blob: 8196a87b24c0ec80e54ecabece47887b88fa8300 [file] [log] [blame]
/****************************************************************************
**
** Copyright (C) 2016 The Qt Company Ltd.
** Contact: https://www.qt.io/licensing/
**
** This file is part of the QtGui module of the Qt Toolkit.
**
** $QT_BEGIN_LICENSE:LGPL$
** Commercial License Usage
** Licensees holding valid commercial Qt licenses may use this file in
** accordance with the commercial license agreement provided with the
** Software or, alternatively, in accordance with the terms contained in
** a written agreement between you and The Qt Company. For licensing terms
** and conditions see https://www.qt.io/terms-conditions. For further
** information use the contact form at https://www.qt.io/contact-us.
**
** GNU Lesser General Public License Usage
** Alternatively, this file may be used under the terms of the GNU Lesser
** General Public License version 3 as published by the Free Software
** Foundation and appearing in the file LICENSE.LGPL3 included in the
** packaging of this file. Please review the following information to
** ensure the GNU Lesser General Public License version 3 requirements
** will be met: https://www.gnu.org/licenses/lgpl-3.0.html.
**
** GNU General Public License Usage
** Alternatively, this file may be used under the terms of the GNU
** General Public License version 2.0 or (at your option) the GNU General
** Public license version 3 or any later version approved by the KDE Free
** Qt Foundation. The licenses are as published by the Free Software
** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3
** included in the packaging of this file. Please review the following
** information to ensure the GNU General Public License requirements will
** be met: https://www.gnu.org/licenses/gpl-2.0.html and
** https://www.gnu.org/licenses/gpl-3.0.html.
**
** $QT_END_LICENSE$
**
****************************************************************************/
#include <private/qdrawhelper_neon_p.h>
#include <private/qblendfunctions_p.h>
#include <private/qmath_p.h>
#ifdef __ARM_NEON__
#include <private/qpaintengine_raster_p.h>
QT_BEGIN_NAMESPACE
void qt_memfill32(quint32 *dest, quint32 value, qsizetype count)
{
const int epilogueSize = count % 16;
#if defined(Q_CC_GHS) || defined(Q_CC_MSVC)
// inline assembler free version:
if (count >= 16) {
quint32 *const neonEnd = dest + count - epilogueSize;
const uint32x4_t valueVector1 = vdupq_n_u32(value);
const uint32x4x4_t valueVector4 = { valueVector1, valueVector1, valueVector1, valueVector1 };
do {
vst4q_u32(dest, valueVector4);
dest += 16;
} while (dest != neonEnd);
}
#elif !defined(Q_PROCESSOR_ARM_64)
if (count >= 16) {
quint32 *const neonEnd = dest + count - epilogueSize;
register uint32x4_t valueVector1 asm ("q0") = vdupq_n_u32(value);
register uint32x4_t valueVector2 asm ("q1") = valueVector1;
while (dest != neonEnd) {
asm volatile (
"vst2.32 { d0, d1, d2, d3 }, [%[DST]] !\n\t"
"vst2.32 { d0, d1, d2, d3 }, [%[DST]] !\n\t"
: [DST]"+r" (dest)
: [VALUE1]"w"(valueVector1), [VALUE2]"w"(valueVector2)
: "memory"
);
}
}
#else
if (count >= 16) {
quint32 *const neonEnd = dest + count - epilogueSize;
register uint32x4_t valueVector1 asm ("v0") = vdupq_n_u32(value);
register uint32x4_t valueVector2 asm ("v1") = valueVector1;
while (dest != neonEnd) {
asm volatile (
"st2 { v0.4s, v1.4s }, [%[DST]], #32 \n\t"
"st2 { v0.4s, v1.4s }, [%[DST]], #32 \n\t"
: [DST]"+r" (dest)
: [VALUE1]"w"(valueVector1), [VALUE2]"w"(valueVector2)
: "memory"
);
}
}
#endif
switch (epilogueSize)
{
case 15: *dest++ = value; Q_FALLTHROUGH();
case 14: *dest++ = value; Q_FALLTHROUGH();
case 13: *dest++ = value; Q_FALLTHROUGH();
case 12: *dest++ = value; Q_FALLTHROUGH();
case 11: *dest++ = value; Q_FALLTHROUGH();
case 10: *dest++ = value; Q_FALLTHROUGH();
case 9: *dest++ = value; Q_FALLTHROUGH();
case 8: *dest++ = value; Q_FALLTHROUGH();
case 7: *dest++ = value; Q_FALLTHROUGH();
case 6: *dest++ = value; Q_FALLTHROUGH();
case 5: *dest++ = value; Q_FALLTHROUGH();
case 4: *dest++ = value; Q_FALLTHROUGH();
case 3: *dest++ = value; Q_FALLTHROUGH();
case 2: *dest++ = value; Q_FALLTHROUGH();
case 1: *dest++ = value;
}
}
static inline uint16x8_t qvdiv_255_u16(uint16x8_t x, uint16x8_t half)
{
// result = (x + (x >> 8) + 0x80) >> 8
const uint16x8_t temp = vshrq_n_u16(x, 8); // x >> 8
const uint16x8_t sum_part = vaddq_u16(x, half); // x + 0x80
const uint16x8_t sum = vaddq_u16(temp, sum_part);
return vshrq_n_u16(sum, 8);
}
static inline uint16x8_t qvbyte_mul_u16(uint16x8_t x, uint16x8_t alpha, uint16x8_t half)
{
// t = qRound(x * alpha / 255.0)
const uint16x8_t t = vmulq_u16(x, alpha); // t
return qvdiv_255_u16(t, half);
}
static inline uint16x8_t qvinterpolate_pixel_255(uint16x8_t x, uint16x8_t a, uint16x8_t y, uint16x8_t b, uint16x8_t half)
{
// t = x * a + y * b
const uint16x8_t ta = vmulq_u16(x, a);
const uint16x8_t tb = vmulq_u16(y, b);
return qvdiv_255_u16(vaddq_u16(ta, tb), half);
}
static inline uint16x8_t qvsource_over_u16(uint16x8_t src16, uint16x8_t dst16, uint16x8_t half, uint16x8_t full)
{
const uint16x4_t alpha16_high = vdup_lane_u16(vget_high_u16(src16), 3);
const uint16x4_t alpha16_low = vdup_lane_u16(vget_low_u16(src16), 3);
const uint16x8_t alpha16 = vsubq_u16(full, vcombine_u16(alpha16_low, alpha16_high));
return vaddq_u16(src16, qvbyte_mul_u16(dst16, alpha16, half));
}
#if defined(ENABLE_PIXMAN_DRAWHELPERS)
extern "C" void
pixman_composite_over_8888_0565_asm_neon (int32_t w,
int32_t h,
uint16_t *dst,
int32_t dst_stride,
uint32_t *src,
int32_t src_stride);
extern "C" void
pixman_composite_over_8888_8888_asm_neon (int32_t w,
int32_t h,
uint32_t *dst,
int32_t dst_stride,
uint32_t *src,
int32_t src_stride);
extern "C" void
pixman_composite_src_0565_8888_asm_neon (int32_t w,
int32_t h,
uint32_t *dst,
int32_t dst_stride,
uint16_t *src,
int32_t src_stride);
extern "C" void
pixman_composite_over_n_8_0565_asm_neon (int32_t w,
int32_t h,
uint16_t *dst,
int32_t dst_stride,
uint32_t src,
int32_t unused,
uint8_t *mask,
int32_t mask_stride);
extern "C" void
pixman_composite_scanline_over_asm_neon (int32_t w,
const uint32_t *dst,
const uint32_t *src);
extern "C" void
pixman_composite_src_0565_0565_asm_neon (int32_t w,
int32_t h,
uint16_t *dst,
int32_t dst_stride,
uint16_t *src,
int32_t src_stride);
// qblendfunctions.cpp
void qt_blend_argb32_on_rgb16_const_alpha(uchar *destPixels, int dbpl,
const uchar *srcPixels, int sbpl,
int w, int h,
int const_alpha);
void qt_blend_rgb16_on_argb32_neon(uchar *destPixels, int dbpl,
const uchar *srcPixels, int sbpl,
int w, int h,
int const_alpha)
{
dbpl /= 4;
sbpl /= 2;
quint32 *dst = (quint32 *) destPixels;
quint16 *src = (quint16 *) srcPixels;
if (const_alpha != 256) {
quint8 a = (255 * const_alpha) >> 8;
quint8 ia = 255 - a;
while (h--) {
for (int x=0; x<w; ++x)
dst[x] = INTERPOLATE_PIXEL_255(qConvertRgb16To32(src[x]), a, dst[x], ia);
dst += dbpl;
src += sbpl;
}
return;
}
pixman_composite_src_0565_8888_asm_neon(w, h, dst, dbpl, src, sbpl);
}
// qblendfunctions.cpp
void qt_blend_rgb16_on_rgb16(uchar *dst, int dbpl,
const uchar *src, int sbpl,
int w, int h,
int const_alpha);
template <int N>
static inline void scanLineBlit16(quint16 *dst, quint16 *src, int dstride)
{
if (N >= 2) {
((quint32 *)dst)[0] = ((quint32 *)src)[0];
__builtin_prefetch(dst + dstride, 1, 0);
}
for (int i = 1; i < N/2; ++i)
((quint32 *)dst)[i] = ((quint32 *)src)[i];
if (N & 1)
dst[N-1] = src[N-1];
}
template <int Width>
static inline void blockBlit16(quint16 *dst, quint16 *src, int dstride, int sstride, int h)
{
union {
quintptr address;
quint16 *pointer;
} u;
u.pointer = dst;
if (u.address & 2) {
while (h--) {
// align dst
dst[0] = src[0];
if (Width > 1)
scanLineBlit16<Width-1>(dst + 1, src + 1, dstride);
dst += dstride;
src += sstride;
}
} else {
while (h--) {
scanLineBlit16<Width>(dst, src, dstride);
dst += dstride;
src += sstride;
}
}
}
void qt_blend_rgb16_on_rgb16_neon(uchar *destPixels, int dbpl,
const uchar *srcPixels, int sbpl,
int w, int h,
int const_alpha)
{
// testing show that the default memcpy is faster for widths 150 and up
if (const_alpha != 256 || w >= 150) {
qt_blend_rgb16_on_rgb16(destPixels, dbpl, srcPixels, sbpl, w, h, const_alpha);
return;
}
int dstride = dbpl / 2;
int sstride = sbpl / 2;
quint16 *dst = (quint16 *) destPixels;
quint16 *src = (quint16 *) srcPixels;
switch (w) {
#define BLOCKBLIT(n) case n: blockBlit16<n>(dst, src, dstride, sstride, h); return;
BLOCKBLIT(1);
BLOCKBLIT(2);
BLOCKBLIT(3);
BLOCKBLIT(4);
BLOCKBLIT(5);
BLOCKBLIT(6);
BLOCKBLIT(7);
BLOCKBLIT(8);
BLOCKBLIT(9);
BLOCKBLIT(10);
BLOCKBLIT(11);
BLOCKBLIT(12);
BLOCKBLIT(13);
BLOCKBLIT(14);
BLOCKBLIT(15);
#undef BLOCKBLIT
default:
break;
}
pixman_composite_src_0565_0565_asm_neon (w, h, dst, dstride, src, sstride);
}
extern "C" void blend_8_pixels_argb32_on_rgb16_neon(quint16 *dst, const quint32 *src, int const_alpha);
void qt_blend_argb32_on_rgb16_neon(uchar *destPixels, int dbpl,
const uchar *srcPixels, int sbpl,
int w, int h,
int const_alpha)
{
quint16 *dst = (quint16 *) destPixels;
quint32 *src = (quint32 *) srcPixels;
if (const_alpha != 256) {
for (int y=0; y<h; ++y) {
int i = 0;
for (; i < w-7; i += 8)
blend_8_pixels_argb32_on_rgb16_neon(&dst[i], &src[i], const_alpha);
if (i < w) {
int tail = w - i;
quint16 dstBuffer[8];
quint32 srcBuffer[8];
for (int j = 0; j < tail; ++j) {
dstBuffer[j] = dst[i + j];
srcBuffer[j] = src[i + j];
}
blend_8_pixels_argb32_on_rgb16_neon(dstBuffer, srcBuffer, const_alpha);
for (int j = 0; j < tail; ++j)
dst[i + j] = dstBuffer[j];
}
dst = (quint16 *)(((uchar *) dst) + dbpl);
src = (quint32 *)(((uchar *) src) + sbpl);
}
return;
}
pixman_composite_over_8888_0565_asm_neon(w, h, dst, dbpl / 2, src, sbpl / 4);
}
#endif
void qt_blend_argb32_on_argb32_scanline_neon(uint *dest, const uint *src, int length, uint const_alpha)
{
if (const_alpha == 255) {
#if defined(ENABLE_PIXMAN_DRAWHELPERS)
pixman_composite_scanline_over_asm_neon(length, dest, src);
#else
qt_blend_argb32_on_argb32_neon((uchar *)dest, 4 * length, (uchar *)src, 4 * length, length, 1, 256);
#endif
} else {
qt_blend_argb32_on_argb32_neon((uchar *)dest, 4 * length, (uchar *)src, 4 * length, length, 1, (const_alpha * 256) / 255);
}
}
void qt_blend_argb32_on_argb32_neon(uchar *destPixels, int dbpl,
const uchar *srcPixels, int sbpl,
int w, int h,
int const_alpha)
{
const uint *src = (const uint *) srcPixels;
uint *dst = (uint *) destPixels;
uint16x8_t half = vdupq_n_u16(0x80);
uint16x8_t full = vdupq_n_u16(0xff);
if (const_alpha == 256) {
#if defined(ENABLE_PIXMAN_DRAWHELPERS)
pixman_composite_over_8888_8888_asm_neon(w, h, (uint32_t *)destPixels, dbpl / 4, (uint32_t *)srcPixels, sbpl / 4);
#else
for (int y=0; y<h; ++y) {
int x = 0;
for (; x < w-3; x += 4) {
if (src[x] | src[x+1] | src[x+2] | src[x+3]) {
uint32x4_t src32 = vld1q_u32((uint32_t *)&src[x]);
uint32x4_t dst32 = vld1q_u32((uint32_t *)&dst[x]);
const uint8x16_t src8 = vreinterpretq_u8_u32(src32);
const uint8x16_t dst8 = vreinterpretq_u8_u32(dst32);
const uint8x8_t src8_low = vget_low_u8(src8);
const uint8x8_t dst8_low = vget_low_u8(dst8);
const uint8x8_t src8_high = vget_high_u8(src8);
const uint8x8_t dst8_high = vget_high_u8(dst8);
const uint16x8_t src16_low = vmovl_u8(src8_low);
const uint16x8_t dst16_low = vmovl_u8(dst8_low);
const uint16x8_t src16_high = vmovl_u8(src8_high);
const uint16x8_t dst16_high = vmovl_u8(dst8_high);
const uint16x8_t result16_low = qvsource_over_u16(src16_low, dst16_low, half, full);
const uint16x8_t result16_high = qvsource_over_u16(src16_high, dst16_high, half, full);
const uint32x2_t result32_low = vreinterpret_u32_u8(vmovn_u16(result16_low));
const uint32x2_t result32_high = vreinterpret_u32_u8(vmovn_u16(result16_high));
vst1q_u32((uint32_t *)&dst[x], vcombine_u32(result32_low, result32_high));
}
}
for (; x<w; ++x) {
uint s = src[x];
if (s >= 0xff000000)
dst[x] = s;
else if (s != 0)
dst[x] = s + BYTE_MUL(dst[x], qAlpha(~s));
}
dst = (quint32 *)(((uchar *) dst) + dbpl);
src = (const quint32 *)(((const uchar *) src) + sbpl);
}
#endif
} else if (const_alpha != 0) {
const_alpha = (const_alpha * 255) >> 8;
uint16x8_t const_alpha16 = vdupq_n_u16(const_alpha);
for (int y = 0; y < h; ++y) {
int x = 0;
for (; x < w-3; x += 4) {
if (src[x] | src[x+1] | src[x+2] | src[x+3]) {
uint32x4_t src32 = vld1q_u32((uint32_t *)&src[x]);
uint32x4_t dst32 = vld1q_u32((uint32_t *)&dst[x]);
const uint8x16_t src8 = vreinterpretq_u8_u32(src32);
const uint8x16_t dst8 = vreinterpretq_u8_u32(dst32);
const uint8x8_t src8_low = vget_low_u8(src8);
const uint8x8_t dst8_low = vget_low_u8(dst8);
const uint8x8_t src8_high = vget_high_u8(src8);
const uint8x8_t dst8_high = vget_high_u8(dst8);
const uint16x8_t src16_low = vmovl_u8(src8_low);
const uint16x8_t dst16_low = vmovl_u8(dst8_low);
const uint16x8_t src16_high = vmovl_u8(src8_high);
const uint16x8_t dst16_high = vmovl_u8(dst8_high);
const uint16x8_t srcalpha16_low = qvbyte_mul_u16(src16_low, const_alpha16, half);
const uint16x8_t srcalpha16_high = qvbyte_mul_u16(src16_high, const_alpha16, half);
const uint16x8_t result16_low = qvsource_over_u16(srcalpha16_low, dst16_low, half, full);
const uint16x8_t result16_high = qvsource_over_u16(srcalpha16_high, dst16_high, half, full);
const uint32x2_t result32_low = vreinterpret_u32_u8(vmovn_u16(result16_low));
const uint32x2_t result32_high = vreinterpret_u32_u8(vmovn_u16(result16_high));
vst1q_u32((uint32_t *)&dst[x], vcombine_u32(result32_low, result32_high));
}
}
for (; x<w; ++x) {
uint s = src[x];
if (s != 0) {
s = BYTE_MUL(s, const_alpha);
dst[x] = s + BYTE_MUL(dst[x], qAlpha(~s));
}
}
dst = (quint32 *)(((uchar *) dst) + dbpl);
src = (const quint32 *)(((const uchar *) src) + sbpl);
}
}
}
// qblendfunctions.cpp
void qt_blend_rgb32_on_rgb32(uchar *destPixels, int dbpl,
const uchar *srcPixels, int sbpl,
int w, int h,
int const_alpha);
void qt_blend_rgb32_on_rgb32_neon(uchar *destPixels, int dbpl,
const uchar *srcPixels, int sbpl,
int w, int h,
int const_alpha)
{
if (const_alpha != 256) {
if (const_alpha != 0) {
const uint *src = (const uint *) srcPixels;
uint *dst = (uint *) destPixels;
uint16x8_t half = vdupq_n_u16(0x80);
const_alpha = (const_alpha * 255) >> 8;
int one_minus_const_alpha = 255 - const_alpha;
uint16x8_t const_alpha16 = vdupq_n_u16(const_alpha);
uint16x8_t one_minus_const_alpha16 = vdupq_n_u16(255 - const_alpha);
for (int y = 0; y < h; ++y) {
int x = 0;
for (; x < w-3; x += 4) {
uint32x4_t src32 = vld1q_u32((uint32_t *)&src[x]);
uint32x4_t dst32 = vld1q_u32((uint32_t *)&dst[x]);
const uint8x16_t src8 = vreinterpretq_u8_u32(src32);
const uint8x16_t dst8 = vreinterpretq_u8_u32(dst32);
const uint8x8_t src8_low = vget_low_u8(src8);
const uint8x8_t dst8_low = vget_low_u8(dst8);
const uint8x8_t src8_high = vget_high_u8(src8);
const uint8x8_t dst8_high = vget_high_u8(dst8);
const uint16x8_t src16_low = vmovl_u8(src8_low);
const uint16x8_t dst16_low = vmovl_u8(dst8_low);
const uint16x8_t src16_high = vmovl_u8(src8_high);
const uint16x8_t dst16_high = vmovl_u8(dst8_high);
const uint16x8_t result16_low = qvinterpolate_pixel_255(src16_low, const_alpha16, dst16_low, one_minus_const_alpha16, half);
const uint16x8_t result16_high = qvinterpolate_pixel_255(src16_high, const_alpha16, dst16_high, one_minus_const_alpha16, half);
const uint32x2_t result32_low = vreinterpret_u32_u8(vmovn_u16(result16_low));
const uint32x2_t result32_high = vreinterpret_u32_u8(vmovn_u16(result16_high));
vst1q_u32((uint32_t *)&dst[x], vcombine_u32(result32_low, result32_high));
}
for (; x<w; ++x) {
dst[x] = INTERPOLATE_PIXEL_255(src[x], const_alpha, dst[x], one_minus_const_alpha);
}
dst = (quint32 *)(((uchar *) dst) + dbpl);
src = (const quint32 *)(((const uchar *) src) + sbpl);
}
}
} else {
qt_blend_rgb32_on_rgb32(destPixels, dbpl, srcPixels, sbpl, w, h, const_alpha);
}
}
#if defined(ENABLE_PIXMAN_DRAWHELPERS)
extern void qt_alphamapblit_quint16(QRasterBuffer *rasterBuffer,
int x, int y, const QRgba64 &color,
const uchar *map,
int mapWidth, int mapHeight, int mapStride,
const QClipData *clip, bool useGammaCorrection);
void qt_alphamapblit_quint16_neon(QRasterBuffer *rasterBuffer,
int x, int y, const QRgba64 &color,
const uchar *bitmap,
int mapWidth, int mapHeight, int mapStride,
const QClipData *clip, bool useGammaCorrection)
{
if (clip || useGammaCorrection) {
qt_alphamapblit_quint16(rasterBuffer, x, y, color, bitmap, mapWidth, mapHeight, mapStride, clip, useGammaCorrection);
return;
}
quint16 *dest = reinterpret_cast<quint16*>(rasterBuffer->scanLine(y)) + x;
const int destStride = rasterBuffer->bytesPerLine() / sizeof(quint16);
uchar *mask = const_cast<uchar *>(bitmap);
const uint c = color.toArgb32();
pixman_composite_over_n_8_0565_asm_neon(mapWidth, mapHeight, dest, destStride, c, 0, mask, mapStride);
}
extern "C" void blend_8_pixels_rgb16_on_rgb16_neon(quint16 *dst, const quint16 *src, int const_alpha);
template <typename SRC, typename BlendFunc>
struct Blend_on_RGB16_SourceAndConstAlpha_Neon {
Blend_on_RGB16_SourceAndConstAlpha_Neon(BlendFunc blender, int const_alpha)
: m_index(0)
, m_blender(blender)
, m_const_alpha(const_alpha)
{
}
inline void write(quint16 *dst, quint32 src)
{
srcBuffer[m_index++] = src;
if (m_index == 8) {
m_blender(dst - 7, srcBuffer, m_const_alpha);
m_index = 0;
}
}
inline void flush(quint16 *dst)
{
if (m_index > 0) {
quint16 dstBuffer[8];
for (int i = 0; i < m_index; ++i)
dstBuffer[i] = dst[i - m_index];
m_blender(dstBuffer, srcBuffer, m_const_alpha);
for (int i = 0; i < m_index; ++i)
dst[i - m_index] = dstBuffer[i];
m_index = 0;
}
}
SRC srcBuffer[8];
int m_index;
BlendFunc m_blender;
int m_const_alpha;
};
template <typename SRC, typename BlendFunc>
Blend_on_RGB16_SourceAndConstAlpha_Neon<SRC, BlendFunc>
Blend_on_RGB16_SourceAndConstAlpha_Neon_create(BlendFunc blender, int const_alpha)
{
return Blend_on_RGB16_SourceAndConstAlpha_Neon<SRC, BlendFunc>(blender, const_alpha);
}
void qt_scale_image_argb32_on_rgb16_neon(uchar *destPixels, int dbpl,
const uchar *srcPixels, int sbpl, int srch,
const QRectF &targetRect,
const QRectF &sourceRect,
const QRect &clip,
int const_alpha)
{
if (const_alpha == 0)
return;
qt_scale_image_16bit<quint32>(destPixels, dbpl, srcPixels, sbpl, srch, targetRect, sourceRect, clip,
Blend_on_RGB16_SourceAndConstAlpha_Neon_create<quint32>(blend_8_pixels_argb32_on_rgb16_neon, const_alpha));
}
void qt_scale_image_rgb16_on_rgb16(uchar *destPixels, int dbpl,
const uchar *srcPixels, int sbpl, int srch,
const QRectF &targetRect,
const QRectF &sourceRect,
const QRect &clip,
int const_alpha);
void qt_scale_image_rgb16_on_rgb16_neon(uchar *destPixels, int dbpl,
const uchar *srcPixels, int sbpl, int srch,
const QRectF &targetRect,
const QRectF &sourceRect,
const QRect &clip,
int const_alpha)
{
if (const_alpha == 0)
return;
if (const_alpha == 256) {
qt_scale_image_rgb16_on_rgb16(destPixels, dbpl, srcPixels, sbpl, srch, targetRect, sourceRect, clip, const_alpha);
return;
}
qt_scale_image_16bit<quint16>(destPixels, dbpl, srcPixels, sbpl, srch, targetRect, sourceRect, clip,
Blend_on_RGB16_SourceAndConstAlpha_Neon_create<quint16>(blend_8_pixels_rgb16_on_rgb16_neon, const_alpha));
}
extern void qt_transform_image_rgb16_on_rgb16(uchar *destPixels, int dbpl,
const uchar *srcPixels, int sbpl,
const QRectF &targetRect,
const QRectF &sourceRect,
const QRect &clip,
const QTransform &targetRectTransform,
int const_alpha);
void qt_transform_image_rgb16_on_rgb16_neon(uchar *destPixels, int dbpl,
const uchar *srcPixels, int sbpl,
const QRectF &targetRect,
const QRectF &sourceRect,
const QRect &clip,
const QTransform &targetRectTransform,
int const_alpha)
{
if (const_alpha == 0)
return;
if (const_alpha == 256) {
qt_transform_image_rgb16_on_rgb16(destPixels, dbpl, srcPixels, sbpl, targetRect, sourceRect, clip, targetRectTransform, const_alpha);
return;
}
qt_transform_image(reinterpret_cast<quint16 *>(destPixels), dbpl,
reinterpret_cast<const quint16 *>(srcPixels), sbpl, targetRect, sourceRect, clip, targetRectTransform,
Blend_on_RGB16_SourceAndConstAlpha_Neon_create<quint16>(blend_8_pixels_rgb16_on_rgb16_neon, const_alpha));
}
void qt_transform_image_argb32_on_rgb16_neon(uchar *destPixels, int dbpl,
const uchar *srcPixels, int sbpl,
const QRectF &targetRect,
const QRectF &sourceRect,
const QRect &clip,
const QTransform &targetRectTransform,
int const_alpha)
{
if (const_alpha == 0)
return;
qt_transform_image(reinterpret_cast<quint16 *>(destPixels), dbpl,
reinterpret_cast<const quint32 *>(srcPixels), sbpl, targetRect, sourceRect, clip, targetRectTransform,
Blend_on_RGB16_SourceAndConstAlpha_Neon_create<quint32>(blend_8_pixels_argb32_on_rgb16_neon, const_alpha));
}
static inline void convert_8_pixels_rgb16_to_argb32(quint32 *dst, const quint16 *src)
{
asm volatile (
"vld1.16 { d0, d1 }, [%[SRC]]\n\t"
/* convert 8 r5g6b5 pixel data from {d0, d1} to planar 8-bit format
and put data into d4 - red, d3 - green, d2 - blue */
"vshrn.u16 d4, q0, #8\n\t"
"vshrn.u16 d3, q0, #3\n\t"
"vsli.u16 q0, q0, #5\n\t"
"vsri.u8 d4, d4, #5\n\t"
"vsri.u8 d3, d3, #6\n\t"
"vshrn.u16 d2, q0, #2\n\t"
/* fill d5 - alpha with 0xff */
"mov r2, #255\n\t"
"vdup.8 d5, r2\n\t"
"vst4.8 { d2, d3, d4, d5 }, [%[DST]]"
: : [DST]"r" (dst), [SRC]"r" (src)
: "memory", "r2", "d0", "d1", "d2", "d3", "d4", "d5"
);
}
uint * QT_FASTCALL qt_destFetchRGB16_neon(uint *buffer, QRasterBuffer *rasterBuffer, int x, int y, int length)
{
const ushort *data = (const ushort *)rasterBuffer->scanLine(y) + x;
int i = 0;
for (; i < length - 7; i += 8)
convert_8_pixels_rgb16_to_argb32(&buffer[i], &data[i]);
if (i < length) {
quint16 srcBuffer[8];
quint32 dstBuffer[8];
int tail = length - i;
for (int j = 0; j < tail; ++j)
srcBuffer[j] = data[i + j];
convert_8_pixels_rgb16_to_argb32(dstBuffer, srcBuffer);
for (int j = 0; j < tail; ++j)
buffer[i + j] = dstBuffer[j];
}
return buffer;
}
static inline void convert_8_pixels_argb32_to_rgb16(quint16 *dst, const quint32 *src)
{
asm volatile (
"vld4.8 { d0, d1, d2, d3 }, [%[SRC]]\n\t"
/* convert to r5g6b5 and store it into {d28, d29} */
"vshll.u8 q14, d2, #8\n\t"
"vshll.u8 q8, d1, #8\n\t"
"vshll.u8 q9, d0, #8\n\t"
"vsri.u16 q14, q8, #5\n\t"
"vsri.u16 q14, q9, #11\n\t"
"vst1.16 { d28, d29 }, [%[DST]]"
: : [DST]"r" (dst), [SRC]"r" (src)
: "memory", "d0", "d1", "d2", "d3", "d16", "d17", "d18", "d19", "d28", "d29"
);
}
void QT_FASTCALL qt_destStoreRGB16_neon(QRasterBuffer *rasterBuffer, int x, int y, const uint *buffer, int length)
{
quint16 *data = (quint16*)rasterBuffer->scanLine(y) + x;
int i = 0;
for (; i < length - 7; i += 8)
convert_8_pixels_argb32_to_rgb16(&data[i], &buffer[i]);
if (i < length) {
quint32 srcBuffer[8];
quint16 dstBuffer[8];
int tail = length - i;
for (int j = 0; j < tail; ++j)
srcBuffer[j] = buffer[i + j];
convert_8_pixels_argb32_to_rgb16(dstBuffer, srcBuffer);
for (int j = 0; j < tail; ++j)
data[i + j] = dstBuffer[j];
}
}
#endif
void QT_FASTCALL comp_func_solid_SourceOver_neon(uint *destPixels, int length, uint color, uint const_alpha)
{
if ((const_alpha & qAlpha(color)) == 255) {
qt_memfill32(destPixels, color, length);
} else {
if (const_alpha != 255)
color = BYTE_MUL(color, const_alpha);
const quint32 minusAlphaOfColor = qAlpha(~color);
int x = 0;
uint32_t *dst = (uint32_t *) destPixels;
const uint32x4_t colorVector = vdupq_n_u32(color);
uint16x8_t half = vdupq_n_u16(0x80);
const uint16x8_t minusAlphaOfColorVector = vdupq_n_u16(minusAlphaOfColor);
for (; x < length-3; x += 4) {
uint32x4_t dstVector = vld1q_u32(&dst[x]);
const uint8x16_t dst8 = vreinterpretq_u8_u32(dstVector);
const uint8x8_t dst8_low = vget_low_u8(dst8);
const uint8x8_t dst8_high = vget_high_u8(dst8);
const uint16x8_t dst16_low = vmovl_u8(dst8_low);
const uint16x8_t dst16_high = vmovl_u8(dst8_high);
const uint16x8_t result16_low = qvbyte_mul_u16(dst16_low, minusAlphaOfColorVector, half);
const uint16x8_t result16_high = qvbyte_mul_u16(dst16_high, minusAlphaOfColorVector, half);
const uint32x2_t result32_low = vreinterpret_u32_u8(vmovn_u16(result16_low));
const uint32x2_t result32_high = vreinterpret_u32_u8(vmovn_u16(result16_high));
uint32x4_t blendedPixels = vcombine_u32(result32_low, result32_high);
uint32x4_t colorPlusBlendedPixels = vaddq_u32(colorVector, blendedPixels);
vst1q_u32(&dst[x], colorPlusBlendedPixels);
}
SIMD_EPILOGUE(x, length, 3)
destPixels[x] = color + BYTE_MUL(destPixels[x], minusAlphaOfColor);
}
}
void QT_FASTCALL comp_func_Plus_neon(uint *dst, const uint *src, int length, uint const_alpha)
{
if (const_alpha == 255) {
uint *const end = dst + length;
uint *const neonEnd = end - 3;
while (dst < neonEnd) {
uint8x16_t vs = vld1q_u8((const uint8_t*)src);
const uint8x16_t vd = vld1q_u8((uint8_t*)dst);
vs = vqaddq_u8(vs, vd);
vst1q_u8((uint8_t*)dst, vs);
src += 4;
dst += 4;
};
while (dst != end) {
*dst = comp_func_Plus_one_pixel(*dst, *src);
++dst;
++src;
}
} else {
int x = 0;
const int one_minus_const_alpha = 255 - const_alpha;
const uint16x8_t constAlphaVector = vdupq_n_u16(const_alpha);
const uint16x8_t oneMinusconstAlphaVector = vdupq_n_u16(one_minus_const_alpha);
const uint16x8_t half = vdupq_n_u16(0x80);
for (; x < length - 3; x += 4) {
const uint32x4_t src32 = vld1q_u32((uint32_t *)&src[x]);
const uint8x16_t src8 = vreinterpretq_u8_u32(src32);
uint8x16_t dst8 = vld1q_u8((uint8_t *)&dst[x]);
uint8x16_t result = vqaddq_u8(dst8, src8);
uint16x8_t result_low = vmovl_u8(vget_low_u8(result));
uint16x8_t result_high = vmovl_u8(vget_high_u8(result));
uint16x8_t dst_low = vmovl_u8(vget_low_u8(dst8));
uint16x8_t dst_high = vmovl_u8(vget_high_u8(dst8));
result_low = qvinterpolate_pixel_255(result_low, constAlphaVector, dst_low, oneMinusconstAlphaVector, half);
result_high = qvinterpolate_pixel_255(result_high, constAlphaVector, dst_high, oneMinusconstAlphaVector, half);
const uint32x2_t result32_low = vreinterpret_u32_u8(vmovn_u16(result_low));
const uint32x2_t result32_high = vreinterpret_u32_u8(vmovn_u16(result_high));
vst1q_u32((uint32_t *)&dst[x], vcombine_u32(result32_low, result32_high));
}
SIMD_EPILOGUE(x, length, 3)
dst[x] = comp_func_Plus_one_pixel_const_alpha(dst[x], src[x], const_alpha, one_minus_const_alpha);
}
}
#if defined(ENABLE_PIXMAN_DRAWHELPERS)
static const int tileSize = 32;
extern "C" void qt_rotate90_16_neon(quint16 *dst, const quint16 *src, int sstride, int dstride, int count);
void qt_memrotate90_16_neon(const uchar *srcPixels, int w, int h, int sstride, uchar *destPixels, int dstride)
{
const ushort *src = (const ushort *)srcPixels;
ushort *dest = (ushort *)destPixels;
sstride /= sizeof(ushort);
dstride /= sizeof(ushort);
const int pack = sizeof(quint32) / sizeof(ushort);
const int unaligned =
qMin(uint((quintptr(dest) & (sizeof(quint32)-1)) / sizeof(ushort)), uint(h));
const int restX = w % tileSize;
const int restY = (h - unaligned) % tileSize;
const int unoptimizedY = restY % pack;
const int numTilesX = w / tileSize + (restX > 0);
const int numTilesY = (h - unaligned) / tileSize + (restY >= pack);
for (int tx = 0; tx < numTilesX; ++tx) {
const int startx = w - tx * tileSize - 1;
const int stopx = qMax(startx - tileSize, 0);
if (unaligned) {
for (int x = startx; x >= stopx; --x) {
ushort *d = dest + (w - x - 1) * dstride;
for (int y = 0; y < unaligned; ++y) {
*d++ = src[y * sstride + x];
}
}
}
for (int ty = 0; ty < numTilesY; ++ty) {
const int starty = ty * tileSize + unaligned;
const int stopy = qMin(starty + tileSize, h - unoptimizedY);
int x = startx;
// qt_rotate90_16_neon writes to eight rows, four pixels at a time
for (; x >= stopx + 7; x -= 8) {
ushort *d = dest + (w - x - 1) * dstride + starty;
const ushort *s = &src[starty * sstride + x - 7];
qt_rotate90_16_neon(d, s, sstride * 2, dstride * 2, stopy - starty);
}
for (; x >= stopx; --x) {
quint32 *d = reinterpret_cast<quint32*>(dest + (w - x - 1) * dstride + starty);
for (int y = starty; y < stopy; y += pack) {
quint32 c = src[y * sstride + x];
for (int i = 1; i < pack; ++i) {
const int shift = (sizeof(int) * 8 / pack * i);
const ushort color = src[(y + i) * sstride + x];
c |= color << shift;
}
*d++ = c;
}
}
}
if (unoptimizedY) {
const int starty = h - unoptimizedY;
for (int x = startx; x >= stopx; --x) {
ushort *d = dest + (w - x - 1) * dstride + starty;
for (int y = starty; y < h; ++y) {
*d++ = src[y * sstride + x];
}
}
}
}
}
extern "C" void qt_rotate270_16_neon(quint16 *dst, const quint16 *src, int sstride, int dstride, int count);
void qt_memrotate270_16_neon(const uchar *srcPixels, int w, int h,
int sstride,
uchar *destPixels, int dstride)
{
const ushort *src = (const ushort *)srcPixels;
ushort *dest = (ushort *)destPixels;
sstride /= sizeof(ushort);
dstride /= sizeof(ushort);
const int pack = sizeof(quint32) / sizeof(ushort);
const int unaligned =
qMin(uint((long(dest) & (sizeof(quint32)-1)) / sizeof(ushort)), uint(h));
const int restX = w % tileSize;
const int restY = (h - unaligned) % tileSize;
const int unoptimizedY = restY % pack;
const int numTilesX = w / tileSize + (restX > 0);
const int numTilesY = (h - unaligned) / tileSize + (restY >= pack);
for (int tx = 0; tx < numTilesX; ++tx) {
const int startx = tx * tileSize;
const int stopx = qMin(startx + tileSize, w);
if (unaligned) {
for (int x = startx; x < stopx; ++x) {
ushort *d = dest + x * dstride;
for (int y = h - 1; y >= h - unaligned; --y) {
*d++ = src[y * sstride + x];
}
}
}
for (int ty = 0; ty < numTilesY; ++ty) {
const int starty = h - 1 - unaligned - ty * tileSize;
const int stopy = qMax(starty - tileSize, unoptimizedY);
int x = startx;
// qt_rotate90_16_neon writes to eight rows, four pixels at a time
for (; x < stopx - 7; x += 8) {
ushort *d = dest + x * dstride + h - 1 - starty;
const ushort *s = &src[starty * sstride + x];
qt_rotate90_16_neon(d + 7 * dstride, s, -sstride * 2, -dstride * 2, starty - stopy);
}
for (; x < stopx; ++x) {
quint32 *d = reinterpret_cast<quint32*>(dest + x * dstride
+ h - 1 - starty);
for (int y = starty; y > stopy; y -= pack) {
quint32 c = src[y * sstride + x];
for (int i = 1; i < pack; ++i) {
const int shift = (sizeof(int) * 8 / pack * i);
const ushort color = src[(y - i) * sstride + x];
c |= color << shift;
}
*d++ = c;
}
}
}
if (unoptimizedY) {
const int starty = unoptimizedY - 1;
for (int x = startx; x < stopx; ++x) {
ushort *d = dest + x * dstride + h - 1 - starty;
for (int y = starty; y >= 0; --y) {
*d++ = src[y * sstride + x];
}
}
}
}
}
#endif
class QSimdNeon
{
public:
typedef int32x4_t Int32x4;
typedef float32x4_t Float32x4;
union Vect_buffer_i { Int32x4 v; int i[4]; };
union Vect_buffer_f { Float32x4 v; float f[4]; };
static inline Float32x4 v_dup(double x) { return vdupq_n_f32(float(x)); }
static inline Float32x4 v_dup(float x) { return vdupq_n_f32(x); }
static inline Int32x4 v_dup(int x) { return vdupq_n_s32(x); }
static inline Int32x4 v_dup(uint x) { return vdupq_n_s32(x); }
static inline Float32x4 v_add(Float32x4 a, Float32x4 b) { return vaddq_f32(a, b); }
static inline Int32x4 v_add(Int32x4 a, Int32x4 b) { return vaddq_s32(a, b); }
static inline Float32x4 v_max(Float32x4 a, Float32x4 b) { return vmaxq_f32(a, b); }
static inline Float32x4 v_min(Float32x4 a, Float32x4 b) { return vminq_f32(a, b); }
static inline Int32x4 v_min_16(Int32x4 a, Int32x4 b) { return vminq_s32(a, b); }
static inline Int32x4 v_and(Int32x4 a, Int32x4 b) { return vandq_s32(a, b); }
static inline Float32x4 v_sub(Float32x4 a, Float32x4 b) { return vsubq_f32(a, b); }
static inline Int32x4 v_sub(Int32x4 a, Int32x4 b) { return vsubq_s32(a, b); }
static inline Float32x4 v_mul(Float32x4 a, Float32x4 b) { return vmulq_f32(a, b); }
static inline Float32x4 v_sqrt(Float32x4 x) { Float32x4 y = vrsqrteq_f32(x); y = vmulq_f32(y, vrsqrtsq_f32(x, vmulq_f32(y, y))); return vmulq_f32(x, y); }
static inline Int32x4 v_toInt(Float32x4 x) { return vcvtq_s32_f32(x); }
static inline Int32x4 v_greaterOrEqual(Float32x4 a, Float32x4 b) { return vreinterpretq_s32_u32(vcgeq_f32(a, b)); }
};
const uint * QT_FASTCALL qt_fetch_radial_gradient_neon(uint *buffer, const Operator *op, const QSpanData *data,
int y, int x, int length)
{
return qt_fetch_radial_gradient_template<QRadialFetchSimd<QSimdNeon>,uint>(buffer, op, data, y, x, length);
}
extern void QT_FASTCALL qt_convert_rgb888_to_rgb32_neon(quint32 *dst, const uchar *src, int len);
const uint * QT_FASTCALL qt_fetchUntransformed_888_neon(uint *buffer, const Operator *, const QSpanData *data,
int y, int x, int length)
{
const uchar *line = data->texture.scanLine(y) + x * 3;
qt_convert_rgb888_to_rgb32_neon(buffer, line, length);
return buffer;
}
#if Q_BYTE_ORDER == Q_LITTLE_ENDIAN
static inline uint32x4_t vrgba2argb(uint32x4_t srcVector)
{
#if defined(Q_PROCESSOR_ARM_64)
const uint8x16_t rgbaMask = { 2, 1, 0, 3, 6, 5, 4, 7, 10, 9, 8, 11, 14, 13, 12, 15};
#else
const uint8x8_t rgbaMask = { 2, 1, 0, 3, 6, 5, 4, 7 };
#endif
#if defined(Q_PROCESSOR_ARM_64)
srcVector = vreinterpretq_u32_u8(vqtbl1q_u8(vreinterpretq_u8_u32(srcVector), rgbaMask));
#else
// no vqtbl1q_u8, so use two vtbl1_u8
const uint8x8_t low = vtbl1_u8(vreinterpret_u8_u32(vget_low_u32(srcVector)), rgbaMask);
const uint8x8_t high = vtbl1_u8(vreinterpret_u8_u32(vget_high_u32(srcVector)), rgbaMask);
srcVector = vcombine_u32(vreinterpret_u32_u8(low), vreinterpret_u32_u8(high));
#endif
return srcVector;
}
template<bool RGBA>
static inline void convertARGBToARGB32PM_neon(uint *buffer, const uint *src, int count)
{
int i = 0;
const uint8x8_t shuffleMask = { 3, 3, 3, 3, 7, 7, 7, 7};
const uint32x4_t blendMask = vdupq_n_u32(0xff000000);
for (; i < count - 3; i += 4) {
uint32x4_t srcVector = vld1q_u32(src + i);
uint32x4_t alphaVector = vshrq_n_u32(srcVector, 24);
#if defined(Q_PROCESSOR_ARM_64)
uint32_t alphaSum = vaddvq_u32(alphaVector);
#else
// no vaddvq_u32
uint32x2_t tmp = vpadd_u32(vget_low_u32(alphaVector), vget_high_u32(alphaVector));
uint32_t alphaSum = vget_lane_u32(vpadd_u32(tmp, tmp), 0);
#endif
if (alphaSum) {
if (alphaSum != 255 * 4) {
if (RGBA)
srcVector = vrgba2argb(srcVector);
const uint8x8_t s1 = vreinterpret_u8_u32(vget_low_u32(srcVector));
const uint8x8_t s2 = vreinterpret_u8_u32(vget_high_u32(srcVector));
const uint8x8_t alpha1 = vtbl1_u8(s1, shuffleMask);
const uint8x8_t alpha2 = vtbl1_u8(s2, shuffleMask);
uint16x8_t src1 = vmull_u8(s1, alpha1);
uint16x8_t src2 = vmull_u8(s2, alpha2);
src1 = vsraq_n_u16(src1, src1, 8);
src2 = vsraq_n_u16(src2, src2, 8);
const uint8x8_t d1 = vrshrn_n_u16(src1, 8);
const uint8x8_t d2 = vrshrn_n_u16(src2, 8);
const uint32x4_t d = vbslq_u32(blendMask, srcVector, vreinterpretq_u32_u8(vcombine_u8(d1, d2)));
vst1q_u32(buffer + i, d);
} else {
if (RGBA)
vst1q_u32(buffer + i, vrgba2argb(srcVector));
else if (buffer != src)
vst1q_u32(buffer + i, srcVector);
}
} else {
vst1q_u32(buffer + i, vdupq_n_u32(0));
}
}
SIMD_EPILOGUE(i, count, 3) {
uint v = qPremultiply(src[i]);
buffer[i] = RGBA ? RGBA2ARGB(v) : v;
}
}
template<bool RGBA>
static inline void convertARGB32ToRGBA64PM_neon(QRgba64 *buffer, const uint *src, int count)
{
if (count <= 0)
return;
const uint8x8_t shuffleMask = { 3, 3, 3, 3, 7, 7, 7, 7};
const uint64x2_t blendMask = vdupq_n_u64(Q_UINT64_C(0xffff000000000000));
int i = 0;
for (; i < count-3; i += 4) {
uint32x4_t vs32 = vld1q_u32(src + i);
uint32x4_t alphaVector = vshrq_n_u32(vs32, 24);
#if defined(Q_PROCESSOR_ARM_64)
uint32_t alphaSum = vaddvq_u32(alphaVector);
#else
// no vaddvq_u32
uint32x2_t tmp = vpadd_u32(vget_low_u32(alphaVector), vget_high_u32(alphaVector));
uint32_t alphaSum = vget_lane_u32(vpadd_u32(tmp, tmp), 0);
#endif
if (alphaSum) {
if (!RGBA)
vs32 = vrgba2argb(vs32);
const uint8x16_t vs8 = vreinterpretq_u8_u32(vs32);
const uint8x16x2_t v = vzipq_u8(vs8, vs8);
if (alphaSum != 255 * 4) {
const uint8x8_t s1 = vreinterpret_u8_u32(vget_low_u32(vs32));
const uint8x8_t s2 = vreinterpret_u8_u32(vget_high_u32(vs32));
const uint8x8_t alpha1 = vtbl1_u8(s1, shuffleMask);
const uint8x8_t alpha2 = vtbl1_u8(s2, shuffleMask);
uint16x8_t src1 = vmull_u8(s1, alpha1);
uint16x8_t src2 = vmull_u8(s2, alpha2);
// convert from 0->(255x255) to 0->(255x257)
src1 = vsraq_n_u16(src1, src1, 7);
src2 = vsraq_n_u16(src2, src2, 7);
// now restore alpha from the trivial conversion
const uint64x2_t d1 = vbslq_u64(blendMask, vreinterpretq_u64_u8(v.val[0]), vreinterpretq_u64_u16(src1));
const uint64x2_t d2 = vbslq_u64(blendMask, vreinterpretq_u64_u8(v.val[1]), vreinterpretq_u64_u16(src2));
vst1q_u16((uint16_t *)buffer, vreinterpretq_u16_u64(d1));
buffer += 2;
vst1q_u16((uint16_t *)buffer, vreinterpretq_u16_u64(d2));
buffer += 2;
} else {
vst1q_u16((uint16_t *)buffer, vreinterpretq_u16_u8(v.val[0]));
buffer += 2;
vst1q_u16((uint16_t *)buffer, vreinterpretq_u16_u8(v.val[1]));
buffer += 2;
}
} else {
vst1q_u16((uint16_t *)buffer, vdupq_n_u16(0));
buffer += 2;
vst1q_u16((uint16_t *)buffer, vdupq_n_u16(0));
buffer += 2;
}
}
SIMD_EPILOGUE(i, count, 3) {
uint s = src[i];
if (RGBA)
s = RGBA2ARGB(s);
*buffer++ = QRgba64::fromArgb32(s).premultiplied();
}
}
static inline float32x4_t reciprocal_mul_ps(float32x4_t a, float mul)
{
float32x4_t ia = vrecpeq_f32(a); // estimate 1/a
ia = vmulq_f32(vrecpsq_f32(a, ia), vmulq_n_f32(ia, mul)); // estimate improvement step * mul
return ia;
}
template<bool RGBA, bool RGBx>
static inline void convertARGBFromARGB32PM_neon(uint *buffer, const uint *src, int count)
{
int i = 0;
const uint32x4_t alphaMask = vdupq_n_u32(0xff000000);
for (; i < count - 3; i += 4) {
uint32x4_t srcVector = vld1q_u32(src + i);
uint32x4_t alphaVector = vshrq_n_u32(srcVector, 24);
#if defined(Q_PROCESSOR_ARM_64)
uint32_t alphaSum = vaddvq_u32(alphaVector);
#else
// no vaddvq_u32
uint32x2_t tmp = vpadd_u32(vget_low_u32(alphaVector), vget_high_u32(alphaVector));
uint32_t alphaSum = vget_lane_u32(vpadd_u32(tmp, tmp), 0);
#endif
if (alphaSum) {
if (alphaSum != 255 * 4) {
if (RGBA)
srcVector = vrgba2argb(srcVector);
const float32x4_t a = vcvtq_f32_u32(alphaVector);
const float32x4_t ia = reciprocal_mul_ps(a, 255.0f);
// Convert 4x(4xU8) to 4x(4xF32)
uint16x8_t tmp1 = vmovl_u8(vget_low_u8(vreinterpretq_u8_u32(srcVector)));
uint16x8_t tmp3 = vmovl_u8(vget_high_u8(vreinterpretq_u8_u32(srcVector)));
float32x4_t src1 = vcvtq_f32_u32(vmovl_u16(vget_low_u16(tmp1)));
float32x4_t src2 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(tmp1)));
float32x4_t src3 = vcvtq_f32_u32(vmovl_u16(vget_low_u16(tmp3)));
float32x4_t src4 = vcvtq_f32_u32(vmovl_u16(vget_high_u16(tmp3)));
src1 = vmulq_lane_f32(src1, vget_low_f32(ia), 0);
src2 = vmulq_lane_f32(src2, vget_low_f32(ia), 1);
src3 = vmulq_lane_f32(src3, vget_high_f32(ia), 0);
src4 = vmulq_lane_f32(src4, vget_high_f32(ia), 1);
// Convert 4x(4xF32) back to 4x(4xU8) (over a 8.1 fixed point format to get rounding)
tmp1 = vcombine_u16(vrshrn_n_u32(vcvtq_n_u32_f32(src1, 1), 1),
vrshrn_n_u32(vcvtq_n_u32_f32(src2, 1), 1));
tmp3 = vcombine_u16(vrshrn_n_u32(vcvtq_n_u32_f32(src3, 1), 1),
vrshrn_n_u32(vcvtq_n_u32_f32(src4, 1), 1));
uint32x4_t dstVector = vreinterpretq_u32_u8(vcombine_u8(vmovn_u16(tmp1), vmovn_u16(tmp3)));
// Overwrite any undefined results from alpha==0 with zeros:
#if defined(Q_PROCESSOR_ARM_64)
uint32x4_t srcVectorAlphaMask = vceqzq_u32(alphaVector);
#else
uint32x4_t srcVectorAlphaMask = vceqq_u32(alphaVector, vdupq_n_u32(0));
#endif
dstVector = vbicq_u32(dstVector, srcVectorAlphaMask);
// Restore or mask alpha values:
if (RGBx)
dstVector = vorrq_u32(alphaMask, dstVector);
else
dstVector = vbslq_u32(alphaMask, srcVector, dstVector);
vst1q_u32(&buffer[i], dstVector);
} else {
// 4xAlpha==255, no change except if we are doing RGBA->ARGB:
if (RGBA)
vst1q_u32(&buffer[i], vrgba2argb(srcVector));
else if (buffer != src)
vst1q_u32(&buffer[i], srcVector);
}
} else {
// 4xAlpha==0, always zero, except if output is RGBx:
if (RGBx)
vst1q_u32(&buffer[i], alphaMask);
else
vst1q_u32(&buffer[i], vdupq_n_u32(0));
}
}
SIMD_EPILOGUE(i, count, 3) {
uint v = qUnpremultiply(src[i]);
if (RGBx)
v = 0xff000000 | v;
if (RGBA)
v = ARGB2RGBA(v);
buffer[i] = v;
}
}
void QT_FASTCALL convertARGB32ToARGB32PM_neon(uint *buffer, int count, const QVector<QRgb> *)
{
convertARGBToARGB32PM_neon<false>(buffer, buffer, count);
}
void QT_FASTCALL convertRGBA8888ToARGB32PM_neon(uint *buffer, int count, const QVector<QRgb> *)
{
convertARGBToARGB32PM_neon<true>(buffer, buffer, count);
}
const uint *QT_FASTCALL fetchARGB32ToARGB32PM_neon(uint *buffer, const uchar *src, int index, int count,
const QVector<QRgb> *, QDitherInfo *)
{
convertARGBToARGB32PM_neon<false>(buffer, reinterpret_cast<const uint *>(src) + index, count);
return buffer;
}
const uint *QT_FASTCALL fetchRGBA8888ToARGB32PM_neon(uint *buffer, const uchar *src, int index, int count,
const QVector<QRgb> *, QDitherInfo *)
{
convertARGBToARGB32PM_neon<true>(buffer, reinterpret_cast<const uint *>(src) + index, count);
return buffer;
}
const QRgba64 * QT_FASTCALL convertARGB32ToRGBA64PM_neon(QRgba64 *buffer, const uint *src, int count,
const QVector<QRgb> *, QDitherInfo *)
{
convertARGB32ToRGBA64PM_neon<false>(buffer, src, count);
return buffer;
}
const QRgba64 * QT_FASTCALL convertRGBA8888ToRGBA64PM_neon(QRgba64 *buffer, const uint *src, int count,
const QVector<QRgb> *, QDitherInfo *)
{
convertARGB32ToRGBA64PM_neon<true>(buffer, src, count);
return buffer;
}
const QRgba64 *QT_FASTCALL fetchARGB32ToRGBA64PM_neon(QRgba64 *buffer, const uchar *src, int index, int count,
const QVector<QRgb> *, QDitherInfo *)
{
convertARGB32ToRGBA64PM_neon<false>(buffer, reinterpret_cast<const uint *>(src) + index, count);
return buffer;
}
const QRgba64 *QT_FASTCALL fetchRGBA8888ToRGBA64PM_neon(QRgba64 *buffer, const uchar *src, int index, int count,
const QVector<QRgb> *, QDitherInfo *)
{
convertARGB32ToRGBA64PM_neon<true>(buffer, reinterpret_cast<const uint *>(src) + index, count);
return buffer;
}
void QT_FASTCALL storeRGB32FromARGB32PM_neon(uchar *dest, const uint *src, int index, int count,
const QVector<QRgb> *, QDitherInfo *)
{
uint *d = reinterpret_cast<uint *>(dest) + index;
convertARGBFromARGB32PM_neon<false,true>(d, src, count);
}
void QT_FASTCALL storeARGB32FromARGB32PM_neon(uchar *dest, const uint *src, int index, int count,
const QVector<QRgb> *, QDitherInfo *)
{
uint *d = reinterpret_cast<uint *>(dest) + index;
convertARGBFromARGB32PM_neon<false,false>(d, src, count);
}
void QT_FASTCALL storeRGBA8888FromARGB32PM_neon(uchar *dest, const uint *src, int index, int count,
const QVector<QRgb> *, QDitherInfo *)
{
uint *d = reinterpret_cast<uint *>(dest) + index;
convertARGBFromARGB32PM_neon<true,false>(d, src, count);
}
void QT_FASTCALL storeRGBXFromARGB32PM_neon(uchar *dest, const uint *src, int index, int count,
const QVector<QRgb> *, QDitherInfo *)
{
uint *d = reinterpret_cast<uint *>(dest) + index;
convertARGBFromARGB32PM_neon<true,true>(d, src, count);
}
#endif // Q_BYTE_ORDER == Q_LITTLE_ENDIAN
QT_END_NAMESPACE
#endif // __ARM_NEON__