QPointF form of this 2D vector.
\sa toPoint(), toVector3D()
*/
/*!
Returns the 2D vector as a QVariant.
*/
QVector2D::operator QVariant() const
{
return QVariant(QMetaType::QVector2D, this);
}
#ifndef QT_NO_DEBUG_STREAM
QDebug operator<<(QDebug dbg, const QVector2D &vector)
{
QDebugStateSaver saver(dbg);
dbg.nospace() << "QVector2D(" << vector.x() << ", " << vector.y() << ')';
return dbg;
}
#endif
#ifndef QT_NO_DATASTREAM
/*!
\fn QDataStream &operator<<(QDataStream &stream, const QVector2D &vector)
\relates QVector2D
Writes the given \a vector to the given \a stream and returns a
reference to the stream.
\sa {Serializing Qt Data Types}
*/
QDataStream &operator<<(QDataStream &stream, const QVector2D &vector)
{
stream << vector.x() << vector.y();
return stream;
}
/*!
\fn QDataStream &operator>>(QDataStream &stream, QVector2D &vector)
\relates QVector2D
Reads a 2D vector from the given \a stream into the given \a vector
and returns a reference to the stream.
\sa {Serializing Qt Data Types}
*/
QDataStream &operator>>(QDataStream &stream, QVector2D &vector)
{
float x, y;
stream >> x;
stream >> y;
vector.setX(x);
vector.setY(y);
return stream;
}
#endif // QT_NO_DATASTREAM
#endif // QT_NO_VECTOR2D
QT_END_NAMESPACE