blob: 070ea7454ea335fe24a397e986d1faa3fe3a0ed6 [file] [log] [blame]
/****************************************************************************
**
** Copyright (C) 2016 The Qt Company Ltd.
** Contact: https://www.qt.io/licensing/
**
** This file is part of the QtGui module of the Qt Toolkit.
**
** $QT_BEGIN_LICENSE:LGPL$
** Commercial License Usage
** Licensees holding valid commercial Qt licenses may use this file in
** accordance with the commercial license agreement provided with the
** Software or, alternatively, in accordance with the terms contained in
** a written agreement between you and The Qt Company. For licensing terms
** and conditions see https://www.qt.io/terms-conditions. For further
** information use the contact form at https://www.qt.io/contact-us.
**
** GNU Lesser General Public License Usage
** Alternatively, this file may be used under the terms of the GNU Lesser
** General Public License version 3 as published by the Free Software
** Foundation and appearing in the file LICENSE.LGPL3 included in the
** packaging of this file. Please review the following information to
** ensure the GNU Lesser General Public License version 3 requirements
** will be met: https://www.gnu.org/licenses/lgpl-3.0.html.
**
** GNU General Public License Usage
** Alternatively, this file may be used under the terms of the GNU
** General Public License version 2.0 or (at your option) the GNU General
** Public license version 3 or any later version approved by the KDE Free
** Qt Foundation. The licenses are as published by the Free Software
** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3
** included in the packaging of this file. Please review the following
** information to ensure the GNU General Public License requirements will
** be met: https://www.gnu.org/licenses/gpl-2.0.html and
** https://www.gnu.org/licenses/gpl-3.0.html.
**
** $QT_END_LICENSE$
**
****************************************************************************/
#include "qvector4d.h"
#include "qvector3d.h"
#include "qvector2d.h"
#include <QtCore/qdatastream.h>
#include <QtCore/qdebug.h>
#include <QtCore/qvariant.h>
#include <QtCore/qmath.h>
QT_BEGIN_NAMESPACE
#ifndef QT_NO_VECTOR4D
Q_STATIC_ASSERT_X(std::is_standard_layout<QVector4D>::value, "QVector4D is supposed to be standard layout");
Q_STATIC_ASSERT_X(sizeof(QVector4D) == sizeof(float) * 4, "QVector4D is not supposed to have padding at the end");
// QVector4D used to be defined as class QVector4D { float x, y, z, w; };,
// now instead it is defined as classs QVector4D { float v[4]; };.
// Check that binary compatibility is preserved.
// ### Qt 6: remove all of these checks.
namespace {
struct QVector4DOld
{
float x, y, z, w;
};
struct QVector4DNew
{
float v[4];
};
Q_STATIC_ASSERT_X(std::is_standard_layout<QVector4DOld>::value, "Binary compatibility break in QVector4D");
Q_STATIC_ASSERT_X(std::is_standard_layout<QVector4DNew>::value, "Binary compatibility break in QVector4D");
Q_STATIC_ASSERT_X(sizeof(QVector4DOld) == sizeof(QVector4DNew), "Binary compatibility break in QVector4D");
// requires a constexpr offsetof
#if !defined(Q_CC_MSVC) || (_MSC_VER >= 1910)
Q_STATIC_ASSERT_X(offsetof(QVector4DOld, x) == offsetof(QVector4DNew, v) + sizeof(QVector4DNew::v[0]) * 0, "Binary compatibility break in QVector4D");
Q_STATIC_ASSERT_X(offsetof(QVector4DOld, y) == offsetof(QVector4DNew, v) + sizeof(QVector4DNew::v[0]) * 1, "Binary compatibility break in QVector4D");
Q_STATIC_ASSERT_X(offsetof(QVector4DOld, z) == offsetof(QVector4DNew, v) + sizeof(QVector4DNew::v[0]) * 2, "Binary compatibility break in QVector4D");
Q_STATIC_ASSERT_X(offsetof(QVector4DOld, w) == offsetof(QVector4DNew, v) + sizeof(QVector4DNew::v[0]) * 3, "Binary compatibility break in QVector4D");
#endif
} // anonymous namespace
/*!
\class QVector4D
\brief The QVector4D class represents a vector or vertex in 4D space.
\since 4.6
\ingroup painting-3D
\inmodule QtGui
The QVector4D class can also be used to represent vertices in 4D space.
We therefore do not need to provide a separate vertex class.
\sa QQuaternion, QVector2D, QVector3D
*/
/*!
\fn QVector4D::QVector4D()
Constructs a null vector, i.e. with coordinates (0, 0, 0, 0).
*/
/*!
\fn QVector4D::QVector4D(Qt::Initialization)
\since 5.5
\internal
Constructs a vector without initializing the contents.
*/
/*!
\fn QVector4D::QVector4D(float xpos, float ypos, float zpos, float wpos)
Constructs a vector with coordinates (\a xpos, \a ypos, \a zpos, \a wpos).
*/
/*!
\fn QVector4D::QVector4D(const QPoint& point)
Constructs a vector with x and y coordinates from a 2D \a point, and
z and w coordinates of 0.
*/
/*!
\fn QVector4D::QVector4D(const QPointF& point)
Constructs a vector with x and y coordinates from a 2D \a point, and
z and w coordinates of 0.
*/
#ifndef QT_NO_VECTOR2D
/*!
Constructs a 4D vector from the specified 2D \a vector. The z
and w coordinates are set to zero.
\sa toVector2D()
*/
QVector4D::QVector4D(const QVector2D& vector)
{
v[0] = vector.v[0];
v[1] = vector.v[1];
v[2] = 0.0f;
v[3] = 0.0f;
}
/*!
Constructs a 4D vector from the specified 2D \a vector. The z
and w coordinates are set to \a zpos and \a wpos respectively.
\sa toVector2D()
*/
QVector4D::QVector4D(const QVector2D& vector, float zpos, float wpos)
{
v[0] = vector.v[0];
v[1] = vector.v[1];
v[2] = zpos;
v[3] = wpos;
}
#endif
#ifndef QT_NO_VECTOR3D
/*!
Constructs a 4D vector from the specified 3D \a vector. The w
coordinate is set to zero.
\sa toVector3D()
*/
QVector4D::QVector4D(const QVector3D& vector)
{
v[0] = vector.v[0];
v[1] = vector.v[1];
v[2] = vector.v[2];
v[3] = 0.0f;
}
/*!
Constructs a 4D vector from the specified 3D \a vector. The w
coordinate is set to \a wpos.
\sa toVector3D()
*/
QVector4D::QVector4D(const QVector3D& vector, float wpos)
{
v[0] = vector.v[0];
v[1] = vector.v[1];
v[2] = vector.v[2];
v[3] = wpos;
}
#endif
/*!
\fn bool QVector4D::isNull() const
Returns \c true if the x, y, z, and w coordinates are set to 0.0,
otherwise returns \c false.
*/
/*!
\fn float QVector4D::x() const
Returns the x coordinate of this point.
\sa setX(), y(), z(), w()
*/
/*!
\fn float QVector4D::y() const
Returns the y coordinate of this point.
\sa setY(), x(), z(), w()
*/
/*!
\fn float QVector4D::z() const
Returns the z coordinate of this point.
\sa setZ(), x(), y(), w()
*/
/*!
\fn float QVector4D::w() const
Returns the w coordinate of this point.
\sa setW(), x(), y(), z()
*/
/*!
\fn void QVector4D::setX(float x)
Sets the x coordinate of this point to the given \a x coordinate.
\sa x(), setY(), setZ(), setW()
*/
/*!
\fn void QVector4D::setY(float y)
Sets the y coordinate of this point to the given \a y coordinate.
\sa y(), setX(), setZ(), setW()
*/
/*!
\fn void QVector4D::setZ(float z)
Sets the z coordinate of this point to the given \a z coordinate.
\sa z(), setX(), setY(), setW()
*/
/*!
\fn void QVector4D::setW(float w)
Sets the w coordinate of this point to the given \a w coordinate.
\sa w(), setX(), setY(), setZ()
*/
/*! \fn float &QVector4D::operator[](int i)
\since 5.2
Returns the component of the vector at index position \a i
as a modifiable reference.
\a i must be a valid index position in the vector (i.e., 0 <= \a i
< 4).
*/
/*! \fn float QVector4D::operator[](int i) const
\since 5.2
Returns the component of the vector at index position \a i.
\a i must be a valid index position in the vector (i.e., 0 <= \a i
< 4).
*/
/*!
Returns the length of the vector from the origin.
\sa lengthSquared(), normalized()
*/
float QVector4D::length() const
{
// Need some extra precision if the length is very small.
double len = double(v[0]) * double(v[0]) +
double(v[1]) * double(v[1]) +
double(v[2]) * double(v[2]) +
double(v[3]) * double(v[3]);
return float(std::sqrt(len));
}
/*!
Returns the squared length of the vector from the origin.
This is equivalent to the dot product of the vector with itself.
\sa length(), dotProduct()
*/
float QVector4D::lengthSquared() const
{
return v[0] * v[0] + v[1] * v[1] + v[2] * v[2] + v[3] * v[3];
}
/*!
Returns the normalized unit vector form of this vector.
If this vector is null, then a null vector is returned. If the length
of the vector is very close to 1, then the vector will be returned as-is.
Otherwise the normalized form of the vector of length 1 will be returned.
\sa length(), normalize()
*/
QVector4D QVector4D::normalized() const
{
// Need some extra precision if the length is very small.
double len = double(v[0]) * double(v[0]) +
double(v[1]) * double(v[1]) +
double(v[2]) * double(v[2]) +
double(v[3]) * double(v[3]);
if (qFuzzyIsNull(len - 1.0f)) {
return *this;
} else if (!qFuzzyIsNull(len)) {
double sqrtLen = std::sqrt(len);
return QVector4D(float(double(v[0]) / sqrtLen),
float(double(v[1]) / sqrtLen),
float(double(v[2]) / sqrtLen),
float(double(v[3]) / sqrtLen));
} else {
return QVector4D();
}
}
/*!
Normalizes the currect vector in place. Nothing happens if this
vector is a null vector or the length of the vector is very close to 1.
\sa length(), normalized()
*/
void QVector4D::normalize()
{
// Need some extra precision if the length is very small.
double len = double(v[0]) * double(v[0]) +
double(v[1]) * double(v[1]) +
double(v[2]) * double(v[2]) +
double(v[3]) * double(v[3]);
if (qFuzzyIsNull(len - 1.0f) || qFuzzyIsNull(len))
return;
len = std::sqrt(len);
v[0] = float(double(v[0]) / len);
v[1] = float(double(v[1]) / len);
v[2] = float(double(v[2]) / len);
v[3] = float(double(v[3]) / len);
}
/*!
\fn QVector4D &QVector4D::operator+=(const QVector4D &vector)
Adds the given \a vector to this vector and returns a reference to
this vector.
\sa operator-=()
*/
/*!
\fn QVector4D &QVector4D::operator-=(const QVector4D &vector)
Subtracts the given \a vector from this vector and returns a reference to
this vector.
\sa operator+=()
*/
/*!
\fn QVector4D &QVector4D::operator*=(float factor)
Multiplies this vector's coordinates by the given \a factor, and
returns a reference to this vector.
\sa operator/=()
*/
/*!
\fn QVector4D &QVector4D::operator*=(const QVector4D &vector)
Multiplies the components of this vector by the corresponding
components in \a vector.
*/
/*!
\fn QVector4D &QVector4D::operator/=(float divisor)
Divides this vector's coordinates by the given \a divisor, and
returns a reference to this vector.
\sa operator*=()
*/
/*!
\fn QVector4D &QVector4D::operator/=(const QVector4D &vector)
\since 5.5
Divides the components of this vector by the corresponding
components in \a vector.
\sa operator*=()
*/
/*!
Returns the dot product of \a v1 and \a v2.
*/
float QVector4D::dotProduct(const QVector4D& v1, const QVector4D& v2)
{
return v1.v[0] * v2.v[0] + v1.v[1] * v2.v[1] + v1.v[2] * v2.v[2] + v1.v[3] * v2.v[3];
}
/*!
\fn bool operator==(const QVector4D &v1, const QVector4D &v2)
\relates QVector4D
Returns \c true if \a v1 is equal to \a v2; otherwise returns \c false.
This operator uses an exact floating-point comparison.
*/
/*!
\fn bool operator!=(const QVector4D &v1, const QVector4D &v2)
\relates QVector4D
Returns \c true if \a v1 is not equal to \a v2; otherwise returns \c false.
This operator uses an exact floating-point comparison.
*/
/*!
\fn const QVector4D operator+(const QVector4D &v1, const QVector4D &v2)
\relates QVector4D
Returns a QVector4D object that is the sum of the given vectors, \a v1
and \a v2; each component is added separately.
\sa QVector4D::operator+=()
*/
/*!
\fn const QVector4D operator-(const QVector4D &v1, const QVector4D &v2)
\relates QVector4D
Returns a QVector4D object that is formed by subtracting \a v2 from \a v1;
each component is subtracted separately.
\sa QVector4D::operator-=()
*/
/*!
\fn const QVector4D operator*(float factor, const QVector4D &vector)
\relates QVector4D
Returns a copy of the given \a vector, multiplied by the given \a factor.
\sa QVector4D::operator*=()
*/
/*!
\fn const QVector4D operator*(const QVector4D &vector, float factor)
\relates QVector4D
Returns a copy of the given \a vector, multiplied by the given \a factor.
\sa QVector4D::operator*=()
*/
/*!
\fn const QVector4D operator*(const QVector4D &v1, const QVector4D& v2)
\relates QVector4D
Returns the vector consisting of the multiplication of the
components from \a v1 and \a v2.
\sa QVector4D::operator*=()
*/
/*!
\fn const QVector4D operator-(const QVector4D &vector)
\relates QVector4D
\overload
Returns a QVector4D object that is formed by changing the sign of
all three components of the given \a vector.
Equivalent to \c {QVector4D(0,0,0,0) - vector}.
*/
/*!
\fn const QVector4D operator/(const QVector4D &vector, float divisor)
\relates QVector4D
Returns the QVector4D object formed by dividing all four components of
the given \a vector by the given \a divisor.
\sa QVector4D::operator/=()
*/
/*!
\fn const QVector4D operator/(const QVector4D &vector, const QVector4D &divisor)
\relates QVector4D
\since 5.5
Returns the QVector4D object formed by dividing components of the given
\a vector by a respective components of the given \a divisor.
\sa QVector4D::operator/=()
*/
/*!
\fn bool qFuzzyCompare(const QVector4D& v1, const QVector4D& v2)
\relates QVector4D
Returns \c true if \a v1 and \a v2 are equal, allowing for a small
fuzziness factor for floating-point comparisons; false otherwise.
*/
#ifndef QT_NO_VECTOR2D
/*!
Returns the 2D vector form of this 4D vector, dropping the z and w coordinates.
\sa toVector2DAffine(), toVector3D(), toPoint()
*/
QVector2D QVector4D::toVector2D() const
{
return QVector2D(v[0], v[1]);
}
/*!
Returns the 2D vector form of this 4D vector, dividing the x and y
coordinates by the w coordinate and dropping the z coordinate.
Returns a null vector if w is zero.
\sa toVector2D(), toVector3DAffine(), toPoint()
*/
QVector2D QVector4D::toVector2DAffine() const
{
if (qIsNull(v[3]))
return QVector2D();
return QVector2D(v[0] / v[3], v[1] / v[3]);
}
#endif
#ifndef QT_NO_VECTOR3D
/*!
Returns the 3D vector form of this 4D vector, dropping the w coordinate.
\sa toVector3DAffine(), toVector2D(), toPoint()
*/
QVector3D QVector4D::toVector3D() const
{
return QVector3D(v[0], v[1], v[2]);
}
/*!
Returns the 3D vector form of this 4D vector, dividing the x, y, and
z coordinates by the w coordinate. Returns a null vector if w is zero.
\sa toVector3D(), toVector2DAffine(), toPoint()
*/
QVector3D QVector4D::toVector3DAffine() const
{
if (qIsNull(v[3]))
return QVector3D();
return QVector3D(v[0] / v[3], v[1] / v[3], v[2] / v[3]);
}
#endif
/*!
\fn QPoint QVector4D::toPoint() const
Returns the QPoint form of this 4D vector. The z and w coordinates
are dropped.
\sa toPointF(), toVector2D()
*/
/*!
\fn QPointF QVector4D::toPointF() const
Returns the QPointF form of this 4D vector. The z and w coordinates
are dropped.
\sa toPoint(), toVector2D()
*/
/*!
Returns the 4D vector as a QVariant.
*/
QVector4D::operator QVariant() const
{
return QVariant(QMetaType::QVector4D, this);
}
#ifndef QT_NO_DEBUG_STREAM
QDebug operator<<(QDebug dbg, const QVector4D &vector)
{
QDebugStateSaver saver(dbg);
dbg.nospace() << "QVector4D("
<< vector.x() << ", " << vector.y() << ", "
<< vector.z() << ", " << vector.w() << ')';
return dbg;
}
#endif
#ifndef QT_NO_DATASTREAM
/*!
\fn QDataStream &operator<<(QDataStream &stream, const QVector4D &vector)
\relates QVector4D
Writes the given \a vector to the given \a stream and returns a
reference to the stream.
\sa {Serializing Qt Data Types}
*/
QDataStream &operator<<(QDataStream &stream, const QVector4D &vector)
{
stream << vector.x() << vector.y()
<< vector.z() << vector.w();
return stream;
}
/*!
\fn QDataStream &operator>>(QDataStream &stream, QVector4D &vector)
\relates QVector4D
Reads a 4D vector from the given \a stream into the given \a vector
and returns a reference to the stream.
\sa {Serializing Qt Data Types}
*/
QDataStream &operator>>(QDataStream &stream, QVector4D &vector)
{
float x, y, z, w;
stream >> x;
stream >> y;
stream >> z;
stream >> w;
vector.setX(x);
vector.setY(y);
vector.setZ(z);
vector.setW(w);
return stream;
}
#endif // QT_NO_DATASTREAM
#endif // QT_NO_VECTOR4D
QT_END_NAMESPACE