| /* |
| Open Asset Import Library (assimp) |
| ---------------------------------------------------------------------- |
| |
| Copyright (c) 2006-2017, assimp team |
| |
| All rights reserved. |
| |
| Redistribution and use of this software in source and binary forms, |
| with or without modification, are permitted provided that the |
| following conditions are met: |
| |
| * Redistributions of source code must retain the above |
| copyright notice, this list of conditions and the |
| following disclaimer. |
| |
| * Redistributions in binary form must reproduce the above |
| copyright notice, this list of conditions and the |
| following disclaimer in the documentation and/or other |
| materials provided with the distribution. |
| |
| * Neither the name of the assimp team, nor the names of its |
| contributors may be used to endorse or promote products |
| derived from this software without specific prior |
| written permission of the assimp team. |
| |
| THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
| OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
| SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
| LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
| OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| |
| ---------------------------------------------------------------------- |
| */ |
| |
| #include "TargetAnimation.h" |
| #include <algorithm> |
| #include <assimp/ai_assert.h> |
| |
| using namespace Assimp; |
| |
| |
| // ------------------------------------------------------------------------------------------------ |
| KeyIterator::KeyIterator(const std::vector<aiVectorKey>* _objPos, |
| const std::vector<aiVectorKey>* _targetObjPos, |
| const aiVector3D* defaultObjectPos /*= NULL*/, |
| const aiVector3D* defaultTargetPos /*= NULL*/) |
| |
| : reachedEnd (false) |
| , curTime (-1.) |
| , objPos (_objPos) |
| , targetObjPos (_targetObjPos) |
| , nextObjPos (0) |
| , nextTargetObjPos(0) |
| { |
| // Generate default transformation tracks if necessary |
| if (!objPos || objPos->empty()) |
| { |
| defaultObjPos.resize(1); |
| defaultObjPos.front().mTime = 10e10; |
| |
| if (defaultObjectPos) |
| defaultObjPos.front().mValue = *defaultObjectPos; |
| |
| objPos = & defaultObjPos; |
| } |
| if (!targetObjPos || targetObjPos->empty()) |
| { |
| defaultTargetObjPos.resize(1); |
| defaultTargetObjPos.front().mTime = 10e10; |
| |
| if (defaultTargetPos) |
| defaultTargetObjPos.front().mValue = *defaultTargetPos; |
| |
| targetObjPos = & defaultTargetObjPos; |
| } |
| } |
| |
| // ------------------------------------------------------------------------------------------------ |
| template <class T> |
| inline T Interpolate(const T& one, const T& two, ai_real val) |
| { |
| return one + (two-one)*val; |
| } |
| |
| // ------------------------------------------------------------------------------------------------ |
| void KeyIterator::operator ++() |
| { |
| // If we are already at the end of all keyframes, return |
| if (reachedEnd) { |
| return; |
| } |
| |
| // Now search in all arrays for the time value closest |
| // to our current position on the time line |
| double d0,d1; |
| |
| d0 = objPos->at ( std::min ( nextObjPos, static_cast<unsigned int>(objPos->size()-1)) ).mTime; |
| d1 = targetObjPos->at( std::min ( nextTargetObjPos, static_cast<unsigned int>(targetObjPos->size()-1)) ).mTime; |
| |
| // Easiest case - all are identical. In this |
| // case we don't need to interpolate so we can |
| // return earlier |
| if ( d0 == d1 ) |
| { |
| curTime = d0; |
| curPosition = objPos->at(nextObjPos).mValue; |
| curTargetPosition = targetObjPos->at(nextTargetObjPos).mValue; |
| |
| // increment counters |
| if (objPos->size() != nextObjPos-1) |
| ++nextObjPos; |
| |
| if (targetObjPos->size() != nextTargetObjPos-1) |
| ++nextTargetObjPos; |
| } |
| |
| // An object position key is closest to us |
| else if (d0 < d1) |
| { |
| curTime = d0; |
| |
| // interpolate the other |
| if (1 == targetObjPos->size() || !nextTargetObjPos) { |
| curTargetPosition = targetObjPos->at(0).mValue; |
| } |
| else |
| { |
| const aiVectorKey& last = targetObjPos->at(nextTargetObjPos); |
| const aiVectorKey& first = targetObjPos->at(nextTargetObjPos-1); |
| |
| curTargetPosition = Interpolate(first.mValue, last.mValue, (ai_real) ( |
| (curTime-first.mTime) / (last.mTime-first.mTime) )); |
| } |
| |
| if (objPos->size() != nextObjPos-1) |
| ++nextObjPos; |
| } |
| // A target position key is closest to us |
| else |
| { |
| curTime = d1; |
| |
| // interpolate the other |
| if (1 == objPos->size() || !nextObjPos) { |
| curPosition = objPos->at(0).mValue; |
| } |
| else |
| { |
| const aiVectorKey& last = objPos->at(nextObjPos); |
| const aiVectorKey& first = objPos->at(nextObjPos-1); |
| |
| curPosition = Interpolate(first.mValue, last.mValue, (ai_real) ( |
| (curTime-first.mTime) / (last.mTime-first.mTime))); |
| } |
| |
| if (targetObjPos->size() != nextTargetObjPos-1) |
| ++nextTargetObjPos; |
| } |
| |
| if (nextObjPos >= objPos->size()-1 && |
| nextTargetObjPos >= targetObjPos->size()-1) |
| { |
| // We reached the very last keyframe |
| reachedEnd = true; |
| } |
| } |
| |
| // ------------------------------------------------------------------------------------------------ |
| void TargetAnimationHelper::SetTargetAnimationChannel ( |
| const std::vector<aiVectorKey>* _targetPositions) |
| { |
| ai_assert(NULL != _targetPositions); |
| targetPositions = _targetPositions; |
| } |
| |
| // ------------------------------------------------------------------------------------------------ |
| void TargetAnimationHelper::SetMainAnimationChannel ( |
| const std::vector<aiVectorKey>* _objectPositions) |
| { |
| ai_assert(NULL != _objectPositions); |
| objectPositions = _objectPositions; |
| } |
| |
| // ------------------------------------------------------------------------------------------------ |
| void TargetAnimationHelper::SetFixedMainAnimationChannel( |
| const aiVector3D& fixed) |
| { |
| objectPositions = NULL; // just to avoid confusion |
| fixedMain = fixed; |
| } |
| |
| // ------------------------------------------------------------------------------------------------ |
| void TargetAnimationHelper::Process(std::vector<aiVectorKey>* distanceTrack) |
| { |
| ai_assert(NULL != targetPositions && NULL != distanceTrack); |
| |
| // TODO: in most cases we won't need the extra array |
| std::vector<aiVectorKey> real; |
| |
| std::vector<aiVectorKey>* fill = (distanceTrack == objectPositions ? &real : distanceTrack); |
| fill->reserve(std::max( objectPositions->size(), targetPositions->size() )); |
| |
| // Iterate through all object keys and interpolate their values if necessary. |
| // Then get the corresponding target position, compute the difference |
| // vector between object and target position. Then compute a rotation matrix |
| // that rotates the base vector of the object coordinate system at that time |
| // to match the diff vector. |
| |
| KeyIterator iter(objectPositions,targetPositions,&fixedMain); |
| for (;!iter.Finished();++iter) |
| { |
| const aiVector3D& position = iter.GetCurPosition(); |
| const aiVector3D& tposition = iter.GetCurTargetPosition(); |
| |
| // diff vector |
| aiVector3D diff = tposition - position; |
| ai_real f = diff.Length(); |
| |
| // output distance vector |
| if (f) |
| { |
| fill->push_back(aiVectorKey()); |
| aiVectorKey& v = fill->back(); |
| v.mTime = iter.GetCurTime(); |
| v.mValue = diff; |
| |
| diff /= f; |
| } |
| else |
| { |
| // FIXME: handle this |
| } |
| |
| // diff is now the vector in which our camera is pointing |
| } |
| |
| if (real.size()) { |
| *distanceTrack = real; |
| } |
| } |