blob: 20debe3839494ed59f410567a1ab939b7861838f [file] [log] [blame]
/****************************************************************************
**
** Copyright (C) 2014 NVIDIA Corporation.
** Copyright (C) 2019 The Qt Company Ltd.
** Contact: https://www.qt.io/licensing/
**
** This file is part of Qt 3D Studio.
**
** $QT_BEGIN_LICENSE:GPL$
** Commercial License Usage
** Licensees holding valid commercial Qt licenses may use this file in
** accordance with the commercial license agreement provided with the
** Software or, alternatively, in accordance with the terms contained in
** a written agreement between you and The Qt Company. For licensing terms
** and conditions see https://www.qt.io/terms-conditions. For further
** information use the contact form at https://www.qt.io/contact-us.
**
** GNU General Public License Usage
** Alternatively, this file may be used under the terms of the GNU
** General Public License version 3 or (at your option) any later version
** approved by the KDE Free Qt Foundation. The licenses are as published by
** the Free Software Foundation and appearing in the file LICENSE.GPL3
** included in the packaging of this file. Please review the following
** information to ensure the GNU General Public License requirements will
** be met: https://www.gnu.org/licenses/gpl-3.0.html.
**
** $QT_END_LICENSE$
**
****************************************************************************/
#ifndef TESSELLATION_PHONG_GLSLLIB
#define TESSELLATION_PHONG_GLSLLIB
struct PhongTessPatch
{
float projIJ;
float projJK;
float projIK;
};
#if TESSELLATION_CONTROL_SHADER
layout (vertices = 3) out;
layout(location = 15) out PhongTessPatch tcTessPatch[];
// global setup in main
vec3 ctWorldPos[3];
vec3 ctNorm[3];
uniform vec3 cameraPosition;
uniform vec2 distanceRange;
uniform float disableCulling;
float isBackFace()
{
vec3 faceNormal = normalize( cross( ctWorldPos[2] - ctWorldPos[0], ctWorldPos[1] - ctWorldPos[0] ) );
vec3 ncd = normalize( ctWorldPos[0] - cameraPosition );
return sign( 0.2 + dot(faceNormal, ncd) ); // 0.2 is a conservative offset to account for curved surfaces
}
float adaptiveCameraFactor( in float minTess, in float maxTess )
{
float distanceValue0 = distance( cameraPosition, ctWorldPos[0] );
float distanceValue1 = distance( cameraPosition, ctWorldPos[1] );
float distanceValue2 = distance( cameraPosition, ctWorldPos[2] );
float range = distanceRange[1] - distanceRange[0];
vec3 edgeDistance;
edgeDistance[0] = ((distanceValue1 + distanceValue2) / 2.0) / range;
edgeDistance[1] = ((distanceValue2 + distanceValue0) / 2.0) / range;
edgeDistance[2] = ((distanceValue0 + distanceValue1) / 2.0) / range;
edgeDistance = clamp( edgeDistance, vec3(0.0), vec3(1.0) );
//float af = mix( minTess, maxTess, 1.0 - edgeDistance[gl_InvocationID] );
float af = 1.0 - edgeDistance[gl_InvocationID];
af = clamp( af*af*maxTess , minTess, maxTess );
return af;
}
float adaptiveFeatureFactor( in float minTess, in float maxTess )
{
vec3 adaptValue;
adaptValue[0] = clamp( dot(ctNorm[1], ctNorm[2]), -1.0, 1.0 );
adaptValue[1] = clamp( dot(ctNorm[2], ctNorm[0]), -1.0, 1.0 );
adaptValue[2] = clamp( dot(ctNorm[0], ctNorm[1]), -1.0, 1.0 );
//float af = min( adaptValue[0], min(adaptValue[1], adaptValue[2]) );
// map [-1, +1] range to [0, 1] range
float af = (adaptValue[gl_InvocationID] + 1.0) / 2.0;
af = mix( minTess, maxTess, 1.0 - af );
return af;
}
float mapToTangentPlane(int i, vec3 q)
{
vec3 q_minus_p = q - gl_in[i].gl_Position.xyz;
return q[gl_InvocationID] - dot(q_minus_p, ctNorm[i]) * ctNorm[i][gl_InvocationID];
}
void tessShader ( in float tessEdge, in float tessInner )
{
// compute projections separate for each xyz component
tcTessPatch[gl_InvocationID].projIJ = mapToTangentPlane(0, gl_in[1].gl_Position.xyz) + mapToTangentPlane(1, gl_in[0].gl_Position.xyz);
tcTessPatch[gl_InvocationID].projJK = mapToTangentPlane(1, gl_in[2].gl_Position.xyz) + mapToTangentPlane(2, gl_in[1].gl_Position.xyz);
tcTessPatch[gl_InvocationID].projIK = mapToTangentPlane(2, gl_in[0].gl_Position.xyz) + mapToTangentPlane(0, gl_in[2].gl_Position.xyz);
// compute backface
float bf = isBackFace();
bf = max(disableCulling, bf);
// adapative tessellation factor regarding features
float af = adaptiveFeatureFactor( tessInner, tessEdge );
// adapative tessellation factor regarding camera
//float cf = adaptiveFeatureFactor( tessInner, tessEdge );
// the camera tess factor is the limit
//af = min(af, cf);
// Calculate the tessellation levels
gl_TessLevelInner[0] = af * bf;
gl_TessLevelOuter[gl_InvocationID] = af * bf;
}
#endif
#if TESSELLATION_EVALUATION_SHADER
layout (triangles, equal_spacing, ccw) in;
layout(location = 15) in PhongTessPatch tcTessPatch[];
uniform float phongBlend;
vec4 tessShader ( )
{
// pre compute square tesselation coord
vec3 tessSquared = gl_TessCoord * gl_TessCoord;
// barycentric linear position
vec3 linearPos = gl_TessCoord.x * gl_in[0].gl_Position.xyz
+ gl_TessCoord.y * gl_in[1].gl_Position.xyz
+ gl_TessCoord.z * gl_in[2].gl_Position.xyz;
// projective terms
vec3 projJI = vec3(tcTessPatch[0].projIJ, tcTessPatch[1].projIJ, tcTessPatch[2].projIJ);
vec3 projKJ = vec3(tcTessPatch[0].projJK, tcTessPatch[1].projJK, tcTessPatch[2].projJK);
vec3 projIK = vec3(tcTessPatch[0].projIK, tcTessPatch[1].projIK, tcTessPatch[2].projIK);
// phong interpolated position
vec3 phongPos = tessSquared.x * gl_in[0].gl_Position.xyz
+ tessSquared.y * gl_in[1].gl_Position.xyz
+ tessSquared.z * gl_in[2].gl_Position.xyz
+ gl_TessCoord.x * gl_TessCoord.y * projJI
+ gl_TessCoord.y * gl_TessCoord.z * projKJ
+ gl_TessCoord.z * gl_TessCoord.x * projIK;
// final blend between linear and phong interpolation
vec3 finalPos = (1.0-phongBlend)*linearPos + phongBlend*phongPos;
return vec4( finalPos, 1.0 );
}
#endif
#endif