blob: 31ecc8b20dc83beeeaeff3b0e8727122a592933a [file] [log] [blame]
/****************************************************************************
**
** Copyright (C) 2016 The Qt Company Ltd.
** Copyright (C) 2013 Olivier Goffart <ogoffart@woboq.com>
** Contact: https://www.qt.io/licensing/
**
** This file is part of the QtCore module of the Qt Toolkit.
**
** $QT_BEGIN_LICENSE:LGPL$
** Commercial License Usage
** Licensees holding valid commercial Qt licenses may use this file in
** accordance with the commercial license agreement provided with the
** Software or, alternatively, in accordance with the terms contained in
** a written agreement between you and The Qt Company. For licensing terms
** and conditions see https://www.qt.io/terms-conditions. For further
** information use the contact form at https://www.qt.io/contact-us.
**
** GNU Lesser General Public License Usage
** Alternatively, this file may be used under the terms of the GNU Lesser
** General Public License version 3 as published by the Free Software
** Foundation and appearing in the file LICENSE.LGPL3 included in the
** packaging of this file. Please review the following information to
** ensure the GNU Lesser General Public License version 3 requirements
** will be met: https://www.gnu.org/licenses/lgpl-3.0.html.
**
** GNU General Public License Usage
** Alternatively, this file may be used under the terms of the GNU
** General Public License version 2.0 or (at your option) the GNU General
** Public license version 3 or any later version approved by the KDE Free
** Qt Foundation. The licenses are as published by the Free Software
** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3
** included in the packaging of this file. Please review the following
** information to ensure the GNU General Public License requirements will
** be met: https://www.gnu.org/licenses/gpl-2.0.html and
** https://www.gnu.org/licenses/gpl-3.0.html.
**
** $QT_END_LICENSE$
**
****************************************************************************/
#ifndef QOBJECTDEFS_H
#error Do not include qobjectdefs_impl.h directly
#include <QtCore/qnamespace.h>
#endif
#if 0
#pragma qt_sync_skip_header_check
#pragma qt_sync_stop_processing
#endif
QT_BEGIN_NAMESPACE
class QObject;
namespace QtPrivate {
template <typename T> struct RemoveRef { typedef T Type; };
template <typename T> struct RemoveRef<T&> { typedef T Type; };
template <typename T> struct RemoveConstRef { typedef T Type; };
template <typename T> struct RemoveConstRef<const T&> { typedef T Type; };
/*
The following List classes are used to help to handle the list of arguments.
It follow the same principles as the lisp lists.
List_Left<L,N> take a list and a number as a parameter and returns (via the Value typedef,
the list composed of the first N element of the list
*/
// With variadic template, lists are represented using a variadic template argument instead of the lisp way
template <typename...> struct List {};
template <typename Head, typename... Tail> struct List<Head, Tail...> { typedef Head Car; typedef List<Tail...> Cdr; };
template <typename, typename> struct List_Append;
template <typename... L1, typename...L2> struct List_Append<List<L1...>, List<L2...>> { typedef List<L1..., L2...> Value; };
template <typename L, int N> struct List_Left {
typedef typename List_Append<List<typename L::Car>,typename List_Left<typename L::Cdr, N - 1>::Value>::Value Value;
};
template <typename L> struct List_Left<L, 0> { typedef List<> Value; };
// List_Select<L,N> returns (via typedef Value) the Nth element of the list L
template <typename L, int N> struct List_Select { typedef typename List_Select<typename L::Cdr, N - 1>::Value Value; };
template <typename L> struct List_Select<L,0> { typedef typename L::Car Value; };
/*
trick to set the return value of a slot that works even if the signal or the slot returns void
to be used like function(), ApplyReturnValue<ReturnType>(&return_value)
if function() returns a value, the operator,(T, ApplyReturnValue<ReturnType>) is called, but if it
returns void, the builtin one is used without an error.
*/
template <typename T>
struct ApplyReturnValue {
void *data;
explicit ApplyReturnValue(void *data_) : data(data_) {}
};
template<typename T, typename U>
void operator,(T &&value, const ApplyReturnValue<U> &container) {
if (container.data)
*reinterpret_cast<U *>(container.data) = std::forward<T>(value);
}
template<typename T>
void operator,(T, const ApplyReturnValue<void> &) {}
/*
The FunctionPointer<Func> struct is a type trait for function pointer.
- ArgumentCount is the number of argument, or -1 if it is unknown
- the Object typedef is the Object of a pointer to member function
- the Arguments typedef is the list of argument (in a QtPrivate::List)
- the Function typedef is an alias to the template parameter Func
- the call<Args, R>(f,o,args) method is used to call that slot
Args is the list of argument of the signal
R is the return type of the signal
f is the function pointer
o is the receiver object
and args is the array of pointer to arguments, as used in qt_metacall
The Functor<Func,N> struct is the helper to call a functor of N argument.
its call function is the same as the FunctionPointer::call function.
*/
template<class T> using InvokeGenSeq = typename T::Type;
template<int...> struct IndexesList { using Type = IndexesList; };
template<int N, class S1, class S2> struct ConcatSeqImpl;
template<int N, int... I1, int... I2>
struct ConcatSeqImpl<N, IndexesList<I1...>, IndexesList<I2...>>
: IndexesList<I1..., (N + I2)...>{};
template<int N, class S1, class S2>
using ConcatSeq = InvokeGenSeq<ConcatSeqImpl<N, S1, S2>>;
template<int N> struct GenSeq;
template<int N> using makeIndexSequence = InvokeGenSeq<GenSeq<N>>;
template<int N>
struct GenSeq : ConcatSeq<N/2, makeIndexSequence<N/2>, makeIndexSequence<N - N/2>>{};
template<> struct GenSeq<0> : IndexesList<>{};
template<> struct GenSeq<1> : IndexesList<0>{};
template<int N>
struct Indexes { using Value = makeIndexSequence<N>; };
template<typename Func> struct FunctionPointer { enum {ArgumentCount = -1, IsPointerToMemberFunction = false}; };
template <typename, typename, typename, typename> struct FunctorCall;
template <int... II, typename... SignalArgs, typename R, typename Function>
struct FunctorCall<IndexesList<II...>, List<SignalArgs...>, R, Function> {
static void call(Function &f, void **arg) {
f((*reinterpret_cast<typename RemoveRef<SignalArgs>::Type *>(arg[II+1]))...), ApplyReturnValue<R>(arg[0]);
}
};
template <int... II, typename... SignalArgs, typename R, typename... SlotArgs, typename SlotRet, class Obj>
struct FunctorCall<IndexesList<II...>, List<SignalArgs...>, R, SlotRet (Obj::*)(SlotArgs...)> {
static void call(SlotRet (Obj::*f)(SlotArgs...), Obj *o, void **arg) {
(o->*f)((*reinterpret_cast<typename RemoveRef<SignalArgs>::Type *>(arg[II+1]))...), ApplyReturnValue<R>(arg[0]);
}
};
template <int... II, typename... SignalArgs, typename R, typename... SlotArgs, typename SlotRet, class Obj>
struct FunctorCall<IndexesList<II...>, List<SignalArgs...>, R, SlotRet (Obj::*)(SlotArgs...) const> {
static void call(SlotRet (Obj::*f)(SlotArgs...) const, Obj *o, void **arg) {
(o->*f)((*reinterpret_cast<typename RemoveRef<SignalArgs>::Type *>(arg[II+1]))...), ApplyReturnValue<R>(arg[0]);
}
};
#if defined(__cpp_noexcept_function_type) && __cpp_noexcept_function_type >= 201510
template <int... II, typename... SignalArgs, typename R, typename... SlotArgs, typename SlotRet, class Obj>
struct FunctorCall<IndexesList<II...>, List<SignalArgs...>, R, SlotRet (Obj::*)(SlotArgs...) noexcept> {
static void call(SlotRet (Obj::*f)(SlotArgs...) noexcept, Obj *o, void **arg) {
(o->*f)((*reinterpret_cast<typename RemoveRef<SignalArgs>::Type *>(arg[II+1]))...), ApplyReturnValue<R>(arg[0]);
}
};
template <int... II, typename... SignalArgs, typename R, typename... SlotArgs, typename SlotRet, class Obj>
struct FunctorCall<IndexesList<II...>, List<SignalArgs...>, R, SlotRet (Obj::*)(SlotArgs...) const noexcept> {
static void call(SlotRet (Obj::*f)(SlotArgs...) const noexcept, Obj *o, void **arg) {
(o->*f)((*reinterpret_cast<typename RemoveRef<SignalArgs>::Type *>(arg[II+1]))...), ApplyReturnValue<R>(arg[0]);
}
};
#endif
template<class Obj, typename Ret, typename... Args> struct FunctionPointer<Ret (Obj::*) (Args...)>
{
typedef Obj Object;
typedef List<Args...> Arguments;
typedef Ret ReturnType;
typedef Ret (Obj::*Function) (Args...);
enum {ArgumentCount = sizeof...(Args), IsPointerToMemberFunction = true};
template <typename SignalArgs, typename R>
static void call(Function f, Obj *o, void **arg) {
FunctorCall<typename Indexes<ArgumentCount>::Value, SignalArgs, R, Function>::call(f, o, arg);
}
};
template<class Obj, typename Ret, typename... Args> struct FunctionPointer<Ret (Obj::*) (Args...) const>
{
typedef Obj Object;
typedef List<Args...> Arguments;
typedef Ret ReturnType;
typedef Ret (Obj::*Function) (Args...) const;
enum {ArgumentCount = sizeof...(Args), IsPointerToMemberFunction = true};
template <typename SignalArgs, typename R>
static void call(Function f, Obj *o, void **arg) {
FunctorCall<typename Indexes<ArgumentCount>::Value, SignalArgs, R, Function>::call(f, o, arg);
}
};
template<typename Ret, typename... Args> struct FunctionPointer<Ret (*) (Args...)>
{
typedef List<Args...> Arguments;
typedef Ret ReturnType;
typedef Ret (*Function) (Args...);
enum {ArgumentCount = sizeof...(Args), IsPointerToMemberFunction = false};
template <typename SignalArgs, typename R>
static void call(Function f, void *, void **arg) {
FunctorCall<typename Indexes<ArgumentCount>::Value, SignalArgs, R, Function>::call(f, arg);
}
};
#if defined(__cpp_noexcept_function_type) && __cpp_noexcept_function_type >= 201510
template<class Obj, typename Ret, typename... Args> struct FunctionPointer<Ret (Obj::*) (Args...) noexcept>
{
typedef Obj Object;
typedef List<Args...> Arguments;
typedef Ret ReturnType;
typedef Ret (Obj::*Function) (Args...) noexcept;
enum {ArgumentCount = sizeof...(Args), IsPointerToMemberFunction = true};
template <typename SignalArgs, typename R>
static void call(Function f, Obj *o, void **arg) {
FunctorCall<typename Indexes<ArgumentCount>::Value, SignalArgs, R, Function>::call(f, o, arg);
}
};
template<class Obj, typename Ret, typename... Args> struct FunctionPointer<Ret (Obj::*) (Args...) const noexcept>
{
typedef Obj Object;
typedef List<Args...> Arguments;
typedef Ret ReturnType;
typedef Ret (Obj::*Function) (Args...) const noexcept;
enum {ArgumentCount = sizeof...(Args), IsPointerToMemberFunction = true};
template <typename SignalArgs, typename R>
static void call(Function f, Obj *o, void **arg) {
FunctorCall<typename Indexes<ArgumentCount>::Value, SignalArgs, R, Function>::call(f, o, arg);
}
};
template<typename Ret, typename... Args> struct FunctionPointer<Ret (*) (Args...) noexcept>
{
typedef List<Args...> Arguments;
typedef Ret ReturnType;
typedef Ret (*Function) (Args...) noexcept;
enum {ArgumentCount = sizeof...(Args), IsPointerToMemberFunction = false};
template <typename SignalArgs, typename R>
static void call(Function f, void *, void **arg) {
FunctorCall<typename Indexes<ArgumentCount>::Value, SignalArgs, R, Function>::call(f, arg);
}
};
#endif
template<typename Function, int N> struct Functor
{
template <typename SignalArgs, typename R>
static void call(Function &f, void *, void **arg) {
FunctorCall<typename Indexes<N>::Value, SignalArgs, R, Function>::call(f, arg);
}
};
/*
Logic that checks if the underlying type of an enum is signed or not.
Needs an external, explicit check that E is indeed an enum. Works
around the fact that it's undefined behavior to instantiate
std::underlying_type on non-enums (cf. §20.13.7.6 [meta.trans.other]).
*/
template<typename E, typename Enable = void>
struct IsEnumUnderlyingTypeSigned : std::false_type
{
};
template<typename E>
struct IsEnumUnderlyingTypeSigned<E, typename std::enable_if<std::is_enum<E>::value>::type>
: std::integral_constant<bool, std::is_signed<typename std::underlying_type<E>::type>::value>
{
};
/*
Logic that checks if the argument of the slot does not narrow the
argument of the signal when used in list initialization. Cf. §8.5.4.7
[dcl.init.list] for the definition of narrowing.
For incomplete From/To types, there's no narrowing.
*/
template<typename From, typename To, typename Enable = void>
struct AreArgumentsNarrowedBase : std::false_type
{
};
template<typename From, typename To>
struct AreArgumentsNarrowedBase<From, To, typename std::enable_if<sizeof(From) && sizeof(To)>::type>
: std::integral_constant<bool,
(std::is_floating_point<From>::value && std::is_integral<To>::value) ||
(std::is_floating_point<From>::value && std::is_floating_point<To>::value && sizeof(From) > sizeof(To)) ||
((std::is_integral<From>::value || std::is_enum<From>::value) && std::is_floating_point<To>::value) ||
(std::is_integral<From>::value && std::is_integral<To>::value
&& (sizeof(From) > sizeof(To)
|| (std::is_signed<From>::value ? !std::is_signed<To>::value
: (std::is_signed<To>::value && sizeof(From) == sizeof(To))))) ||
(std::is_enum<From>::value && std::is_integral<To>::value
&& (sizeof(From) > sizeof(To)
|| (IsEnumUnderlyingTypeSigned<From>::value ? !std::is_signed<To>::value
: (std::is_signed<To>::value && sizeof(From) == sizeof(To)))))
>
{
};
/*
Logic that check if the arguments of the slot matches the argument of the signal.
To be used like this:
Q_STATIC_ASSERT(CheckCompatibleArguments<FunctionPointer<Signal>::Arguments, FunctionPointer<Slot>::Arguments>::value)
*/
template<typename A1, typename A2> struct AreArgumentsCompatible {
static int test(const typename RemoveRef<A2>::Type&);
static char test(...);
static const typename RemoveRef<A1>::Type &dummy();
enum { value = sizeof(test(dummy())) == sizeof(int) };
#ifdef QT_NO_NARROWING_CONVERSIONS_IN_CONNECT
using AreArgumentsNarrowed = AreArgumentsNarrowedBase<typename RemoveRef<A1>::Type, typename RemoveRef<A2>::Type>;
Q_STATIC_ASSERT_X(!AreArgumentsNarrowed::value, "Signal and slot arguments are not compatible (narrowing)");
#endif
};
template<typename A1, typename A2> struct AreArgumentsCompatible<A1, A2&> { enum { value = false }; };
template<typename A> struct AreArgumentsCompatible<A&, A&> { enum { value = true }; };
// void as a return value
template<typename A> struct AreArgumentsCompatible<void, A> { enum { value = true }; };
template<typename A> struct AreArgumentsCompatible<A, void> { enum { value = true }; };
template<> struct AreArgumentsCompatible<void, void> { enum { value = true }; };
template <typename List1, typename List2> struct CheckCompatibleArguments { enum { value = false }; };
template <> struct CheckCompatibleArguments<List<>, List<>> { enum { value = true }; };
template <typename List1> struct CheckCompatibleArguments<List1, List<>> { enum { value = true }; };
template <typename Arg1, typename Arg2, typename... Tail1, typename... Tail2>
struct CheckCompatibleArguments<List<Arg1, Tail1...>, List<Arg2, Tail2...>>
{
enum { value = AreArgumentsCompatible<typename RemoveConstRef<Arg1>::Type, typename RemoveConstRef<Arg2>::Type>::value
&& CheckCompatibleArguments<List<Tail1...>, List<Tail2...>>::value };
};
/*
Find the maximum number of arguments a functor object can take and be still compatible with
the arguments from the signal.
Value is the number of arguments, or -1 if nothing matches.
*/
template <typename Functor, typename ArgList> struct ComputeFunctorArgumentCount;
template <typename Functor, typename ArgList, bool Done> struct ComputeFunctorArgumentCountHelper
{ enum { Value = -1 }; };
template <typename Functor, typename First, typename... ArgList>
struct ComputeFunctorArgumentCountHelper<Functor, List<First, ArgList...>, false>
: ComputeFunctorArgumentCount<Functor,
typename List_Left<List<First, ArgList...>, sizeof...(ArgList)>::Value> {};
template <typename Functor, typename... ArgList> struct ComputeFunctorArgumentCount<Functor, List<ArgList...>>
{
template <typename D> static D dummy();
template <typename F> static auto test(F f) -> decltype(((f.operator()((dummy<ArgList>())...)), int()));
static char test(...);
enum {
Ok = sizeof(test(dummy<Functor>())) == sizeof(int),
Value = Ok ? int(sizeof...(ArgList)) : int(ComputeFunctorArgumentCountHelper<Functor, List<ArgList...>, Ok>::Value)
};
};
/* get the return type of a functor, given the signal argument list */
template <typename Functor, typename ArgList> struct FunctorReturnType;
template <typename Functor, typename ... ArgList> struct FunctorReturnType<Functor, List<ArgList...>> {
template <typename D> static D dummy();
typedef decltype(dummy<Functor>().operator()((dummy<ArgList>())...)) Value;
};
// internal base class (interface) containing functions required to call a slot managed by a pointer to function.
class QSlotObjectBase {
QAtomicInt m_ref;
// don't use virtual functions here; we don't want the
// compiler to create tons of per-polymorphic-class stuff that
// we'll never need. We just use one function pointer.
typedef void (*ImplFn)(int which, QSlotObjectBase* this_, QObject *receiver, void **args, bool *ret);
const ImplFn m_impl;
protected:
enum Operation {
Destroy,
Call,
Compare,
NumOperations
};
public:
explicit QSlotObjectBase(ImplFn fn) : m_ref(1), m_impl(fn) {}
inline int ref() noexcept { return m_ref.ref(); }
inline void destroyIfLastRef() noexcept
{ if (!m_ref.deref()) m_impl(Destroy, this, nullptr, nullptr, nullptr); }
inline bool compare(void **a) { bool ret = false; m_impl(Compare, this, nullptr, a, &ret); return ret; }
inline void call(QObject *r, void **a) { m_impl(Call, this, r, a, nullptr); }
protected:
~QSlotObjectBase() {}
private:
Q_DISABLE_COPY_MOVE(QSlotObjectBase)
};
// implementation of QSlotObjectBase for which the slot is a pointer to member function of a QObject
// Args and R are the List of arguments and the returntype of the signal to which the slot is connected.
template<typename Func, typename Args, typename R> class QSlotObject : public QSlotObjectBase
{
typedef QtPrivate::FunctionPointer<Func> FuncType;
Func function;
static void impl(int which, QSlotObjectBase *this_, QObject *r, void **a, bool *ret)
{
switch (which) {
case Destroy:
delete static_cast<QSlotObject*>(this_);
break;
case Call:
FuncType::template call<Args, R>(static_cast<QSlotObject*>(this_)->function, static_cast<typename FuncType::Object *>(r), a);
break;
case Compare:
*ret = *reinterpret_cast<Func *>(a) == static_cast<QSlotObject*>(this_)->function;
break;
case NumOperations: ;
}
}
public:
explicit QSlotObject(Func f) : QSlotObjectBase(&impl), function(f) {}
};
// implementation of QSlotObjectBase for which the slot is a functor (or lambda)
// N is the number of arguments
// Args and R are the List of arguments and the returntype of the signal to which the slot is connected.
template<typename Func, int N, typename Args, typename R> class QFunctorSlotObject : public QSlotObjectBase
{
typedef QtPrivate::Functor<Func, N> FuncType;
Func function;
static void impl(int which, QSlotObjectBase *this_, QObject *r, void **a, bool *ret)
{
switch (which) {
case Destroy:
delete static_cast<QFunctorSlotObject*>(this_);
break;
case Call:
FuncType::template call<Args, R>(static_cast<QFunctorSlotObject*>(this_)->function, r, a);
break;
case Compare: // not implemented
case NumOperations:
Q_UNUSED(ret);
}
}
public:
explicit QFunctorSlotObject(Func f) : QSlotObjectBase(&impl), function(std::move(f)) {}
};
// typedefs for readability for when there are no parameters
template <typename Func>
using QSlotObjectWithNoArgs = QSlotObject<Func,
QtPrivate::List<>,
typename QtPrivate::FunctionPointer<Func>::ReturnType>;
template <typename Func, typename R>
using QFunctorSlotObjectWithNoArgs = QFunctorSlotObject<Func, 0, QtPrivate::List<>, R>;
template <typename Func>
using QFunctorSlotObjectWithNoArgsImplicitReturn = QFunctorSlotObjectWithNoArgs<Func, typename QtPrivate::FunctionPointer<Func>::ReturnType>;
}
QT_END_NAMESPACE