blob: 25a6c5f49c8c402613e261a92d9c69db32dc4df1 [file] [log] [blame]
/****************************************************************************
**
** Copyright (C) 2018 The Qt Company Ltd.
** Contact: https://www.qt.io/licensing/
**
** This file is part of the QtNetwork module of the Qt Toolkit.
**
** $QT_BEGIN_LICENSE:LGPL$
** Commercial License Usage
** Licensees holding valid commercial Qt licenses may use this file in
** accordance with the commercial license agreement provided with the
** Software or, alternatively, in accordance with the terms contained in
** a written agreement between you and The Qt Company. For licensing terms
** and conditions see https://www.qt.io/terms-conditions. For further
** information use the contact form at https://www.qt.io/contact-us.
**
** GNU Lesser General Public License Usage
** Alternatively, this file may be used under the terms of the GNU Lesser
** General Public License version 3 as published by the Free Software
** Foundation and appearing in the file LICENSE.LGPL3 included in the
** packaging of this file. Please review the following information to
** ensure the GNU Lesser General Public License version 3 requirements
** will be met: https://www.gnu.org/licenses/lgpl-3.0.html.
**
** GNU General Public License Usage
** Alternatively, this file may be used under the terms of the GNU
** General Public License version 2.0 or (at your option) the GNU General
** Public license version 3 or any later version approved by the KDE Free
** Qt Foundation. The licenses are as published by the Free Software
** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3
** included in the packaging of this file. Please review the following
** information to ensure the GNU General Public License requirements will
** be met: https://www.gnu.org/licenses/gpl-2.0.html and
** https://www.gnu.org/licenses/gpl-3.0.html.
**
** $QT_END_LICENSE$
**
****************************************************************************/
#ifndef NOMINMAX
#define NOMINMAX
#endif // NOMINMAX
#include "private/qnativesocketengine_p.h"
#include "qsslpresharedkeyauthenticator_p.h"
#include "qsslsocket_openssl_symbols_p.h"
#include "qsslsocket_openssl_p.h"
#include "qsslcertificate_p.h"
#include "qdtls_openssl_p.h"
#include "qudpsocket.h"
#include "qssl_p.h"
#include "qmessageauthenticationcode.h"
#include "qcryptographichash.h"
#include "qdebug.h"
#include <cstring>
#include <cstddef>
QT_BEGIN_NAMESPACE
#define QT_DTLS_VERBOSE 0
#if QT_DTLS_VERBOSE
#define qDtlsWarning(arg) qWarning(arg)
#define qDtlsDebug(arg) qDebug(arg)
#else
#define qDtlsWarning(arg)
#define qDtlsDebug(arg)
#endif // QT_DTLS_VERBOSE
namespace dtlsutil
{
QByteArray cookie_for_peer(SSL *ssl)
{
Q_ASSERT(ssl);
// SSL_get_rbio does not increment the reference count
BIO *readBIO = q_SSL_get_rbio(ssl);
if (!readBIO) {
qCWarning(lcSsl, "No BIO (dgram) found in SSL object");
return {};
}
auto listener = static_cast<dtlsopenssl::DtlsState *>(q_BIO_get_app_data(readBIO));
if (!listener) {
qCWarning(lcSsl, "BIO_get_app_data returned invalid (nullptr) value");
return {};
}
const QHostAddress peerAddress(listener->remoteAddress);
const quint16 peerPort(listener->remotePort);
QByteArray peerData;
if (peerAddress.protocol() == QAbstractSocket::IPv6Protocol) {
const Q_IPV6ADDR sin6_addr(peerAddress.toIPv6Address());
peerData.resize(int(sizeof sin6_addr + sizeof peerPort));
char *dst = peerData.data();
std::memcpy(dst, &peerPort, sizeof peerPort);
dst += sizeof peerPort;
std::memcpy(dst, &sin6_addr, sizeof sin6_addr);
} else if (peerAddress.protocol() == QAbstractSocket::IPv4Protocol) {
const quint32 sin_addr(peerAddress.toIPv4Address());
peerData.resize(int(sizeof sin_addr + sizeof peerPort));
char *dst = peerData.data();
std::memcpy(dst, &peerPort, sizeof peerPort);
dst += sizeof peerPort;
std::memcpy(dst, &sin_addr, sizeof sin_addr);
} else {
Q_UNREACHABLE();
}
return peerData;
}
struct FallbackCookieSecret
{
FallbackCookieSecret()
{
key.resize(32);
const int status = q_RAND_bytes(reinterpret_cast<unsigned char *>(key.data()),
key.size());
if (status <= 0)
key.clear();
}
QByteArray key;
Q_DISABLE_COPY(FallbackCookieSecret)
};
QByteArray fallbackSecret()
{
static const FallbackCookieSecret generator;
return generator.key;
}
int next_timeoutMs(SSL *tlsConnection)
{
Q_ASSERT(tlsConnection);
timeval timeLeft = {};
q_DTLSv1_get_timeout(tlsConnection, &timeLeft);
return timeLeft.tv_sec * 1000;
}
void delete_connection(SSL *ssl)
{
// The 'deleter' for QSharedPointer<SSL>.
if (ssl)
q_SSL_free(ssl);
}
void delete_BIO_ADDR(BIO_ADDR *bio)
{
// A deleter for QSharedPointer<BIO_ADDR>
if (bio)
q_BIO_ADDR_free(bio);
}
void delete_bio_method(BIO_METHOD *method)
{
// The 'deleter' for QSharedPointer<BIO_METHOD>.
if (method)
q_BIO_meth_free(method);
}
// The 'deleter' for QScopedPointer<BIO>.
struct bio_deleter
{
static void cleanup(BIO *bio)
{
if (bio)
q_BIO_free(bio);
}
};
// The path MTU discovery is non-trivial: it's a mix of getsockopt/setsockopt
// (IP_MTU/IP6_MTU/IP_MTU_DISCOVER) and fallback MTU values. It's not
// supported on all platforms, worse so - imposes specific requirements on
// underlying UDP socket etc. So for now, we either try a user-proposed MTU
// hint or rely on our own fallback value. As a fallback mtu OpenSSL uses 576
// for IPv4 and 1280 for IPv6 (RFC 791, RFC 2460). To KIS we use 576. This
// rather small MTU value does not affect the size that can be read/written
// by QDtls, only a handshake (which is allowed to fragment).
enum class MtuGuess : long
{
defaultMtu = 576
};
} // namespace dtlsutil
namespace dtlscallbacks
{
extern "C" int q_generate_cookie_callback(SSL *ssl, unsigned char *dst,
unsigned *cookieLength)
{
if (!ssl || !dst || !cookieLength) {
qCWarning(lcSsl,
"Failed to generate cookie - invalid (nullptr) parameter(s)");
return 0;
}
void *generic = q_SSL_get_ex_data(ssl, QSslSocketBackendPrivate::s_indexForSSLExtraData);
if (!generic) {
qCWarning(lcSsl, "SSL_get_ex_data returned nullptr, cannot generate cookie");
return 0;
}
*cookieLength = 0;
auto dtls = static_cast<dtlsopenssl::DtlsState *>(generic);
if (!dtls->secret.size())
return 0;
const QByteArray peerData(dtlsutil::cookie_for_peer(ssl));
if (!peerData.size())
return 0;
QMessageAuthenticationCode hmac(dtls->hashAlgorithm, dtls->secret);
hmac.addData(peerData);
const QByteArray cookie = hmac.result();
Q_ASSERT(cookie.size() >= 0);
// DTLS1_COOKIE_LENGTH is erroneously 256 bytes long, must be 255 - RFC 6347, 4.2.1.
*cookieLength = qMin(DTLS1_COOKIE_LENGTH - 1, cookie.size());
std::memcpy(dst, cookie.constData(), *cookieLength);
return 1;
}
extern "C" int q_verify_cookie_callback(SSL *ssl, const unsigned char *cookie,
unsigned cookieLength)
{
if (!ssl || !cookie || !cookieLength) {
qCWarning(lcSsl, "Could not verify cookie, invalid (nullptr or zero) parameters");
return 0;
}
unsigned char newCookie[DTLS1_COOKIE_LENGTH] = {};
unsigned newCookieLength = 0;
if (q_generate_cookie_callback(ssl, newCookie, &newCookieLength) != 1)
return 0;
return newCookieLength == cookieLength
&& !std::memcmp(cookie, newCookie, cookieLength);
}
extern "C" int q_X509DtlsCallback(int ok, X509_STORE_CTX *ctx)
{
if (!ok) {
// Store the error and at which depth the error was detected.
SSL *ssl = static_cast<SSL *>(q_X509_STORE_CTX_get_ex_data(ctx, q_SSL_get_ex_data_X509_STORE_CTX_idx()));
if (!ssl) {
qCWarning(lcSsl, "X509_STORE_CTX_get_ex_data returned nullptr, handshake failure");
return 0;
}
void *generic = q_SSL_get_ex_data(ssl, QSslSocketBackendPrivate::s_indexForSSLExtraData);
if (!generic) {
qCWarning(lcSsl, "SSL_get_ex_data returned nullptr, handshake failure");
return 0;
}
auto dtls = static_cast<dtlsopenssl::DtlsState *>(generic);
dtls->x509Errors.append(QSslErrorEntry::fromStoreContext(ctx));
}
// Always return 1 (OK) to allow verification to continue. We handle the
// errors gracefully after collecting all errors, after verification has
// completed.
return 1;
}
extern "C" unsigned q_PSK_client_callback(SSL *ssl, const char *hint, char *identity,
unsigned max_identity_len, unsigned char *psk,
unsigned max_psk_len)
{
auto *dtls = static_cast<dtlsopenssl::DtlsState *>(q_SSL_get_ex_data(ssl,
QSslSocketBackendPrivate::s_indexForSSLExtraData));
if (!dtls)
return 0;
Q_ASSERT(dtls->dtlsPrivate);
return dtls->dtlsPrivate->pskClientCallback(hint, identity, max_identity_len, psk, max_psk_len);
}
extern "C" unsigned q_PSK_server_callback(SSL *ssl, const char *identity, unsigned char *psk,
unsigned max_psk_len)
{
auto *dtls = static_cast<dtlsopenssl::DtlsState *>(q_SSL_get_ex_data(ssl,
QSslSocketBackendPrivate::s_indexForSSLExtraData));
if (!dtls)
return 0;
Q_ASSERT(dtls->dtlsPrivate);
return dtls->dtlsPrivate->pskServerCallback(identity, psk, max_psk_len);
}
} // namespace dtlscallbacks
namespace dtlsbio
{
extern "C" int q_dgram_read(BIO *bio, char *dst, int bytesToRead)
{
if (!bio || !dst || bytesToRead <= 0) {
qCWarning(lcSsl, "invalid input parameter(s)");
return 0;
}
q_BIO_clear_retry_flags(bio);
auto dtls = static_cast<dtlsopenssl::DtlsState *>(q_BIO_get_app_data(bio));
// It's us who set data, if OpenSSL does too, the logic here is wrong
// then and we have to use BIO_set_app_data then!
Q_ASSERT(dtls);
int bytesRead = 0;
if (dtls->dgram.size()) {
bytesRead = qMin(dtls->dgram.size(), bytesToRead);
std::memcpy(dst, dtls->dgram.constData(), bytesRead);
if (!dtls->peeking)
dtls->dgram = dtls->dgram.mid(bytesRead);
} else {
bytesRead = -1;
}
if (bytesRead <= 0)
q_BIO_set_retry_read(bio);
return bytesRead;
}
extern "C" int q_dgram_write(BIO *bio, const char *src, int bytesToWrite)
{
if (!bio || !src || bytesToWrite <= 0) {
qCWarning(lcSsl, "invalid input parameter(s)");
return 0;
}
q_BIO_clear_retry_flags(bio);
auto dtls = static_cast<dtlsopenssl::DtlsState *>(q_BIO_get_app_data(bio));
Q_ASSERT(dtls);
if (dtls->writeSuppressed) {
// See the comment in QDtls::startHandshake.
return bytesToWrite;
}
QUdpSocket *udpSocket = dtls->udpSocket;
Q_ASSERT(udpSocket);
const QByteArray dgram(QByteArray::fromRawData(src, bytesToWrite));
qint64 bytesWritten = -1;
if (udpSocket->state() == QAbstractSocket::ConnectedState) {
bytesWritten = udpSocket->write(dgram);
} else {
bytesWritten = udpSocket->writeDatagram(dgram, dtls->remoteAddress,
dtls->remotePort);
}
if (bytesWritten <= 0)
q_BIO_set_retry_write(bio);
Q_ASSERT(bytesWritten <= std::numeric_limits<int>::max());
return int(bytesWritten);
}
extern "C" int q_dgram_puts(BIO *bio, const char *src)
{
if (!bio || !src) {
qCWarning(lcSsl, "invalid input parameter(s)");
return 0;
}
return q_dgram_write(bio, src, int(std::strlen(src)));
}
extern "C" long q_dgram_ctrl(BIO *bio, int cmd, long num, void *ptr)
{
// This is our custom BIO_ctrl. bio.h defines a lot of BIO_CTRL_*
// and BIO_* constants and BIO_somename macros that expands to BIO_ctrl
// call with one of those constants as argument. What exactly BIO_ctrl
// does - depends on the 'cmd' and the type of BIO (so BIO_ctrl does
// not even have a single well-defined value meaning success or failure).
// We handle only the most generic commands - the ones documented for
// BIO_ctrl - and also DGRAM specific ones. And even for them - in most
// cases we do nothing but report a success or some non-error value.
// Documents also state: "Source/sink BIOs return an 0 if they do not
// recognize the BIO_ctrl() operation." - these are covered by 'default'
// label in the switch-statement below. Debug messages in the switch mean:
// 1) we got a command that is unexpected for dgram BIO, or:
// 2) we do not call any function that would lead to OpenSSL using this
// command.
if (!bio) {
qDebug(lcSsl, "invalid 'bio' parameter (nullptr)");
return -1;
}
auto dtls = static_cast<dtlsopenssl::DtlsState *>(q_BIO_get_app_data(bio));
Q_ASSERT(dtls);
switch (cmd) {
// Let's start from the most generic ones, in the order in which they are
// documented (as BIO_ctrl):
case BIO_CTRL_RESET:
// BIO_reset macro.
// From documentation:
// "BIO_reset() normally returns 1 for success and 0 or -1 for failure.
// File BIOs are an exception, they return 0 for success and -1 for
// failure."
// We have nothing to reset and we are not file BIO.
return 1;
case BIO_C_FILE_SEEK:
case BIO_C_FILE_TELL:
qDtlsWarning("Unexpected cmd (BIO_C_FILE_SEEK/BIO_C_FILE_TELL)");
// These are for BIO_seek, BIO_tell. We are not a file BIO.
// Non-negative return value means success.
return 0;
case BIO_CTRL_FLUSH:
// BIO_flush, nothing to do, we do not buffer any data.
// 0 or -1 means error, 1 - success.
return 1;
case BIO_CTRL_EOF:
qDtlsWarning("Unexpected cmd (BIO_CTRL_EOF)");
// BIO_eof, 1 means EOF read. Makes no sense for us.
return 0;
case BIO_CTRL_SET_CLOSE:
// BIO_set_close with BIO_CLOSE/BIO_NOCLOSE flags. Documented as
// always returning 1.
// From the documentation:
// "Typically BIO_CLOSE is used in a source/sink BIO to indicate that
// the underlying I/O stream should be closed when the BIO is freed."
//
// QUdpSocket we work with is not BIO's business, ignoring.
return 1;
case BIO_CTRL_GET_CLOSE:
// BIO_get_close. No, never, see the comment above.
return 0;
case BIO_CTRL_PENDING:
qDtlsWarning("Unexpected cmd (BIO_CTRL_PENDING)");
// BIO_pending. Not used by DTLS/OpenSSL (we are not buffering).
return 0;
case BIO_CTRL_WPENDING:
// No, we have nothing buffered.
return 0;
// The constants below are not documented as a part BIO_ctrl documentation,
// but they are also not type-specific.
case BIO_CTRL_DUP:
qDtlsWarning("Unexpected cmd (BIO_CTRL_DUP)");
// BIO_dup_state, not used by DTLS (and socket-related BIOs in general).
// For some very specific BIO type this 'cmd' would copy some state
// from 'bio' to (BIO*)'ptr'. 1 means success.
return 0;
case BIO_CTRL_SET_CALLBACK:
qDtlsWarning("Unexpected cmd (BIO_CTRL_SET_CALLBACK)");
// BIO_set_info_callback. We never call this, OpenSSL does not do this
// on its own (normally it's used if client code wants to have some
// debug information, for example, dumping handshake state via
// BIO_printf from SSL info_callback).
return 0;
case BIO_CTRL_GET_CALLBACK:
qDtlsWarning("Unexpected cmd (BIO_CTRL_GET_CALLBACK)");
// BIO_get_info_callback. We never call this.
if (ptr)
*static_cast<bio_info_cb **>(ptr) = nullptr;
return 0;
case BIO_CTRL_SET:
case BIO_CTRL_GET:
qDtlsWarning("Unexpected cmd (BIO_CTRL_SET/BIO_CTRL_GET)");
// Somewhat 'documented' as setting/getting IO type. Not used anywhere
// except BIO_buffer_get_num_lines (which contradics 'get IO type').
// Ignoring.
return 0;
// DGRAM-specific operation, we have to return some reasonable value
// (so far, I've encountered only peek mode switching, connect).
case BIO_CTRL_DGRAM_CONNECT:
// BIO_ctrl_dgram_connect. Not needed. Our 'dtls' already knows
// the peer's address/port. Report success though.
return 1;
case BIO_CTRL_DGRAM_SET_CONNECTED:
qDtlsWarning("Unexpected cmd (BIO_CTRL_DGRAM_SET_CONNECTED)");
// BIO_ctrl_dgram_set_connected. We never call it, OpenSSL does
// not call it on its own (so normally it's done by client code).
// Similar to BIO_CTRL_DGRAM_CONNECT, but it also informs the BIO
// that its UDP socket is connected. We never need it though.
return -1;
case BIO_CTRL_DGRAM_SET_RECV_TIMEOUT:
qDtlsWarning("Unexpected cmd (BIO_CTRL_DGRAM_SET_RECV_TIMEOUT)");
// Essentially setsockopt with SO_RCVTIMEO, not needed, our sockets
// are non-blocking.
return -1;
case BIO_CTRL_DGRAM_GET_RECV_TIMEOUT:
qDtlsWarning("Unexpected cmd (BIO_CTRL_DGRAM_GET_RECV_TIMEOUT)");
// getsockopt with SO_RCVTIMEO, not needed, our sockets are
// non-blocking. ptr is timeval *.
return -1;
case BIO_CTRL_DGRAM_SET_SEND_TIMEOUT:
qDtlsWarning("Unexpected cmd (BIO_CTRL_DGRAM_SET_SEND_TIMEOUT)");
// setsockopt, SO_SNDTIMEO, cannot happen.
return -1;
case BIO_CTRL_DGRAM_GET_SEND_TIMEOUT:
qDtlsWarning("Unexpected cmd (BIO_CTRL_DGRAM_GET_SEND_TIMEOUT)");
// getsockopt, SO_SNDTIMEO, cannot happen.
return -1;
case BIO_CTRL_DGRAM_GET_RECV_TIMER_EXP:
// BIO_dgram_recv_timedout. No, we are non-blocking.
return 0;
case BIO_CTRL_DGRAM_GET_SEND_TIMER_EXP:
// BIO_dgram_send_timedout. No, we are non-blocking.
return 0;
case BIO_CTRL_DGRAM_MTU_DISCOVER:
qDtlsWarning("Unexpected cmd (BIO_CTRL_DGRAM_MTU_DISCOVER)");
// setsockopt, IP_MTU_DISCOVER/IP6_MTU_DISCOVER, to be done
// in QUdpSocket instead. OpenSSL never calls it, only client
// code.
return 1;
case BIO_CTRL_DGRAM_QUERY_MTU:
qDtlsWarning("Unexpected cmd (BIO_CTRL_DGRAM_QUERY_MTU)");
// To be done in QUdpSocket instead.
return 1;
case BIO_CTRL_DGRAM_GET_FALLBACK_MTU:
qDtlsWarning("Unexpected command *BIO_CTRL_DGRAM_GET_FALLBACK_MTU)");
// Without SSL_OP_NO_QUERY_MTU set on SSL, OpenSSL can request for
// fallback MTU after several re-transmissions.
// Should never happen in our case.
return long(dtlsutil::MtuGuess::defaultMtu);
case BIO_CTRL_DGRAM_GET_MTU:
qDtlsWarning("Unexpected cmd (BIO_CTRL_DGRAM_GET_MTU)");
return -1;
case BIO_CTRL_DGRAM_SET_MTU:
qDtlsWarning("Unexpected cmd (BIO_CTRL_DGRAM_SET_MTU)");
// Should not happen (we don't call BIO_ctrl with this parameter)
// and set MTU on SSL instead.
return -1; // num is mtu and it's a return value meaning success.
case BIO_CTRL_DGRAM_MTU_EXCEEDED:
qDtlsWarning("Unexpected cmd (BIO_CTRL_DGRAM_MTU_EXCEEDED)");
return 0;
case BIO_CTRL_DGRAM_GET_PEER:
qDtlsDebug("BIO_CTRL_DGRAM_GET_PEER");
// BIO_dgram_get_peer. We do not return a real address (DTLS is not
// using this address), but let's pretend a success.
switch (dtls->remoteAddress.protocol()) {
case QAbstractSocket::IPv6Protocol:
return sizeof(sockaddr_in6);
case QAbstractSocket::IPv4Protocol:
return sizeof(sockaddr_in);
default:
return -1;
}
case BIO_CTRL_DGRAM_SET_PEER:
// Similar to BIO_CTRL_DGRAM_CONNECTED.
return 1;
case BIO_CTRL_DGRAM_SET_NEXT_TIMEOUT:
// DTLSTODO: I'm not sure yet, how it's used by OpenSSL.
return 1;
case BIO_CTRL_DGRAM_SET_DONT_FRAG:
qDtlsDebug("BIO_CTRL_DGRAM_SET_DONT_FRAG");
// To be done in QUdpSocket, it's about IP_DONTFRAG etc.
return 1;
case BIO_CTRL_DGRAM_GET_MTU_OVERHEAD:
// AFAIK it's 28 for IPv4 and 48 for IPv6, but let's pretend it's 0
// so that OpenSSL does not start suddenly fragmenting the first
// client hello (which will result in DTLSv1_listen rejecting it).
return 0;
case BIO_CTRL_DGRAM_SET_PEEK_MODE:
dtls->peeking = num;
return 1;
default:;
#if QT_DTLS_VERBOSE
qWarning() << "Unexpected cmd (" << cmd << ")";
#endif
}
return 0;
}
extern "C" int q_dgram_create(BIO *bio)
{
q_BIO_set_init(bio, 1);
// With a custom BIO you'd normally allocate some implementation-specific
// data and append it to this new BIO using BIO_set_data. We don't need
// it and thus q_dgram_destroy below is a noop.
return 1;
}
extern "C" int q_dgram_destroy(BIO *bio)
{
Q_UNUSED(bio)
return 1;
}
const char * const qdtlsMethodName = "qdtlsbio";
} // namespace dtlsbio
namespace dtlsopenssl
{
bool DtlsState::init(QDtlsBasePrivate *dtlsBase, QUdpSocket *socket,
const QHostAddress &remote, quint16 port,
const QByteArray &receivedMessage)
{
Q_ASSERT(dtlsBase);
Q_ASSERT(socket);
if (!tlsContext.data() && !initTls(dtlsBase))
return false;
udpSocket = socket;
setLinkMtu(dtlsBase);
dgram = receivedMessage;
remoteAddress = remote;
remotePort = port;
// SSL_get_rbio does not increment a reference count.
BIO *bio = q_SSL_get_rbio(tlsConnection.data());
Q_ASSERT(bio);
q_BIO_set_app_data(bio, this);
return true;
}
void DtlsState::reset()
{
tlsConnection.reset();
tlsContext.reset();
}
bool DtlsState::initTls(QDtlsBasePrivate *dtlsBase)
{
if (tlsContext.data())
return true;
if (!QSslSocket::supportsSsl())
return false;
if (!initCtxAndConnection(dtlsBase))
return false;
if (!initBIO(dtlsBase)) {
tlsConnection.reset();
tlsContext.reset();
return false;
}
return true;
}
static QString msgFunctionFailed(const char *function)
{
//: %1: Some function
return QDtls::tr("%1 failed").arg(QLatin1String(function));
}
bool DtlsState::initCtxAndConnection(QDtlsBasePrivate *dtlsBase)
{
Q_ASSERT(dtlsBase);
Q_ASSERT(QSslSocket::supportsSsl());
if (dtlsBase->mode == QSslSocket::UnencryptedMode) {
dtlsBase->setDtlsError(QDtlsError::TlsInitializationError,
QDtls::tr("Invalid SslMode, SslServerMode or SslClientMode expected"));
return false;
}
if (!QDtlsBasePrivate::isDtlsProtocol(dtlsBase->dtlsConfiguration.protocol)) {
dtlsBase->setDtlsError(QDtlsError::TlsInitializationError,
QDtls::tr("Invalid protocol version, DTLS protocol expected"));
return false;
}
// Create a deep copy of our configuration
auto configurationCopy = new QSslConfigurationPrivate(dtlsBase->dtlsConfiguration);
configurationCopy->ref.storeRelaxed(0); // the QSslConfiguration constructor refs up
// DTLSTODO: check we do not set something DTLS-incompatible there ...
TlsContext newContext(QSslContext::sharedFromConfiguration(dtlsBase->mode,
configurationCopy,
dtlsBase->dtlsConfiguration.allowRootCertOnDemandLoading));
if (newContext->error() != QSslError::NoError) {
dtlsBase->setDtlsError(QDtlsError::TlsInitializationError, newContext->errorString());
return false;
}
TlsConnection newConnection(newContext->createSsl(), dtlsutil::delete_connection);
if (!newConnection.data()) {
dtlsBase->setDtlsError(QDtlsError::TlsInitializationError,
msgFunctionFailed("SSL_new"));
return false;
}
const int set = q_SSL_set_ex_data(newConnection.data(),
QSslSocketBackendPrivate::s_indexForSSLExtraData,
this);
if (set != 1 && configurationCopy->peerVerifyMode != QSslSocket::VerifyNone) {
dtlsBase->setDtlsError(QDtlsError::TlsInitializationError,
msgFunctionFailed("SSL_set_ex_data"));
return false;
}
if (dtlsBase->mode == QSslSocket::SslServerMode) {
if (dtlsBase->dtlsConfiguration.dtlsCookieEnabled)
q_SSL_set_options(newConnection.data(), SSL_OP_COOKIE_EXCHANGE);
q_SSL_set_psk_server_callback(newConnection.data(), dtlscallbacks::q_PSK_server_callback);
} else {
q_SSL_set_psk_client_callback(newConnection.data(), dtlscallbacks::q_PSK_client_callback);
}
tlsContext.swap(newContext);
tlsConnection.swap(newConnection);
return true;
}
bool DtlsState::initBIO(QDtlsBasePrivate *dtlsBase)
{
Q_ASSERT(dtlsBase);
Q_ASSERT(tlsContext.data() && tlsConnection.data());
BioMethod customMethod(q_BIO_meth_new(BIO_TYPE_DGRAM, dtlsbio::qdtlsMethodName),
dtlsutil::delete_bio_method);
if (!customMethod.data()) {
dtlsBase->setDtlsError(QDtlsError::TlsInitializationError,
msgFunctionFailed("BIO_meth_new"));
return false;
}
BIO_METHOD *biom = customMethod.data();
q_BIO_meth_set_create(biom, dtlsbio::q_dgram_create);
q_BIO_meth_set_destroy(biom, dtlsbio::q_dgram_destroy);
q_BIO_meth_set_read(biom, dtlsbio::q_dgram_read);
q_BIO_meth_set_write(biom, dtlsbio::q_dgram_write);
q_BIO_meth_set_puts(biom, dtlsbio::q_dgram_puts);
q_BIO_meth_set_ctrl(biom, dtlsbio::q_dgram_ctrl);
QScopedPointer<BIO, dtlsutil::bio_deleter> newBio(q_BIO_new(biom));
BIO *bio = newBio.data();
if (!bio) {
dtlsBase->setDtlsError(QDtlsError::TlsInitializationError,
msgFunctionFailed("BIO_new"));
return false;
}
q_SSL_set_bio(tlsConnection.data(), bio, bio);
newBio.take();
bioMethod.swap(customMethod);
return true;
}
void DtlsState::setLinkMtu(QDtlsBasePrivate *dtlsBase)
{
Q_ASSERT(dtlsBase);
Q_ASSERT(udpSocket);
Q_ASSERT(tlsConnection.data());
long mtu = dtlsBase->mtuHint;
if (!mtu) {
// If the underlying QUdpSocket was connected, getsockopt with
// IP_MTU/IP6_MTU can give us some hint:
bool optionFound = false;
if (udpSocket->state() == QAbstractSocket::ConnectedState) {
const QVariant val(udpSocket->socketOption(QAbstractSocket::PathMtuSocketOption));
if (val.isValid() && val.canConvert<int>())
mtu = val.toInt(&optionFound);
}
if (!optionFound || mtu <= 0) {
// OK, our own initial guess.
mtu = long(dtlsutil::MtuGuess::defaultMtu);
}
}
// For now, we disable this option.
q_SSL_set_options(tlsConnection.data(), SSL_OP_NO_QUERY_MTU);
q_DTLS_set_link_mtu(tlsConnection.data(), mtu);
}
} // namespace dtlsopenssl
QDtlsClientVerifierOpenSSL::QDtlsClientVerifierOpenSSL()
{
secret = dtlsutil::fallbackSecret();
}
bool QDtlsClientVerifierOpenSSL::verifyClient(QUdpSocket *socket, const QByteArray &dgram,
const QHostAddress &address, quint16 port)
{
Q_ASSERT(socket);
Q_ASSERT(dgram.size());
Q_ASSERT(!address.isNull());
Q_ASSERT(port);
clearDtlsError();
verifiedClientHello.clear();
if (!dtls.init(this, socket, address, port, dgram))
return false;
dtls.secret = secret;
dtls.hashAlgorithm = hashAlgorithm;
Q_ASSERT(dtls.tlsConnection.data());
QSharedPointer<BIO_ADDR> peer(q_BIO_ADDR_new(), dtlsutil::delete_BIO_ADDR);
if (!peer.data()) {
setDtlsError(QDtlsError::TlsInitializationError,
QDtlsClientVerifier::tr("BIO_ADDR_new failed, ignoring client hello"));
return false;
}
const int ret = q_DTLSv1_listen(dtls.tlsConnection.data(), peer.data());
if (ret < 0) {
// Since 1.1 - it's a fatal error (not so in 1.0.2 for non-blocking socket)
setDtlsError(QDtlsError::TlsFatalError, QSslSocketBackendPrivate::getErrorsFromOpenSsl());
return false;
}
if (ret > 0) {
verifiedClientHello = dgram;
return true;
}
return false;
}
void QDtlsPrivateOpenSSL::TimeoutHandler::start(int hintMs)
{
Q_ASSERT(timerId == -1);
timerId = startTimer(hintMs > 0 ? hintMs : timeoutMs, Qt::PreciseTimer);
}
void QDtlsPrivateOpenSSL::TimeoutHandler::doubleTimeout()
{
if (timeoutMs * 2 < 60000)
timeoutMs *= 2;
else
timeoutMs = 60000;
}
void QDtlsPrivateOpenSSL::TimeoutHandler::stop()
{
if (timerId != -1) {
killTimer(timerId);
timerId = -1;
}
}
void QDtlsPrivateOpenSSL::TimeoutHandler::timerEvent(QTimerEvent *event)
{
Q_UNUSED(event)
Q_ASSERT(timerId != -1);
killTimer(timerId);
timerId = -1;
Q_ASSERT(dtlsConnection);
dtlsConnection->reportTimeout();
}
QDtlsPrivateOpenSSL::QDtlsPrivateOpenSSL()
{
secret = dtlsutil::fallbackSecret();
dtls.dtlsPrivate = this;
}
bool QDtlsPrivateOpenSSL::startHandshake(QUdpSocket *socket, const QByteArray &dgram)
{
Q_ASSERT(socket);
Q_ASSERT(handshakeState == QDtls::HandshakeNotStarted);
clearDtlsError();
connectionEncrypted = false;
if (!dtls.init(this, socket, remoteAddress, remotePort, dgram))
return false;
if (mode == QSslSocket::SslServerMode && dtlsConfiguration.dtlsCookieEnabled) {
dtls.secret = secret;
dtls.hashAlgorithm = hashAlgorithm;
// Let's prepare the state machine so that message sequence 1 does not
// surprise DTLS/OpenSSL (such a message would be disregarded as
// 'stale or future' in SSL_accept otherwise):
int result = 0;
QSharedPointer<BIO_ADDR> peer(q_BIO_ADDR_new(), dtlsutil::delete_BIO_ADDR);
if (!peer.data()) {
setDtlsError(QDtlsError::TlsInitializationError,
QDtls::tr("BIO_ADD_new failed, cannot start handshake"));
return false;
}
// If it's an invalid/unexpected ClientHello, we don't want to send
// VerifyClientRequest - it's a job of QDtlsClientVerifier - so we
// suppress any attempts to write into socket:
dtls.writeSuppressed = true;
result = q_DTLSv1_listen(dtls.tlsConnection.data(), peer.data());
dtls.writeSuppressed = false;
if (result <= 0) {
setDtlsError(QDtlsError::TlsFatalError,
QDtls::tr("Cannot start the handshake, verified client hello expected"));
dtls.reset();
return false;
}
}
handshakeState = QDtls::HandshakeInProgress;
opensslErrors.clear();
tlsErrors.clear();
return continueHandshake(socket, dgram);
}
bool QDtlsPrivateOpenSSL::continueHandshake(QUdpSocket *socket, const QByteArray &dgram)
{
Q_ASSERT(socket);
Q_ASSERT(handshakeState == QDtls::HandshakeInProgress);
clearDtlsError();
if (timeoutHandler.data())
timeoutHandler->stop();
if (!dtls.init(this, socket, remoteAddress, remotePort, dgram))
return false;
dtls.x509Errors.clear();
int result = 0;
if (mode == QSslSocket::SslServerMode)
result = q_SSL_accept(dtls.tlsConnection.data());
else
result = q_SSL_connect(dtls.tlsConnection.data());
// DTLSTODO: Investigate/test if it makes sense - QSslSocket can emit
// peerVerifyError at this point (and thus potentially client code
// will close the underlying TCP connection immediately), but we are using
// QUdpSocket, no connection to close, our verification callback returns 1
// (verified OK) and this probably means OpenSSL has already sent a reply
// to the server's hello/certificate.
opensslErrors << dtls.x509Errors;
if (result <= 0) {
const auto code = q_SSL_get_error(dtls.tlsConnection.data(), result);
switch (code) {
case SSL_ERROR_WANT_READ:
case SSL_ERROR_WANT_WRITE:
// DTLSTODO: to be tested - in principle, if it was the first call to
// continueHandshake and server for some reason discards the client
// hello message (even the verified one) - our 'this' will probably
// forever stay in this strange InProgress state? (the client
// will dully re-transmit the same hello and we discard it again?)
// SSL_get_state can provide more information about state
// machine and we can switch to NotStarted (since we have not
// replied with our hello ...)
if (!timeoutHandler.data()) {
timeoutHandler.reset(new TimeoutHandler);
timeoutHandler->dtlsConnection = this;
} else {
// Back to 1s.
timeoutHandler->resetTimeout();
}
timeoutHandler->start();
return true; // The handshake is not yet complete.
default:
storePeerCertificates();
setDtlsError(QDtlsError::TlsFatalError,
QSslSocketBackendPrivate::msgErrorsDuringHandshake());
dtls.reset();
handshakeState = QDtls::HandshakeNotStarted;
return false;
}
}
storePeerCertificates();
fetchNegotiatedParameters();
const bool doVerifyPeer = dtlsConfiguration.peerVerifyMode == QSslSocket::VerifyPeer
|| (dtlsConfiguration.peerVerifyMode == QSslSocket::AutoVerifyPeer
&& mode == QSslSocket::SslClientMode);
if (!doVerifyPeer || verifyPeer() || tlsErrorsWereIgnored()) {
connectionEncrypted = true;
handshakeState = QDtls::HandshakeComplete;
return true;
}
setDtlsError(QDtlsError::PeerVerificationError, QDtls::tr("Peer verification failed"));
handshakeState = QDtls::PeerVerificationFailed;
return false;
}
bool QDtlsPrivateOpenSSL::handleTimeout(QUdpSocket *socket)
{
Q_ASSERT(socket);
Q_ASSERT(timeoutHandler.data());
Q_ASSERT(dtls.tlsConnection.data());
clearDtlsError();
dtls.udpSocket = socket;
if (q_DTLSv1_handle_timeout(dtls.tlsConnection.data()) > 0) {
timeoutHandler->doubleTimeout();
timeoutHandler->start();
} else {
timeoutHandler->start(dtlsutil::next_timeoutMs(dtls.tlsConnection.data()));
}
return true;
}
bool QDtlsPrivateOpenSSL::resumeHandshake(QUdpSocket *socket)
{
Q_UNUSED(socket);
Q_ASSERT(socket);
Q_ASSERT(handshakeState == QDtls::PeerVerificationFailed);
clearDtlsError();
if (tlsErrorsWereIgnored()) {
handshakeState = QDtls::HandshakeComplete;
connectionEncrypted = true;
tlsErrors.clear();
tlsErrorsToIgnore.clear();
return true;
}
return false;
}
void QDtlsPrivateOpenSSL::abortHandshake(QUdpSocket *socket)
{
Q_ASSERT(socket);
Q_ASSERT(handshakeState == QDtls::PeerVerificationFailed
|| handshakeState == QDtls::HandshakeInProgress);
clearDtlsError();
if (handshakeState == QDtls::PeerVerificationFailed) {
// Yes, while peer verification failed, we were actually encrypted.
// Let's play it nice - inform our peer about connection shut down.
sendShutdownAlert(socket);
} else {
resetDtls();
}
}
void QDtlsPrivateOpenSSL::sendShutdownAlert(QUdpSocket *socket)
{
Q_ASSERT(socket);
clearDtlsError();
if (connectionEncrypted && !connectionWasShutdown) {
dtls.udpSocket = socket;
Q_ASSERT(dtls.tlsConnection.data());
q_SSL_shutdown(dtls.tlsConnection.data());
}
resetDtls();
}
qint64 QDtlsPrivateOpenSSL::writeDatagramEncrypted(QUdpSocket *socket,
const QByteArray &dgram)
{
Q_ASSERT(socket);
Q_ASSERT(dtls.tlsConnection.data());
Q_ASSERT(connectionEncrypted);
clearDtlsError();
dtls.udpSocket = socket;
const int written = q_SSL_write(dtls.tlsConnection.data(),
dgram.constData(), dgram.size());
if (written > 0)
return written;
const unsigned long errorCode = q_ERR_get_error();
if (!dgram.size() && errorCode == SSL_ERROR_NONE) {
// With OpenSSL <= 1.1 this can happen. For example, DTLS client
// tries to reconnect (while re-using the same address/port) -
// DTLS server drops a message with unexpected epoch but says - no
// error. We leave to client code to resolve such problems until
// OpenSSL provides something better.
return 0;
}
switch (errorCode) {
case SSL_ERROR_WANT_WRITE:
case SSL_ERROR_WANT_READ:
// We do not set any error/description ... a user can probably re-try
// sending a datagram.
break;
case SSL_ERROR_ZERO_RETURN:
connectionWasShutdown = true;
setDtlsError(QDtlsError::TlsFatalError, QDtls::tr("The DTLS connection has been closed"));
handshakeState = QDtls::HandshakeNotStarted;
dtls.reset();
break;
case SSL_ERROR_SYSCALL:
case SSL_ERROR_SSL:
default:
// DTLSTODO: we don't know yet what to do. Tests needed - probably,
// some errors can be just ignored (it's UDP, not TCP after all).
// Unlike QSslSocket we do not abort though.
QString description(QSslSocketBackendPrivate::getErrorsFromOpenSsl());
if (socket->error() != QAbstractSocket::UnknownSocketError && description.isEmpty()) {
setDtlsError(QDtlsError::UnderlyingSocketError, socket->errorString());
} else {
setDtlsError(QDtlsError::TlsFatalError,
QDtls::tr("Error while writing: %1").arg(description));
}
}
return -1;
}
QByteArray QDtlsPrivateOpenSSL::decryptDatagram(QUdpSocket *socket, const QByteArray &tlsdgram)
{
Q_ASSERT(socket);
Q_ASSERT(tlsdgram.size());
Q_ASSERT(dtls.tlsConnection.data());
Q_ASSERT(connectionEncrypted);
dtls.dgram = tlsdgram;
dtls.udpSocket = socket;
clearDtlsError();
QByteArray dgram;
dgram.resize(tlsdgram.size());
const int read = q_SSL_read(dtls.tlsConnection.data(), dgram.data(),
dgram.size());
if (read > 0) {
dgram.resize(read);
return dgram;
}
dgram.clear();
unsigned long errorCode = q_ERR_get_error();
if (errorCode == SSL_ERROR_NONE) {
const int shutdown = q_SSL_get_shutdown(dtls.tlsConnection.data());
if (shutdown & SSL_RECEIVED_SHUTDOWN)
errorCode = SSL_ERROR_ZERO_RETURN;
else
return dgram;
}
switch (errorCode) {
case SSL_ERROR_WANT_READ:
case SSL_ERROR_WANT_WRITE:
return dgram;
case SSL_ERROR_ZERO_RETURN:
// "The connection was shut down cleanly" ... hmm, whatever,
// needs testing (DTLSTODO).
connectionWasShutdown = true;
setDtlsError(QDtlsError::RemoteClosedConnectionError,
QDtls::tr("The DTLS connection has been shutdown"));
dtls.reset();
connectionEncrypted = false;
handshakeState = QDtls::HandshakeNotStarted;
return dgram;
case SSL_ERROR_SYSCALL: // some IO error
case SSL_ERROR_SSL: // error in the SSL library
// DTLSTODO: Apparently, some errors can be ignored, for example,
// ECONNRESET etc. This all needs a lot of testing!!!
default:
setDtlsError(QDtlsError::TlsNonFatalError,
QDtls::tr("Error while reading: %1")
.arg(QSslSocketBackendPrivate::getErrorsFromOpenSsl()));
return dgram;
}
}
unsigned QDtlsPrivateOpenSSL::pskClientCallback(const char *hint, char *identity,
unsigned max_identity_len,
unsigned char *psk,
unsigned max_psk_len)
{
// The code below is taken (with some modifications) from qsslsocket_openssl
// - alas, we cannot simply re-use it, it's in QSslSocketPrivate.
Q_Q(QDtls);
{
QSslPreSharedKeyAuthenticator authenticator;
// Fill in some read-only fields (for client code)
if (hint) {
identityHint.clear();
identityHint.append(hint);
// From the original code in QSslSocket:
// "it's NULL terminated, but do not include the NULL" == this fromRawData(ptr/size).
authenticator.d->identityHint = QByteArray::fromRawData(identityHint.constData(),
int(std::strlen(hint)));
}
authenticator.d->maximumIdentityLength = int(max_identity_len) - 1; // needs to be NULL terminated
authenticator.d->maximumPreSharedKeyLength = int(max_psk_len);
pskAuthenticator.swap(authenticator);
}
// Let the client provide the remaining bits...
emit q->pskRequired(&pskAuthenticator);
// No PSK set? Return now to make the handshake fail
if (pskAuthenticator.preSharedKey().isEmpty())
return 0;
// Copy data back into OpenSSL
const int identityLength = qMin(pskAuthenticator.identity().length(),
pskAuthenticator.maximumIdentityLength());
std::memcpy(identity, pskAuthenticator.identity().constData(), identityLength);
identity[identityLength] = 0;
const int pskLength = qMin(pskAuthenticator.preSharedKey().length(),
pskAuthenticator.maximumPreSharedKeyLength());
std::memcpy(psk, pskAuthenticator.preSharedKey().constData(), pskLength);
return pskLength;
}
unsigned QDtlsPrivateOpenSSL::pskServerCallback(const char *identity, unsigned char *psk,
unsigned max_psk_len)
{
Q_Q(QDtls);
{
QSslPreSharedKeyAuthenticator authenticator;
// Fill in some read-only fields (for the user)
authenticator.d->identityHint = dtlsConfiguration.preSharedKeyIdentityHint;
authenticator.d->identity = identity;
authenticator.d->maximumIdentityLength = 0; // user cannot set an identity
authenticator.d->maximumPreSharedKeyLength = int(max_psk_len);
pskAuthenticator.swap(authenticator);
}
// Let the client provide the remaining bits...
emit q->pskRequired(&pskAuthenticator);
// No PSK set? Return now to make the handshake fail
if (pskAuthenticator.preSharedKey().isEmpty())
return 0;
// Copy data back into OpenSSL
const int pskLength = qMin(pskAuthenticator.preSharedKey().length(),
pskAuthenticator.maximumPreSharedKeyLength());
std::memcpy(psk, pskAuthenticator.preSharedKey().constData(), pskLength);
return pskLength;
}
// The definition is located in qsslsocket_openssl.cpp.
QSslError _q_OpenSSL_to_QSslError(int errorCode, const QSslCertificate &cert);
bool QDtlsPrivateOpenSSL::verifyPeer()
{
// DTLSTODO: Windows-specific code for CA fetcher is not here yet.
QVector<QSslError> errors;
// Check the whole chain for blacklisting (including root, as we check for
// subjectInfo and issuer)
for (const QSslCertificate &cert : qAsConst(dtlsConfiguration.peerCertificateChain)) {
if (QSslCertificatePrivate::isBlacklisted(cert))
errors << QSslError(QSslError::CertificateBlacklisted, cert);
}
if (dtlsConfiguration.peerCertificate.isNull()) {
errors << QSslError(QSslError::NoPeerCertificate);
} else if (mode == QSslSocket::SslClientMode) {
// Check the peer certificate itself. First try the subject's common name
// (CN) as a wildcard, then try all alternate subject name DNS entries the
// same way.
// QSslSocket has a rather twisted logic: if verificationPeerName
// is empty, we call QAbstractSocket::peerName(), which returns
// either peerName (can be set by setPeerName) or host name
// (can be set as a result of connectToHost).
QString name = peerVerificationName;
if (name.isEmpty()) {
Q_ASSERT(dtls.udpSocket);
name = dtls.udpSocket->peerName();
}
if (!QSslSocketPrivate::isMatchingHostname(dtlsConfiguration.peerCertificate, name))
errors << QSslError(QSslError::HostNameMismatch, dtlsConfiguration.peerCertificate);
}
// Translate errors from the error list into QSslErrors
errors.reserve(errors.size() + opensslErrors.size());
for (const auto &error : qAsConst(opensslErrors)) {
errors << _q_OpenSSL_to_QSslError(error.code,
dtlsConfiguration.peerCertificateChain.value(error.depth));
}
tlsErrors = errors;
return tlsErrors.isEmpty();
}
void QDtlsPrivateOpenSSL::storePeerCertificates()
{
Q_ASSERT(dtls.tlsConnection.data());
// Store the peer certificate and chain. For clients, the peer certificate
// chain includes the peer certificate; for servers, it doesn't. Both the
// peer certificate and the chain may be empty if the peer didn't present
// any certificate.
X509 *x509 = q_SSL_get_peer_certificate(dtls.tlsConnection.data());
dtlsConfiguration.peerCertificate = QSslCertificatePrivate::QSslCertificate_from_X509(x509);
q_X509_free(x509);
if (dtlsConfiguration.peerCertificateChain.isEmpty()) {
auto stack = q_SSL_get_peer_cert_chain(dtls.tlsConnection.data());
dtlsConfiguration.peerCertificateChain = QSslSocketBackendPrivate::STACKOFX509_to_QSslCertificates(stack);
if (!dtlsConfiguration.peerCertificate.isNull() && mode == QSslSocket::SslServerMode)
dtlsConfiguration.peerCertificateChain.prepend(dtlsConfiguration.peerCertificate);
}
}
bool QDtlsPrivateOpenSSL::tlsErrorsWereIgnored() const
{
// check whether the errors we got are all in the list of expected errors
// (applies only if the method QDtlsConnection::ignoreTlsErrors(const
// QVector<QSslError> &errors) was called)
for (const QSslError &error : tlsErrors) {
if (!tlsErrorsToIgnore.contains(error))
return false;
}
return !tlsErrorsToIgnore.empty();
}
void QDtlsPrivateOpenSSL::fetchNegotiatedParameters()
{
Q_ASSERT(dtls.tlsConnection.data());
const SSL_CIPHER *cipher = q_SSL_get_current_cipher(dtls.tlsConnection.data());
sessionCipher = cipher ? QSslSocketBackendPrivate::QSslCipher_from_SSL_CIPHER(cipher)
: QSslCipher();
// Note: cipher's protocol version will be reported as either TLS 1.0 or
// TLS 1.2, that's how it's set by OpenSSL (and that's what they are?).
switch (q_SSL_version(dtls.tlsConnection.data())) {
case DTLS1_VERSION:
sessionProtocol = QSsl::DtlsV1_0;
break;
case DTLS1_2_VERSION:
sessionProtocol = QSsl::DtlsV1_2;
break;
default:
qCWarning(lcSsl, "unknown protocol version");
sessionProtocol = QSsl::UnknownProtocol;
}
}
void QDtlsPrivateOpenSSL::reportTimeout()
{
Q_Q(QDtls);
emit q->handshakeTimeout();
}
void QDtlsPrivateOpenSSL::resetDtls()
{
dtls.reset();
connectionEncrypted = false;
tlsErrors.clear();
tlsErrorsToIgnore.clear();
dtlsConfiguration.peerCertificate.clear();
dtlsConfiguration.peerCertificateChain.clear();
connectionWasShutdown = false;
handshakeState = QDtls::HandshakeNotStarted;
sessionCipher = {};
sessionProtocol = QSsl::UnknownProtocol;
}
QT_END_NAMESPACE