blob: 65d96b1b0968fb69b887298310ef35c7a5017a55 [file] [log] [blame]
/****************************************************************************
**
** Copyright (C) 2014 NVIDIA Corporation.
** Copyright (C) 2019 The Qt Company Ltd.
** Contact: https://www.qt.io/licensing/
**
** This file is part of Qt 3D Studio.
**
** $QT_BEGIN_LICENSE:GPL$
** Commercial License Usage
** Licensees holding valid commercial Qt licenses may use this file in
** accordance with the commercial license agreement provided with the
** Software or, alternatively, in accordance with the terms contained in
** a written agreement between you and The Qt Company. For licensing terms
** and conditions see https://www.qt.io/terms-conditions. For further
** information use the contact form at https://www.qt.io/contact-us.
**
** GNU General Public License Usage
** Alternatively, this file may be used under the terms of the GNU
** General Public License version 3 or (at your option) any later version
** approved by the KDE Free Qt Foundation. The licenses are as published by
** the Free Software Foundation and appearing in the file LICENSE.GPL3
** included in the packaging of this file. Please review the following
** information to ensure the GNU General Public License requirements will
** be met: https://www.gnu.org/licenses/gpl-3.0.html.
**
** $QT_END_LICENSE$
**
****************************************************************************/
// add enum defines
#define texture_coordinate_uvw 0
#define texture_coordinate_world 1
#define texture_coordinate_object 2
#define scatter_reflect 0
#define scatter_transmit 1
#define scatter_reflect_transmit 2
#define QSSG_ENABLE_UV0 1
#define QSSG_ENABLE_WORLD_POSITION 1
#define QSSG_ENABLE_TEXTAN 1
#define QSSG_ENABLE_BINORMAL 0
#include "vertexFragmentBase.glsllib"
// set shader output
out vec4 fragColor;
// add structure defines
struct layer_result
{
vec4 base;
vec4 layer;
mat3 tanFrame;
};
// add structure defines
struct texture_coordinate_info
{
vec3 position;
vec3 tangent_u;
vec3 tangent_v;
};
struct texture_return
{
vec3 tint;
float mono;
};
// temporary declarations
texture_coordinate_info tmp0;
texture_coordinate_info tmp1;
vec3 ftmp0;
vec4 tmpShadowTerm;
layer_result layer;
#include "SSAOCustomMaterial.glsllib"
#include "sampleLight.glsllib"
#include "sampleProbe.glsllib"
#include "sampleArea.glsllib"
#include "cube.glsllib"
#include "random255.glsllib"
#include "perlinNoise.glsllib"
#include "perlinNoiseBumpTexture.glsllib"
#include "transformCoordinate.glsllib"
#include "rotationTranslationScale.glsllib"
#include "coordinateSource.glsllib"
#include "square.glsllib"
#include "calculateRoughness.glsllib"
#include "evalBakedShadowMap.glsllib"
#include "evalEnvironmentMap.glsllib"
#include "luminance.glsllib"
#include "microfacetBSDF.glsllib"
#include "physGlossyBSDF.glsllib"
#include "simpleGlossyBSDF.glsllib"
#include "abbeNumberIOR.glsllib"
#include "average.glsllib"
#include "perlinNoiseTexture.glsllib"
#include "fresnelLayer.glsllib"
#include "refraction.glsllib"
uniform sampler2D refractiveTexture;
bool evalTwoSided()
{
return( false );
}
vec3 computeFrontMaterialEmissive()
{
return( vec3( 0, 0, 0 ) );
}
void computeFrontLayerColor( in vec3 normal, in vec3 lightDir, in vec3 viewDir, in vec3 lightDiffuse, in vec3 lightSpecular, in float materialIOR, float aoFactor )
{
#if QSSG_ENABLE_CG_LIGHTING
layer.base += tmpShadowTerm * microfacetBSDF( layer.tanFrame, lightDir, viewDir, lightSpecular, materialIOR, roughness, roughness, scatter_reflect_transmit );
#endif
}
void computeFrontAreaColor( in int lightIdx, in vec4 lightDiffuse, in vec4 lightSpecular )
{
#if QSSG_ENABLE_CG_LIGHTING
layer.base += tmpShadowTerm * lightSpecular * sampleAreaGlossy( layer.tanFrame, varWorldPos, lightIdx, viewDir, roughness, roughness );
#endif
}
void computeFrontLayerEnvironment( in vec3 normal, in vec3 viewDir, float aoFactor )
{
#if !QSSG_ENABLE_LIGHT_PROBE
layer.base += tmpShadowTerm * microfacetSampledBSDF( layer.tanFrame, viewDir, roughness, roughness, scatter_reflect_transmit );
#else
layer.base += tmpShadowTerm * sampleGlossy( layer.tanFrame, viewDir, roughness);
#endif
}
vec3 computeBackMaterialEmissive()
{
return( vec3(0, 0, 0) );
}
void computeBackLayerColor( in vec3 normal, in vec3 lightDir, in vec3 viewDir, in vec3 lightDiffuse, in vec3 lightSpecular, in float materialIOR, float aoFactor )
{
#if QSSG_ENABLE_CG_LIGHTING
layer.base += vec4( 0.0, 0.0, 0.0, 1.0 );
layer.layer += vec4( 0.0, 0.0, 0.0, 1.0 );
#endif
}
void computeBackAreaColor( in int lightIdx, in vec4 lightDiffuse, in vec4 lightSpecular )
{
#if QSSG_ENABLE_CG_LIGHTING
layer.base += vec4( 0.0, 0.0, 0.0, 1.0 );
layer.layer += vec4( 0.0, 0.0, 0.0, 1.0 );
#endif
}
void computeBackLayerEnvironment( in vec3 normal, in vec3 viewDir, float aoFactor )
{
#if !QSSG_ENABLE_LIGHT_PROBE
layer.base += vec4( 0.0, 0.0, 0.0, 1.0 );
layer.layer += vec4( 0.0, 0.0, 0.0, 1.0 );
#else
layer.base += vec4( 0.0, 0.0, 0.0, 1.0 );
layer.layer += vec4( 0.0, 0.0, 0.0, 1.0 );
#endif
}
float computeIOR()
{
return( false ? 1.0 : luminance( vec3( abbeNumberIOR(glass_ior, 0.000000 ) ) ) );
}
float evalCutout()
{
return( 1.000000 );
}
vec3 computeNormal()
{
//return( normal );
return( perlinNoiseBumpTexture( tmp1, bumpScale, 1.000000, false, false, 0.000000, bumpBands, false, vec3( 0.000000, 0.000000, 0.000000 ), 0.5, 0.0, 1.000000, normal ) );
}
void computeTemporaries()
{
tmp0 = transformCoordinate( rotationTranslationScale( vec3( 0.000000, 0.000000, 0.000000 ), vec3( 0.000000, 0.000000, 0.000000 ), noiseCoords ), coordinateSource(texture_coordinate_world, 0 ) );
tmp1 = transformCoordinate( rotationTranslationScale( vec3( 0.000000, 0.000000, 0.000000 ), vec3( 0.000000, 0.000000, 0.000000 ), bumpCoords ), coordinateSource(texture_coordinate_world, 0 ) );
ftmp0 = vec3( reflectivity_amount );
tmpShadowTerm = evalBakedShadowMap( texCoord0 );
}
vec4 computeLayerWeights( in float alpha )
{
vec4 color;
color = layer.base * vec4( ftmp0, 1.0);
return color;
}
void initializeLayerVariables(void)
{
// clear layers
layer.base = vec4(0.0, 0.0, 0.0, 1.0);
layer.layer = vec4(0.0, 0.0, 0.0, 1.0);
layer.tanFrame = orthoNormalize( tangentFrame( normal, varWorldPos ) );
}
vec4 computeGlass(in vec3 normal, in float materialIOR, in float alpha, in vec4 color)
{
vec4 rgba = color;
float ratio = simpleFresnel( normal, materialIOR, uFresnelPower );
vec3 absorb_color = ( log( glass_color )/-1.000000 );
// prevent log(0) -> inf number issue
if ( isinf(absorb_color.r) ) absorb_color.r = 1.0;
if ( isinf(absorb_color.g) ) absorb_color.g = 1.0;
if ( isinf(absorb_color.b) ) absorb_color.b = 1.0;
rgba.rgb *= (vec3(1.0) - absorb_color);
vec3 refractDir = perlinNoiseBumpTexture( tmp0, noiseScale, 1.000000, false, false, 0.000000, 1, false, vec3( 0.000000, 0.000000, 0.000000 ), 1.0, 0.5, 1.000000, normalize(viewDir) );
vec3 refractColor = refractBlur( refractiveTexture, normalize(refractDir), materialIOR, blur_size ) * (vec3(1.0) - absorb_color);
rgba = vec4(mix(refractColor, rgba.rgb, ratio), 1.0);
return rgba;
}