| /**************************************************************************** |
| ** |
| ** Copyright (C) 2016 The Qt Company Ltd. |
| ** Contact: https://www.qt.io/licensing/ |
| ** |
| ** This file is part of the QtGui module of the Qt Toolkit. |
| ** |
| ** $QT_BEGIN_LICENSE:LGPL$ |
| ** Commercial License Usage |
| ** Licensees holding valid commercial Qt licenses may use this file in |
| ** accordance with the commercial license agreement provided with the |
| ** Software or, alternatively, in accordance with the terms contained in |
| ** a written agreement between you and The Qt Company. For licensing terms |
| ** and conditions see https://www.qt.io/terms-conditions. For further |
| ** information use the contact form at https://www.qt.io/contact-us. |
| ** |
| ** GNU Lesser General Public License Usage |
| ** Alternatively, this file may be used under the terms of the GNU Lesser |
| ** General Public License version 3 as published by the Free Software |
| ** Foundation and appearing in the file LICENSE.LGPL3 included in the |
| ** packaging of this file. Please review the following information to |
| ** ensure the GNU Lesser General Public License version 3 requirements |
| ** will be met: https://www.gnu.org/licenses/lgpl-3.0.html. |
| ** |
| ** GNU General Public License Usage |
| ** Alternatively, this file may be used under the terms of the GNU |
| ** General Public License version 2.0 or (at your option) the GNU General |
| ** Public license version 3 or any later version approved by the KDE Free |
| ** Qt Foundation. The licenses are as published by the Free Software |
| ** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3 |
| ** included in the packaging of this file. Please review the following |
| ** information to ensure the GNU General Public License requirements will |
| ** be met: https://www.gnu.org/licenses/gpl-2.0.html and |
| ** https://www.gnu.org/licenses/gpl-3.0.html. |
| ** |
| ** $QT_END_LICENSE$ |
| ** |
| ****************************************************************************/ |
| |
| #include "qpainterpath.h" |
| #include "qpainterpath_p.h" |
| |
| #include <qbitmap.h> |
| #include <qdebug.h> |
| #include <qiodevice.h> |
| #include <qlist.h> |
| #include <qmatrix.h> |
| #include <qpen.h> |
| #include <qpolygon.h> |
| #include <qtextlayout.h> |
| #include <qvarlengtharray.h> |
| #include <qmath.h> |
| |
| #include <private/qbezier_p.h> |
| #include <private/qfontengine_p.h> |
| #include <private/qnumeric_p.h> |
| #include <private/qobject_p.h> |
| #include <private/qpathclipper_p.h> |
| #include <private/qstroker_p.h> |
| #include <private/qtextengine_p.h> |
| |
| #include <limits.h> |
| |
| #if 0 |
| #include <performance.h> |
| #else |
| #define PM_INIT |
| #define PM_MEASURE(x) |
| #define PM_DISPLAY |
| #endif |
| |
| QT_BEGIN_NAMESPACE |
| |
| static inline bool isValidCoord(qreal c) |
| { |
| if (sizeof(qreal) >= sizeof(double)) |
| return qIsFinite(c) && fabs(c) < 1e128; |
| else |
| return qIsFinite(c) && fabsf(float(c)) < 1e16f; |
| } |
| |
| static bool hasValidCoords(QPointF p) |
| { |
| return isValidCoord(p.x()) && isValidCoord(p.y()); |
| } |
| |
| static bool hasValidCoords(QRectF r) |
| { |
| return isValidCoord(r.x()) && isValidCoord(r.y()) && isValidCoord(r.width()) && isValidCoord(r.height()); |
| } |
| |
| struct QPainterPathPrivateDeleter |
| { |
| static inline void cleanup(QPainterPathPrivate *d) |
| { |
| // note - we must downcast to QPainterPathData since QPainterPathPrivate |
| // has a non-virtual destructor! |
| if (d && !d->ref.deref()) |
| delete static_cast<QPainterPathData *>(d); |
| } |
| }; |
| |
| // This value is used to determine the length of control point vectors |
| // when approximating arc segments as curves. The factor is multiplied |
| // with the radius of the circle. |
| |
| // #define QPP_DEBUG |
| // #define QPP_STROKE_DEBUG |
| //#define QPP_FILLPOLYGONS_DEBUG |
| |
| QPainterPath qt_stroke_dash(const QPainterPath &path, qreal *dashes, int dashCount); |
| |
| void qt_find_ellipse_coords(const QRectF &r, qreal angle, qreal length, |
| QPointF* startPoint, QPointF *endPoint) |
| { |
| if (r.isNull()) { |
| if (startPoint) |
| *startPoint = QPointF(); |
| if (endPoint) |
| *endPoint = QPointF(); |
| return; |
| } |
| |
| qreal w2 = r.width() / 2; |
| qreal h2 = r.height() / 2; |
| |
| qreal angles[2] = { angle, angle + length }; |
| QPointF *points[2] = { startPoint, endPoint }; |
| |
| for (int i = 0; i < 2; ++i) { |
| if (!points[i]) |
| continue; |
| |
| qreal theta = angles[i] - 360 * qFloor(angles[i] / 360); |
| qreal t = theta / 90; |
| // truncate |
| int quadrant = int(t); |
| t -= quadrant; |
| |
| t = qt_t_for_arc_angle(90 * t); |
| |
| // swap x and y? |
| if (quadrant & 1) |
| t = 1 - t; |
| |
| qreal a, b, c, d; |
| QBezier::coefficients(t, a, b, c, d); |
| QPointF p(a + b + c*QT_PATH_KAPPA, d + c + b*QT_PATH_KAPPA); |
| |
| // left quadrants |
| if (quadrant == 1 || quadrant == 2) |
| p.rx() = -p.x(); |
| |
| // top quadrants |
| if (quadrant == 0 || quadrant == 1) |
| p.ry() = -p.y(); |
| |
| *points[i] = r.center() + QPointF(w2 * p.x(), h2 * p.y()); |
| } |
| } |
| |
| #ifdef QPP_DEBUG |
| static void qt_debug_path(const QPainterPath &path) |
| { |
| const char *names[] = { |
| "MoveTo ", |
| "LineTo ", |
| "CurveTo ", |
| "CurveToData" |
| }; |
| |
| printf("\nQPainterPath: elementCount=%d\n", path.elementCount()); |
| for (int i=0; i<path.elementCount(); ++i) { |
| const QPainterPath::Element &e = path.elementAt(i); |
| Q_ASSERT(e.type >= 0 && e.type <= QPainterPath::CurveToDataElement); |
| printf(" - %3d:: %s, (%.2f, %.2f)\n", i, names[e.type], e.x, e.y); |
| } |
| } |
| #endif |
| |
| /*! |
| \class QPainterPath |
| \ingroup painting |
| \ingroup shared |
| \inmodule QtGui |
| |
| \brief The QPainterPath class provides a container for painting operations, |
| enabling graphical shapes to be constructed and reused. |
| |
| A painter path is an object composed of a number of graphical |
| building blocks, such as rectangles, ellipses, lines, and curves. |
| Building blocks can be joined in closed subpaths, for example as a |
| rectangle or an ellipse. A closed path has coinciding start and |
| end points. Or they can exist independently as unclosed subpaths, |
| such as lines and curves. |
| |
| A QPainterPath object can be used for filling, outlining, and |
| clipping. To generate fillable outlines for a given painter path, |
| use the QPainterPathStroker class. The main advantage of painter |
| paths over normal drawing operations is that complex shapes only |
| need to be created once; then they can be drawn many times using |
| only calls to the QPainter::drawPath() function. |
| |
| QPainterPath provides a collection of functions that can be used |
| to obtain information about the path and its elements. In addition |
| it is possible to reverse the order of the elements using the |
| toReversed() function. There are also several functions to convert |
| this painter path object into a polygon representation. |
| |
| \tableofcontents |
| |
| \section1 Composing a QPainterPath |
| |
| A QPainterPath object can be constructed as an empty path, with a |
| given start point, or as a copy of another QPainterPath object. |
| Once created, lines and curves can be added to the path using the |
| lineTo(), arcTo(), cubicTo() and quadTo() functions. The lines and |
| curves stretch from the currentPosition() to the position passed |
| as argument. |
| |
| The currentPosition() of the QPainterPath object is always the end |
| position of the last subpath that was added (or the initial start |
| point). Use the moveTo() function to move the currentPosition() |
| without adding a component. The moveTo() function implicitly |
| starts a new subpath, and closes the previous one. Another way of |
| starting a new subpath is to call the closeSubpath() function |
| which closes the current path by adding a line from the |
| currentPosition() back to the path's start position. Note that the |
| new path will have (0, 0) as its initial currentPosition(). |
| |
| QPainterPath class also provides several convenience functions to |
| add closed subpaths to a painter path: addEllipse(), addPath(), |
| addRect(), addRegion() and addText(). The addPolygon() function |
| adds an \e unclosed subpath. In fact, these functions are all |
| collections of moveTo(), lineTo() and cubicTo() operations. |
| |
| In addition, a path can be added to the current path using the |
| connectPath() function. But note that this function will connect |
| the last element of the current path to the first element of given |
| one by adding a line. |
| |
| Below is a code snippet that shows how a QPainterPath object can |
| be used: |
| |
| \table 70% |
| \row |
| \li \inlineimage qpainterpath-construction.png |
| \li |
| \snippet code/src_gui_painting_qpainterpath.cpp 0 |
| \endtable |
| |
| The painter path is initially empty when constructed. We first add |
| a rectangle, which is a closed subpath. Then we add two bezier |
| curves which together form a closed subpath even though they are |
| not closed individually. Finally we draw the entire path. The path |
| is filled using the default fill rule, Qt::OddEvenFill. Qt |
| provides two methods for filling paths: |
| |
| \table |
| \header |
| \li Qt::OddEvenFill |
| \li Qt::WindingFill |
| \row |
| \li \inlineimage qt-fillrule-oddeven.png |
| \li \inlineimage qt-fillrule-winding.png |
| \endtable |
| |
| See the Qt::FillRule documentation for the definition of the |
| rules. A painter path's currently set fill rule can be retrieved |
| using the fillRule() function, and altered using the setFillRule() |
| function. |
| |
| \section1 QPainterPath Information |
| |
| The QPainterPath class provides a collection of functions that |
| returns information about the path and its elements. |
| |
| The currentPosition() function returns the end point of the last |
| subpath that was added (or the initial start point). The |
| elementAt() function can be used to retrieve the various subpath |
| elements, the \e number of elements can be retrieved using the |
| elementCount() function, and the isEmpty() function tells whether |
| this QPainterPath object contains any elements at all. |
| |
| The controlPointRect() function returns the rectangle containing |
| all the points and control points in this path. This function is |
| significantly faster to compute than the exact boundingRect() |
| which returns the bounding rectangle of this painter path with |
| floating point precision. |
| |
| Finally, QPainterPath provides the contains() function which can |
| be used to determine whether a given point or rectangle is inside |
| the path, and the intersects() function which determines if any of |
| the points inside a given rectangle also are inside this path. |
| |
| \section1 QPainterPath Conversion |
| |
| For compatibility reasons, it might be required to simplify the |
| representation of a painter path: QPainterPath provides the |
| toFillPolygon(), toFillPolygons() and toSubpathPolygons() |
| functions which convert the painter path into a polygon. The |
| toFillPolygon() returns the painter path as one single polygon, |
| while the two latter functions return a list of polygons. |
| |
| The toFillPolygons() and toSubpathPolygons() functions are |
| provided because it is usually faster to draw several small |
| polygons than to draw one large polygon, even though the total |
| number of points drawn is the same. The difference between the two |
| is the \e number of polygons they return: The toSubpathPolygons() |
| creates one polygon for each subpath regardless of intersecting |
| subpaths (i.e. overlapping bounding rectangles), while the |
| toFillPolygons() functions creates only one polygon for |
| overlapping subpaths. |
| |
| The toFillPolygon() and toFillPolygons() functions first convert |
| all the subpaths to polygons, then uses a rewinding technique to |
| make sure that overlapping subpaths can be filled using the |
| correct fill rule. Note that rewinding inserts additional lines in |
| the polygon so the outline of the fill polygon does not match the |
| outline of the path. |
| |
| \section1 Examples |
| |
| Qt provides the \l {painting/painterpaths}{Painter Paths Example} |
| and the \l {painting/deform}{Vector Deformation example} which are |
| located in Qt's example directory. |
| |
| The \l {painting/painterpaths}{Painter Paths Example} shows how |
| painter paths can be used to build complex shapes for rendering |
| and lets the user experiment with the filling and stroking. The |
| \l {painting/deform}{Vector Deformation Example} shows how to use |
| QPainterPath to draw text. |
| |
| \table |
| \header |
| \li \l {painting/painterpaths}{Painter Paths Example} |
| \li \l {painting/deform}{Vector Deformation Example} |
| \row |
| \li \inlineimage qpainterpath-example.png |
| \li \inlineimage qpainterpath-demo.png |
| \endtable |
| |
| \sa QPainterPathStroker, QPainter, QRegion, {Painter Paths Example} |
| */ |
| |
| /*! |
| \enum QPainterPath::ElementType |
| |
| This enum describes the types of elements used to connect vertices |
| in subpaths. |
| |
| Note that elements added as closed subpaths using the |
| addEllipse(), addPath(), addPolygon(), addRect(), addRegion() and |
| addText() convenience functions, is actually added to the path as |
| a collection of separate elements using the moveTo(), lineTo() and |
| cubicTo() functions. |
| |
| \value MoveToElement A new subpath. See also moveTo(). |
| \value LineToElement A line. See also lineTo(). |
| \value CurveToElement A curve. See also cubicTo() and quadTo(). |
| \value CurveToDataElement The extra data required to describe a curve in |
| a CurveToElement element. |
| |
| \sa elementAt(), elementCount() |
| */ |
| |
| /*! |
| \class QPainterPath::Element |
| \inmodule QtGui |
| |
| \brief The QPainterPath::Element class specifies the position and |
| type of a subpath. |
| |
| Once a QPainterPath object is constructed, subpaths like lines and |
| curves can be added to the path (creating |
| QPainterPath::LineToElement and QPainterPath::CurveToElement |
| components). |
| |
| The lines and curves stretch from the currentPosition() to the |
| position passed as argument. The currentPosition() of the |
| QPainterPath object is always the end position of the last subpath |
| that was added (or the initial start point). The moveTo() function |
| can be used to move the currentPosition() without adding a line or |
| curve, creating a QPainterPath::MoveToElement component. |
| |
| \sa QPainterPath |
| */ |
| |
| /*! |
| \variable QPainterPath::Element::x |
| \brief the x coordinate of the element's position. |
| |
| \sa {operator QPointF()} |
| */ |
| |
| /*! |
| \variable QPainterPath::Element::y |
| \brief the y coordinate of the element's position. |
| |
| \sa {operator QPointF()} |
| */ |
| |
| /*! |
| \variable QPainterPath::Element::type |
| \brief the type of element |
| |
| \sa isCurveTo(), isLineTo(), isMoveTo() |
| */ |
| |
| /*! |
| \fn bool QPainterPath::Element::operator==(const Element &other) const |
| \since 4.2 |
| |
| Returns \c true if this element is equal to \a other; |
| otherwise returns \c false. |
| |
| \sa operator!=() |
| */ |
| |
| /*! |
| \fn bool QPainterPath::Element::operator!=(const Element &other) const |
| \since 4.2 |
| |
| Returns \c true if this element is not equal to \a other; |
| otherwise returns \c false. |
| |
| \sa operator==() |
| */ |
| |
| /*! |
| \fn bool QPainterPath::Element::isCurveTo () const |
| |
| Returns \c true if the element is a curve, otherwise returns \c false. |
| |
| \sa type, QPainterPath::CurveToElement |
| */ |
| |
| /*! |
| \fn bool QPainterPath::Element::isLineTo () const |
| |
| Returns \c true if the element is a line, otherwise returns \c false. |
| |
| \sa type, QPainterPath::LineToElement |
| */ |
| |
| /*! |
| \fn bool QPainterPath::Element::isMoveTo () const |
| |
| Returns \c true if the element is moving the current position, |
| otherwise returns \c false. |
| |
| \sa type, QPainterPath::MoveToElement |
| */ |
| |
| /*! |
| \fn QPainterPath::Element::operator QPointF () const |
| |
| Returns the element's position. |
| |
| \sa x, y |
| */ |
| |
| /*! |
| \fn void QPainterPath::addEllipse(qreal x, qreal y, qreal width, qreal height) |
| \overload |
| |
| Creates an ellipse within the bounding rectangle defined by its top-left |
| corner at (\a x, \a y), \a width and \a height, and adds it to the |
| painter path as a closed subpath. |
| */ |
| |
| /*! |
| \since 4.4 |
| |
| \fn void QPainterPath::addEllipse(const QPointF ¢er, qreal rx, qreal ry) |
| \overload |
| |
| Creates an ellipse positioned at \a{center} with radii \a{rx} and \a{ry}, |
| and adds it to the painter path as a closed subpath. |
| */ |
| |
| /*! |
| \fn void QPainterPath::addText(qreal x, qreal y, const QFont &font, const QString &text) |
| \overload |
| |
| Adds the given \a text to this path as a set of closed subpaths created |
| from the \a font supplied. The subpaths are positioned so that the left |
| end of the text's baseline lies at the point specified by (\a x, \a y). |
| */ |
| |
| /*! |
| \fn int QPainterPath::elementCount() const |
| |
| Returns the number of path elements in the painter path. |
| |
| \sa ElementType, elementAt(), isEmpty() |
| */ |
| |
| int QPainterPath::elementCount() const |
| { |
| return d_ptr ? d_ptr->elements.size() : 0; |
| } |
| |
| /*! |
| \fn QPainterPath::Element QPainterPath::elementAt(int index) const |
| |
| Returns the element at the given \a index in the painter path. |
| |
| \sa ElementType, elementCount(), isEmpty() |
| */ |
| |
| QPainterPath::Element QPainterPath::elementAt(int i) const |
| { |
| Q_ASSERT(d_ptr); |
| Q_ASSERT(i >= 0 && i < elementCount()); |
| return d_ptr->elements.at(i); |
| } |
| |
| /*! |
| \fn void QPainterPath::setElementPositionAt(int index, qreal x, qreal y) |
| \since 4.2 |
| |
| Sets the x and y coordinate of the element at index \a index to \a |
| x and \a y. |
| */ |
| |
| void QPainterPath::setElementPositionAt(int i, qreal x, qreal y) |
| { |
| Q_ASSERT(d_ptr); |
| Q_ASSERT(i >= 0 && i < elementCount()); |
| detach(); |
| QPainterPath::Element &e = d_ptr->elements[i]; |
| e.x = x; |
| e.y = y; |
| } |
| |
| |
| /*### |
| \fn QPainterPath &QPainterPath::operator +=(const QPainterPath &other) |
| |
| Appends the \a other painter path to this painter path and returns a |
| reference to the result. |
| */ |
| |
| /*! |
| Constructs an empty QPainterPath object. |
| */ |
| QPainterPath::QPainterPath() noexcept |
| : d_ptr(0) |
| { |
| } |
| |
| /*! |
| \fn QPainterPath::QPainterPath(const QPainterPath &path) |
| |
| Creates a QPainterPath object that is a copy of the given \a path. |
| |
| \sa operator=() |
| */ |
| QPainterPath::QPainterPath(const QPainterPath &other) |
| : d_ptr(other.d_ptr.data()) |
| { |
| if (d_ptr) |
| d_ptr->ref.ref(); |
| } |
| |
| /*! |
| Creates a QPainterPath object with the given \a startPoint as its |
| current position. |
| */ |
| |
| QPainterPath::QPainterPath(const QPointF &startPoint) |
| : d_ptr(new QPainterPathData) |
| { |
| Element e = { startPoint.x(), startPoint.y(), MoveToElement }; |
| d_func()->elements << e; |
| } |
| |
| void QPainterPath::detach() |
| { |
| if (d_ptr->ref.loadRelaxed() != 1) |
| detach_helper(); |
| setDirty(true); |
| } |
| |
| /*! |
| \internal |
| */ |
| void QPainterPath::detach_helper() |
| { |
| QPainterPathPrivate *data = new QPainterPathData(*d_func()); |
| d_ptr.reset(data); |
| } |
| |
| /*! |
| \internal |
| */ |
| void QPainterPath::ensureData_helper() |
| { |
| QPainterPathPrivate *data = new QPainterPathData; |
| data->elements.reserve(16); |
| QPainterPath::Element e = { 0, 0, QPainterPath::MoveToElement }; |
| data->elements << e; |
| d_ptr.reset(data); |
| Q_ASSERT(d_ptr != 0); |
| } |
| |
| /*! |
| \fn QPainterPath &QPainterPath::operator=(const QPainterPath &path) |
| |
| Assigns the given \a path to this painter path. |
| |
| \sa QPainterPath() |
| */ |
| QPainterPath &QPainterPath::operator=(const QPainterPath &other) |
| { |
| if (other.d_func() != d_func()) { |
| QPainterPathPrivate *data = other.d_func(); |
| if (data) |
| data->ref.ref(); |
| d_ptr.reset(data); |
| } |
| return *this; |
| } |
| |
| /*! |
| \fn QPainterPath &QPainterPath::operator=(QPainterPath &&other) |
| |
| Move-assigns \a other to this QPainterPath instance. |
| |
| \since 5.2 |
| */ |
| |
| /*! |
| \fn void QPainterPath::swap(QPainterPath &other) |
| \since 4.8 |
| |
| Swaps painter path \a other with this painter path. This operation is very |
| fast and never fails. |
| */ |
| |
| /*! |
| Destroys this QPainterPath object. |
| */ |
| QPainterPath::~QPainterPath() |
| { |
| } |
| |
| /*! |
| Clears the path elements stored. |
| |
| This allows the path to reuse previous memory allocations. |
| |
| \sa reserve(), capacity() |
| \since 5.13 |
| */ |
| void QPainterPath::clear() |
| { |
| if (!d_ptr) |
| return; |
| |
| detach(); |
| d_func()->clear(); |
| d_func()->elements.append( {0, 0, MoveToElement} ); |
| } |
| |
| /*! |
| Reserves a given amount of elements in QPainterPath's internal memory. |
| |
| Attempts to allocate memory for at least \a size elements. |
| |
| \sa clear(), capacity(), QVector::reserve() |
| \since 5.13 |
| */ |
| void QPainterPath::reserve(int size) |
| { |
| Q_D(QPainterPath); |
| if ((!d && size > 0) || (d && d->elements.capacity() < size)) { |
| ensureData(); |
| detach(); |
| d_func()->elements.reserve(size); |
| } |
| } |
| |
| /*! |
| Returns the number of elements allocated by the QPainterPath. |
| |
| \sa clear(), reserve() |
| \since 5.13 |
| */ |
| int QPainterPath::capacity() const |
| { |
| Q_D(QPainterPath); |
| if (d) |
| return d->elements.capacity(); |
| |
| return 0; |
| } |
| |
| /*! |
| Closes the current subpath by drawing a line to the beginning of |
| the subpath, automatically starting a new path. The current point |
| of the new path is (0, 0). |
| |
| If the subpath does not contain any elements, this function does |
| nothing. |
| |
| \sa moveTo(), {QPainterPath#Composing a QPainterPath}{Composing |
| a QPainterPath} |
| */ |
| void QPainterPath::closeSubpath() |
| { |
| #ifdef QPP_DEBUG |
| printf("QPainterPath::closeSubpath()\n"); |
| #endif |
| if (isEmpty()) |
| return; |
| detach(); |
| |
| d_func()->close(); |
| } |
| |
| /*! |
| \fn void QPainterPath::moveTo(qreal x, qreal y) |
| |
| \overload |
| |
| Moves the current position to (\a{x}, \a{y}) and starts a new |
| subpath, implicitly closing the previous path. |
| */ |
| |
| /*! |
| \fn void QPainterPath::moveTo(const QPointF &point) |
| |
| Moves the current point to the given \a point, implicitly starting |
| a new subpath and closing the previous one. |
| |
| \sa closeSubpath(), {QPainterPath#Composing a |
| QPainterPath}{Composing a QPainterPath} |
| */ |
| void QPainterPath::moveTo(const QPointF &p) |
| { |
| #ifdef QPP_DEBUG |
| printf("QPainterPath::moveTo() (%.2f,%.2f)\n", p.x(), p.y()); |
| #endif |
| |
| if (!hasValidCoords(p)) { |
| #ifndef QT_NO_DEBUG |
| qWarning("QPainterPath::moveTo: Adding point with invalid coordinates, ignoring call"); |
| #endif |
| return; |
| } |
| |
| ensureData(); |
| detach(); |
| |
| QPainterPathData *d = d_func(); |
| Q_ASSERT(!d->elements.isEmpty()); |
| |
| d->require_moveTo = false; |
| |
| if (d->elements.constLast().type == MoveToElement) { |
| d->elements.last().x = p.x(); |
| d->elements.last().y = p.y(); |
| } else { |
| Element elm = { p.x(), p.y(), MoveToElement }; |
| d->elements.append(elm); |
| } |
| d->cStart = d->elements.size() - 1; |
| } |
| |
| /*! |
| \fn void QPainterPath::lineTo(qreal x, qreal y) |
| |
| \overload |
| |
| Draws a line from the current position to the point (\a{x}, |
| \a{y}). |
| */ |
| |
| /*! |
| \fn void QPainterPath::lineTo(const QPointF &endPoint) |
| |
| Adds a straight line from the current position to the given \a |
| endPoint. After the line is drawn, the current position is updated |
| to be at the end point of the line. |
| |
| \sa addPolygon(), addRect(), {QPainterPath#Composing a |
| QPainterPath}{Composing a QPainterPath} |
| */ |
| void QPainterPath::lineTo(const QPointF &p) |
| { |
| #ifdef QPP_DEBUG |
| printf("QPainterPath::lineTo() (%.2f,%.2f)\n", p.x(), p.y()); |
| #endif |
| |
| if (!hasValidCoords(p)) { |
| #ifndef QT_NO_DEBUG |
| qWarning("QPainterPath::lineTo: Adding point with invalid coordinates, ignoring call"); |
| #endif |
| return; |
| } |
| |
| ensureData(); |
| detach(); |
| |
| QPainterPathData *d = d_func(); |
| Q_ASSERT(!d->elements.isEmpty()); |
| d->maybeMoveTo(); |
| if (p == QPointF(d->elements.constLast())) |
| return; |
| Element elm = { p.x(), p.y(), LineToElement }; |
| d->elements.append(elm); |
| |
| d->convex = d->elements.size() == 3 || (d->elements.size() == 4 && d->isClosed()); |
| } |
| |
| /*! |
| \fn void QPainterPath::cubicTo(qreal c1X, qreal c1Y, qreal c2X, |
| qreal c2Y, qreal endPointX, qreal endPointY); |
| |
| \overload |
| |
| Adds a cubic Bezier curve between the current position and the end |
| point (\a{endPointX}, \a{endPointY}) with control points specified |
| by (\a{c1X}, \a{c1Y}) and (\a{c2X}, \a{c2Y}). |
| */ |
| |
| /*! |
| \fn void QPainterPath::cubicTo(const QPointF &c1, const QPointF &c2, const QPointF &endPoint) |
| |
| Adds a cubic Bezier curve between the current position and the |
| given \a endPoint using the control points specified by \a c1, and |
| \a c2. |
| |
| After the curve is added, the current position is updated to be at |
| the end point of the curve. |
| |
| \table 100% |
| \row |
| \li \inlineimage qpainterpath-cubicto.png |
| \li |
| \snippet code/src_gui_painting_qpainterpath.cpp 1 |
| \endtable |
| |
| \sa quadTo(), {QPainterPath#Composing a QPainterPath}{Composing |
| a QPainterPath} |
| */ |
| void QPainterPath::cubicTo(const QPointF &c1, const QPointF &c2, const QPointF &e) |
| { |
| #ifdef QPP_DEBUG |
| printf("QPainterPath::cubicTo() (%.2f,%.2f), (%.2f,%.2f), (%.2f,%.2f)\n", |
| c1.x(), c1.y(), c2.x(), c2.y(), e.x(), e.y()); |
| #endif |
| |
| if (!hasValidCoords(c1) || !hasValidCoords(c2) || !hasValidCoords(e)) { |
| #ifndef QT_NO_DEBUG |
| qWarning("QPainterPath::cubicTo: Adding point with invalid coordinates, ignoring call"); |
| #endif |
| return; |
| } |
| |
| ensureData(); |
| detach(); |
| |
| QPainterPathData *d = d_func(); |
| Q_ASSERT(!d->elements.isEmpty()); |
| |
| |
| // Abort on empty curve as a stroker cannot handle this and the |
| // curve is irrelevant anyway. |
| if (d->elements.constLast() == c1 && c1 == c2 && c2 == e) |
| return; |
| |
| d->maybeMoveTo(); |
| |
| Element ce1 = { c1.x(), c1.y(), CurveToElement }; |
| Element ce2 = { c2.x(), c2.y(), CurveToDataElement }; |
| Element ee = { e.x(), e.y(), CurveToDataElement }; |
| d->elements << ce1 << ce2 << ee; |
| } |
| |
| /*! |
| \fn void QPainterPath::quadTo(qreal cx, qreal cy, qreal endPointX, qreal endPointY); |
| |
| \overload |
| |
| Adds a quadratic Bezier curve between the current point and the endpoint |
| (\a{endPointX}, \a{endPointY}) with the control point specified by |
| (\a{cx}, \a{cy}). |
| */ |
| |
| /*! |
| \fn void QPainterPath::quadTo(const QPointF &c, const QPointF &endPoint) |
| |
| Adds a quadratic Bezier curve between the current position and the |
| given \a endPoint with the control point specified by \a c. |
| |
| After the curve is added, the current point is updated to be at |
| the end point of the curve. |
| |
| \sa cubicTo(), {QPainterPath#Composing a QPainterPath}{Composing a |
| QPainterPath} |
| */ |
| void QPainterPath::quadTo(const QPointF &c, const QPointF &e) |
| { |
| #ifdef QPP_DEBUG |
| printf("QPainterPath::quadTo() (%.2f,%.2f), (%.2f,%.2f)\n", |
| c.x(), c.y(), e.x(), e.y()); |
| #endif |
| |
| if (!hasValidCoords(c) || !hasValidCoords(e)) { |
| #ifndef QT_NO_DEBUG |
| qWarning("QPainterPath::quadTo: Adding point with invalid coordinates, ignoring call"); |
| #endif |
| return; |
| } |
| |
| ensureData(); |
| detach(); |
| |
| Q_D(QPainterPath); |
| Q_ASSERT(!d->elements.isEmpty()); |
| const QPainterPath::Element &elm = d->elements.at(elementCount()-1); |
| QPointF prev(elm.x, elm.y); |
| |
| // Abort on empty curve as a stroker cannot handle this and the |
| // curve is irrelevant anyway. |
| if (prev == c && c == e) |
| return; |
| |
| QPointF c1((prev.x() + 2*c.x()) / 3, (prev.y() + 2*c.y()) / 3); |
| QPointF c2((e.x() + 2*c.x()) / 3, (e.y() + 2*c.y()) / 3); |
| cubicTo(c1, c2, e); |
| } |
| |
| /*! |
| \fn void QPainterPath::arcTo(qreal x, qreal y, qreal width, qreal |
| height, qreal startAngle, qreal sweepLength) |
| |
| \overload |
| |
| Creates an arc that occupies the rectangle QRectF(\a x, \a y, \a |
| width, \a height), beginning at the specified \a startAngle and |
| extending \a sweepLength degrees counter-clockwise. |
| |
| */ |
| |
| /*! |
| \fn void QPainterPath::arcTo(const QRectF &rectangle, qreal startAngle, qreal sweepLength) |
| |
| Creates an arc that occupies the given \a rectangle, beginning at |
| the specified \a startAngle and extending \a sweepLength degrees |
| counter-clockwise. |
| |
| Angles are specified in degrees. Clockwise arcs can be specified |
| using negative angles. |
| |
| Note that this function connects the starting point of the arc to |
| the current position if they are not already connected. After the |
| arc has been added, the current position is the last point in |
| arc. To draw a line back to the first point, use the |
| closeSubpath() function. |
| |
| \table 100% |
| \row |
| \li \inlineimage qpainterpath-arcto.png |
| \li |
| \snippet code/src_gui_painting_qpainterpath.cpp 2 |
| \endtable |
| |
| \sa arcMoveTo(), addEllipse(), QPainter::drawArc(), QPainter::drawPie(), |
| {QPainterPath#Composing a QPainterPath}{Composing a |
| QPainterPath} |
| */ |
| void QPainterPath::arcTo(const QRectF &rect, qreal startAngle, qreal sweepLength) |
| { |
| #ifdef QPP_DEBUG |
| printf("QPainterPath::arcTo() (%.2f, %.2f, %.2f, %.2f, angle=%.2f, sweep=%.2f\n", |
| rect.x(), rect.y(), rect.width(), rect.height(), startAngle, sweepLength); |
| #endif |
| |
| if (!hasValidCoords(rect) || !isValidCoord(startAngle) || !isValidCoord(sweepLength)) { |
| #ifndef QT_NO_DEBUG |
| qWarning("QPainterPath::arcTo: Adding point with invalid coordinates, ignoring call"); |
| #endif |
| return; |
| } |
| |
| if (rect.isNull()) |
| return; |
| |
| ensureData(); |
| detach(); |
| |
| int point_count; |
| QPointF pts[15]; |
| QPointF curve_start = qt_curves_for_arc(rect, startAngle, sweepLength, pts, &point_count); |
| |
| lineTo(curve_start); |
| for (int i=0; i<point_count; i+=3) { |
| cubicTo(pts[i].x(), pts[i].y(), |
| pts[i+1].x(), pts[i+1].y(), |
| pts[i+2].x(), pts[i+2].y()); |
| } |
| |
| } |
| |
| |
| /*! |
| \fn void QPainterPath::arcMoveTo(qreal x, qreal y, qreal width, qreal height, qreal angle) |
| \overload |
| \since 4.2 |
| |
| Creates a move to that lies on the arc that occupies the |
| QRectF(\a x, \a y, \a width, \a height) at \a angle. |
| */ |
| |
| |
| /*! |
| \fn void QPainterPath::arcMoveTo(const QRectF &rectangle, qreal angle) |
| \since 4.2 |
| |
| Creates a move to that lies on the arc that occupies the given \a |
| rectangle at \a angle. |
| |
| Angles are specified in degrees. Clockwise arcs can be specified |
| using negative angles. |
| |
| \sa moveTo(), arcTo() |
| */ |
| |
| void QPainterPath::arcMoveTo(const QRectF &rect, qreal angle) |
| { |
| if (rect.isNull()) |
| return; |
| |
| QPointF pt; |
| qt_find_ellipse_coords(rect, angle, 0, &pt, 0); |
| moveTo(pt); |
| } |
| |
| |
| |
| /*! |
| \fn QPointF QPainterPath::currentPosition() const |
| |
| Returns the current position of the path. |
| */ |
| QPointF QPainterPath::currentPosition() const |
| { |
| return !d_ptr || d_func()->elements.isEmpty() |
| ? QPointF() |
| : QPointF(d_func()->elements.constLast().x, d_func()->elements.constLast().y); |
| } |
| |
| |
| /*! |
| \fn void QPainterPath::addRect(qreal x, qreal y, qreal width, qreal height) |
| |
| \overload |
| |
| Adds a rectangle at position (\a{x}, \a{y}), with the given \a |
| width and \a height, as a closed subpath. |
| */ |
| |
| /*! |
| \fn void QPainterPath::addRect(const QRectF &rectangle) |
| |
| Adds the given \a rectangle to this path as a closed subpath. |
| |
| The \a rectangle is added as a clockwise set of lines. The painter |
| path's current position after the \a rectangle has been added is |
| at the top-left corner of the rectangle. |
| |
| \table 100% |
| \row |
| \li \inlineimage qpainterpath-addrectangle.png |
| \li |
| \snippet code/src_gui_painting_qpainterpath.cpp 3 |
| \endtable |
| |
| \sa addRegion(), lineTo(), {QPainterPath#Composing a |
| QPainterPath}{Composing a QPainterPath} |
| */ |
| void QPainterPath::addRect(const QRectF &r) |
| { |
| if (!hasValidCoords(r)) { |
| #ifndef QT_NO_DEBUG |
| qWarning("QPainterPath::addRect: Adding point with invalid coordinates, ignoring call"); |
| #endif |
| return; |
| } |
| |
| if (r.isNull()) |
| return; |
| |
| ensureData(); |
| detach(); |
| |
| bool first = d_func()->elements.size() < 2; |
| |
| moveTo(r.x(), r.y()); |
| |
| Element l1 = { r.x() + r.width(), r.y(), LineToElement }; |
| Element l2 = { r.x() + r.width(), r.y() + r.height(), LineToElement }; |
| Element l3 = { r.x(), r.y() + r.height(), LineToElement }; |
| Element l4 = { r.x(), r.y(), LineToElement }; |
| |
| d_func()->elements << l1 << l2 << l3 << l4; |
| d_func()->require_moveTo = true; |
| d_func()->convex = first; |
| } |
| |
| /*! |
| Adds the given \a polygon to the path as an (unclosed) subpath. |
| |
| Note that the current position after the polygon has been added, |
| is the last point in \a polygon. To draw a line back to the first |
| point, use the closeSubpath() function. |
| |
| \table 100% |
| \row |
| \li \inlineimage qpainterpath-addpolygon.png |
| \li |
| \snippet code/src_gui_painting_qpainterpath.cpp 4 |
| \endtable |
| |
| \sa lineTo(), {QPainterPath#Composing a QPainterPath}{Composing |
| a QPainterPath} |
| */ |
| void QPainterPath::addPolygon(const QPolygonF &polygon) |
| { |
| if (polygon.isEmpty()) |
| return; |
| |
| ensureData(); |
| detach(); |
| |
| moveTo(polygon.constFirst()); |
| for (int i=1; i<polygon.size(); ++i) { |
| Element elm = { polygon.at(i).x(), polygon.at(i).y(), LineToElement }; |
| d_func()->elements << elm; |
| } |
| } |
| |
| /*! |
| \fn void QPainterPath::addEllipse(const QRectF &boundingRectangle) |
| |
| Creates an ellipse within the specified \a boundingRectangle |
| and adds it to the painter path as a closed subpath. |
| |
| The ellipse is composed of a clockwise curve, starting and |
| finishing at zero degrees (the 3 o'clock position). |
| |
| \table 100% |
| \row |
| \li \inlineimage qpainterpath-addellipse.png |
| \li |
| \snippet code/src_gui_painting_qpainterpath.cpp 5 |
| \endtable |
| |
| \sa arcTo(), QPainter::drawEllipse(), {QPainterPath#Composing a |
| QPainterPath}{Composing a QPainterPath} |
| */ |
| void QPainterPath::addEllipse(const QRectF &boundingRect) |
| { |
| if (!hasValidCoords(boundingRect)) { |
| #ifndef QT_NO_DEBUG |
| qWarning("QPainterPath::addEllipse: Adding point with invalid coordinates, ignoring call"); |
| #endif |
| return; |
| } |
| |
| if (boundingRect.isNull()) |
| return; |
| |
| ensureData(); |
| detach(); |
| |
| bool first = d_func()->elements.size() < 2; |
| |
| QPointF pts[12]; |
| int point_count; |
| QPointF start = qt_curves_for_arc(boundingRect, 0, -360, pts, &point_count); |
| |
| moveTo(start); |
| cubicTo(pts[0], pts[1], pts[2]); // 0 -> 270 |
| cubicTo(pts[3], pts[4], pts[5]); // 270 -> 180 |
| cubicTo(pts[6], pts[7], pts[8]); // 180 -> 90 |
| cubicTo(pts[9], pts[10], pts[11]); // 90 - >0 |
| d_func()->require_moveTo = true; |
| |
| d_func()->convex = first; |
| } |
| |
| /*! |
| \fn void QPainterPath::addText(const QPointF &point, const QFont &font, const QString &text) |
| |
| Adds the given \a text to this path as a set of closed subpaths |
| created from the \a font supplied. The subpaths are positioned so |
| that the left end of the text's baseline lies at the specified \a |
| point. |
| |
| \table 100% |
| \row |
| \li \inlineimage qpainterpath-addtext.png |
| \li |
| \snippet code/src_gui_painting_qpainterpath.cpp 6 |
| \endtable |
| |
| \sa QPainter::drawText(), {QPainterPath#Composing a |
| QPainterPath}{Composing a QPainterPath} |
| */ |
| void QPainterPath::addText(const QPointF &point, const QFont &f, const QString &text) |
| { |
| if (text.isEmpty()) |
| return; |
| |
| ensureData(); |
| detach(); |
| |
| QTextLayout layout(text, f); |
| layout.setCacheEnabled(true); |
| QTextEngine *eng = layout.engine(); |
| layout.beginLayout(); |
| QTextLine line = layout.createLine(); |
| Q_UNUSED(line); |
| layout.endLayout(); |
| const QScriptLine &sl = eng->lines[0]; |
| if (!sl.length || !eng->layoutData) |
| return; |
| |
| int nItems = eng->layoutData->items.size(); |
| |
| qreal x(point.x()); |
| qreal y(point.y()); |
| |
| QVarLengthArray<int> visualOrder(nItems); |
| QVarLengthArray<uchar> levels(nItems); |
| for (int i = 0; i < nItems; ++i) |
| levels[i] = eng->layoutData->items.at(i).analysis.bidiLevel; |
| QTextEngine::bidiReorder(nItems, levels.data(), visualOrder.data()); |
| |
| for (int i = 0; i < nItems; ++i) { |
| int item = visualOrder[i]; |
| const QScriptItem &si = eng->layoutData->items.at(item); |
| |
| if (si.analysis.flags < QScriptAnalysis::TabOrObject) { |
| QGlyphLayout glyphs = eng->shapedGlyphs(&si); |
| QFontEngine *fe = f.d->engineForScript(si.analysis.script); |
| Q_ASSERT(fe); |
| fe->addOutlineToPath(x, y, glyphs, this, |
| si.analysis.bidiLevel % 2 |
| ? QTextItem::RenderFlags(QTextItem::RightToLeft) |
| : QTextItem::RenderFlags(0)); |
| |
| const qreal lw = fe->lineThickness().toReal(); |
| if (f.d->underline) { |
| qreal pos = fe->underlinePosition().toReal(); |
| addRect(x, y + pos, si.width.toReal(), lw); |
| } |
| if (f.d->overline) { |
| qreal pos = fe->ascent().toReal() + 1; |
| addRect(x, y - pos, si.width.toReal(), lw); |
| } |
| if (f.d->strikeOut) { |
| qreal pos = fe->ascent().toReal() / 3; |
| addRect(x, y - pos, si.width.toReal(), lw); |
| } |
| } |
| x += si.width.toReal(); |
| } |
| } |
| |
| /*! |
| \fn void QPainterPath::addPath(const QPainterPath &path) |
| |
| Adds the given \a path to \e this path as a closed subpath. |
| |
| \sa connectPath(), {QPainterPath#Composing a |
| QPainterPath}{Composing a QPainterPath} |
| */ |
| void QPainterPath::addPath(const QPainterPath &other) |
| { |
| if (other.isEmpty()) |
| return; |
| |
| ensureData(); |
| detach(); |
| |
| QPainterPathData *d = reinterpret_cast<QPainterPathData *>(d_func()); |
| // Remove last moveto so we don't get multiple moveto's |
| if (d->elements.constLast().type == MoveToElement) |
| d->elements.remove(d->elements.size()-1); |
| |
| // Locate where our own current subpath will start after the other path is added. |
| int cStart = d->elements.size() + other.d_func()->cStart; |
| d->elements += other.d_func()->elements; |
| d->cStart = cStart; |
| |
| d->require_moveTo = other.d_func()->isClosed(); |
| } |
| |
| |
| /*! |
| \fn void QPainterPath::connectPath(const QPainterPath &path) |
| |
| Connects the given \a path to \e this path by adding a line from the |
| last element of this path to the first element of the given path. |
| |
| \sa addPath(), {QPainterPath#Composing a QPainterPath}{Composing |
| a QPainterPath} |
| */ |
| void QPainterPath::connectPath(const QPainterPath &other) |
| { |
| if (other.isEmpty()) |
| return; |
| |
| ensureData(); |
| detach(); |
| |
| QPainterPathData *d = reinterpret_cast<QPainterPathData *>(d_func()); |
| // Remove last moveto so we don't get multiple moveto's |
| if (d->elements.constLast().type == MoveToElement) |
| d->elements.remove(d->elements.size()-1); |
| |
| // Locate where our own current subpath will start after the other path is added. |
| int cStart = d->elements.size() + other.d_func()->cStart; |
| int first = d->elements.size(); |
| d->elements += other.d_func()->elements; |
| |
| if (first != 0) |
| d->elements[first].type = LineToElement; |
| |
| // avoid duplicate points |
| if (first > 0 && QPointF(d->elements.at(first)) == QPointF(d->elements.at(first - 1))) { |
| d->elements.remove(first--); |
| --cStart; |
| } |
| |
| if (cStart != first) |
| d->cStart = cStart; |
| } |
| |
| /*! |
| Adds the given \a region to the path by adding each rectangle in |
| the region as a separate closed subpath. |
| |
| \sa addRect(), {QPainterPath#Composing a QPainterPath}{Composing |
| a QPainterPath} |
| */ |
| void QPainterPath::addRegion(const QRegion ®ion) |
| { |
| ensureData(); |
| detach(); |
| |
| for (const QRect &rect : region) |
| addRect(rect); |
| } |
| |
| |
| /*! |
| Returns the painter path's currently set fill rule. |
| |
| \sa setFillRule() |
| */ |
| Qt::FillRule QPainterPath::fillRule() const |
| { |
| return isEmpty() ? Qt::OddEvenFill : d_func()->fillRule; |
| } |
| |
| /*! |
| \fn void QPainterPath::setFillRule(Qt::FillRule fillRule) |
| |
| Sets the fill rule of the painter path to the given \a |
| fillRule. Qt provides two methods for filling paths: |
| |
| \table |
| \header |
| \li Qt::OddEvenFill (default) |
| \li Qt::WindingFill |
| \row |
| \li \inlineimage qt-fillrule-oddeven.png |
| \li \inlineimage qt-fillrule-winding.png |
| \endtable |
| |
| \sa fillRule() |
| */ |
| void QPainterPath::setFillRule(Qt::FillRule fillRule) |
| { |
| ensureData(); |
| if (d_func()->fillRule == fillRule) |
| return; |
| detach(); |
| |
| d_func()->fillRule = fillRule; |
| } |
| |
| #define QT_BEZIER_A(bezier, coord) 3 * (-bezier.coord##1 \ |
| + 3*bezier.coord##2 \ |
| - 3*bezier.coord##3 \ |
| +bezier.coord##4) |
| |
| #define QT_BEZIER_B(bezier, coord) 6 * (bezier.coord##1 \ |
| - 2*bezier.coord##2 \ |
| + bezier.coord##3) |
| |
| #define QT_BEZIER_C(bezier, coord) 3 * (- bezier.coord##1 \ |
| + bezier.coord##2) |
| |
| #define QT_BEZIER_CHECK_T(bezier, t) \ |
| if (t >= 0 && t <= 1) { \ |
| QPointF p(b.pointAt(t)); \ |
| if (p.x() < minx) minx = p.x(); \ |
| else if (p.x() > maxx) maxx = p.x(); \ |
| if (p.y() < miny) miny = p.y(); \ |
| else if (p.y() > maxy) maxy = p.y(); \ |
| } |
| |
| |
| static QRectF qt_painterpath_bezier_extrema(const QBezier &b) |
| { |
| qreal minx, miny, maxx, maxy; |
| |
| // initialize with end points |
| if (b.x1 < b.x4) { |
| minx = b.x1; |
| maxx = b.x4; |
| } else { |
| minx = b.x4; |
| maxx = b.x1; |
| } |
| if (b.y1 < b.y4) { |
| miny = b.y1; |
| maxy = b.y4; |
| } else { |
| miny = b.y4; |
| maxy = b.y1; |
| } |
| |
| // Update for the X extrema |
| { |
| qreal ax = QT_BEZIER_A(b, x); |
| qreal bx = QT_BEZIER_B(b, x); |
| qreal cx = QT_BEZIER_C(b, x); |
| // specialcase quadratic curves to avoid div by zero |
| if (qFuzzyIsNull(ax)) { |
| |
| // linear curves are covered by initialization. |
| if (!qFuzzyIsNull(bx)) { |
| qreal t = -cx / bx; |
| QT_BEZIER_CHECK_T(b, t); |
| } |
| |
| } else { |
| const qreal tx = bx * bx - 4 * ax * cx; |
| |
| if (tx >= 0) { |
| qreal temp = qSqrt(tx); |
| qreal rcp = 1 / (2 * ax); |
| qreal t1 = (-bx + temp) * rcp; |
| QT_BEZIER_CHECK_T(b, t1); |
| |
| qreal t2 = (-bx - temp) * rcp; |
| QT_BEZIER_CHECK_T(b, t2); |
| } |
| } |
| } |
| |
| // Update for the Y extrema |
| { |
| qreal ay = QT_BEZIER_A(b, y); |
| qreal by = QT_BEZIER_B(b, y); |
| qreal cy = QT_BEZIER_C(b, y); |
| |
| // specialcase quadratic curves to avoid div by zero |
| if (qFuzzyIsNull(ay)) { |
| |
| // linear curves are covered by initialization. |
| if (!qFuzzyIsNull(by)) { |
| qreal t = -cy / by; |
| QT_BEZIER_CHECK_T(b, t); |
| } |
| |
| } else { |
| const qreal ty = by * by - 4 * ay * cy; |
| |
| if (ty > 0) { |
| qreal temp = qSqrt(ty); |
| qreal rcp = 1 / (2 * ay); |
| qreal t1 = (-by + temp) * rcp; |
| QT_BEZIER_CHECK_T(b, t1); |
| |
| qreal t2 = (-by - temp) * rcp; |
| QT_BEZIER_CHECK_T(b, t2); |
| } |
| } |
| } |
| return QRectF(minx, miny, maxx - minx, maxy - miny); |
| } |
| |
| /*! |
| Returns the bounding rectangle of this painter path as a rectangle with |
| floating point precision. |
| |
| \sa controlPointRect() |
| */ |
| QRectF QPainterPath::boundingRect() const |
| { |
| if (!d_ptr) |
| return QRectF(); |
| QPainterPathData *d = d_func(); |
| |
| if (d->dirtyBounds) |
| computeBoundingRect(); |
| return d->bounds; |
| } |
| |
| /*! |
| Returns the rectangle containing all the points and control points |
| in this path. |
| |
| This function is significantly faster to compute than the exact |
| boundingRect(), and the returned rectangle is always a superset of |
| the rectangle returned by boundingRect(). |
| |
| \sa boundingRect() |
| */ |
| QRectF QPainterPath::controlPointRect() const |
| { |
| if (!d_ptr) |
| return QRectF(); |
| QPainterPathData *d = d_func(); |
| |
| if (d->dirtyControlBounds) |
| computeControlPointRect(); |
| return d->controlBounds; |
| } |
| |
| |
| /*! |
| \fn bool QPainterPath::isEmpty() const |
| |
| Returns \c true if either there are no elements in this path, or if the only |
| element is a MoveToElement; otherwise returns \c false. |
| |
| \sa elementCount() |
| */ |
| |
| bool QPainterPath::isEmpty() const |
| { |
| return !d_ptr || (d_ptr->elements.size() == 1 && d_ptr->elements.first().type == MoveToElement); |
| } |
| |
| /*! |
| Creates and returns a reversed copy of the path. |
| |
| It is the order of the elements that is reversed: If a |
| QPainterPath is composed by calling the moveTo(), lineTo() and |
| cubicTo() functions in the specified order, the reversed copy is |
| composed by calling cubicTo(), lineTo() and moveTo(). |
| */ |
| QPainterPath QPainterPath::toReversed() const |
| { |
| Q_D(const QPainterPath); |
| QPainterPath rev; |
| |
| if (isEmpty()) { |
| rev = *this; |
| return rev; |
| } |
| |
| rev.moveTo(d->elements.at(d->elements.size()-1).x, d->elements.at(d->elements.size()-1).y); |
| |
| for (int i=d->elements.size()-1; i>=1; --i) { |
| const QPainterPath::Element &elm = d->elements.at(i); |
| const QPainterPath::Element &prev = d->elements.at(i-1); |
| switch (elm.type) { |
| case LineToElement: |
| rev.lineTo(prev.x, prev.y); |
| break; |
| case MoveToElement: |
| rev.moveTo(prev.x, prev.y); |
| break; |
| case CurveToDataElement: |
| { |
| Q_ASSERT(i>=3); |
| const QPainterPath::Element &cp1 = d->elements.at(i-2); |
| const QPainterPath::Element &sp = d->elements.at(i-3); |
| Q_ASSERT(prev.type == CurveToDataElement); |
| Q_ASSERT(cp1.type == CurveToElement); |
| rev.cubicTo(prev.x, prev.y, cp1.x, cp1.y, sp.x, sp.y); |
| i -= 2; |
| break; |
| } |
| default: |
| Q_ASSERT(!"qt_reversed_path"); |
| break; |
| } |
| } |
| //qt_debug_path(rev); |
| return rev; |
| } |
| |
| /*! |
| Converts the path into a list of polygons using the QTransform |
| \a matrix, and returns the list. |
| |
| This function creates one polygon for each subpath regardless of |
| intersecting subpaths (i.e. overlapping bounding rectangles). To |
| make sure that such overlapping subpaths are filled correctly, use |
| the toFillPolygons() function instead. |
| |
| \sa toFillPolygons(), toFillPolygon(), {QPainterPath#QPainterPath |
| Conversion}{QPainterPath Conversion} |
| */ |
| QList<QPolygonF> QPainterPath::toSubpathPolygons(const QTransform &matrix) const |
| { |
| |
| Q_D(const QPainterPath); |
| QList<QPolygonF> flatCurves; |
| if (isEmpty()) |
| return flatCurves; |
| |
| QPolygonF current; |
| for (int i=0; i<elementCount(); ++i) { |
| const QPainterPath::Element &e = d->elements.at(i); |
| switch (e.type) { |
| case QPainterPath::MoveToElement: |
| if (current.size() > 1) |
| flatCurves += current; |
| current.clear(); |
| current.reserve(16); |
| current += QPointF(e.x, e.y) * matrix; |
| break; |
| case QPainterPath::LineToElement: |
| current += QPointF(e.x, e.y) * matrix; |
| break; |
| case QPainterPath::CurveToElement: { |
| Q_ASSERT(d->elements.at(i+1).type == QPainterPath::CurveToDataElement); |
| Q_ASSERT(d->elements.at(i+2).type == QPainterPath::CurveToDataElement); |
| QBezier bezier = QBezier::fromPoints(QPointF(d->elements.at(i-1).x, d->elements.at(i-1).y) * matrix, |
| QPointF(e.x, e.y) * matrix, |
| QPointF(d->elements.at(i+1).x, d->elements.at(i+1).y) * matrix, |
| QPointF(d->elements.at(i+2).x, d->elements.at(i+2).y) * matrix); |
| bezier.addToPolygon(¤t); |
| i+=2; |
| break; |
| } |
| case QPainterPath::CurveToDataElement: |
| Q_ASSERT(!"QPainterPath::toSubpathPolygons(), bad element type"); |
| break; |
| } |
| } |
| |
| if (current.size()>1) |
| flatCurves += current; |
| |
| return flatCurves; |
| } |
| |
| /*! |
| \overload |
| */ |
| QList<QPolygonF> QPainterPath::toSubpathPolygons(const QMatrix &matrix) const |
| { |
| return toSubpathPolygons(QTransform(matrix)); |
| } |
| |
| /*! |
| Converts the path into a list of polygons using the |
| QTransform \a matrix, and returns the list. |
| |
| The function differs from the toFillPolygon() function in that it |
| creates several polygons. It is provided because it is usually |
| faster to draw several small polygons than to draw one large |
| polygon, even though the total number of points drawn is the same. |
| |
| The toFillPolygons() function differs from the toSubpathPolygons() |
| function in that it create only polygon for subpaths that have |
| overlapping bounding rectangles. |
| |
| Like the toFillPolygon() function, this function uses a rewinding |
| technique to make sure that overlapping subpaths can be filled |
| using the correct fill rule. Note that rewinding inserts addition |
| lines in the polygons so the outline of the fill polygon does not |
| match the outline of the path. |
| |
| \sa toSubpathPolygons(), toFillPolygon(), |
| {QPainterPath#QPainterPath Conversion}{QPainterPath Conversion} |
| */ |
| QList<QPolygonF> QPainterPath::toFillPolygons(const QTransform &matrix) const |
| { |
| |
| QList<QPolygonF> polys; |
| |
| QList<QPolygonF> subpaths = toSubpathPolygons(matrix); |
| int count = subpaths.size(); |
| |
| if (count == 0) |
| return polys; |
| |
| QVector<QRectF> bounds; |
| bounds.reserve(count); |
| for (int i=0; i<count; ++i) |
| bounds += subpaths.at(i).boundingRect(); |
| |
| #ifdef QPP_FILLPOLYGONS_DEBUG |
| printf("QPainterPath::toFillPolygons, subpathCount=%d\n", count); |
| for (int i=0; i<bounds.size(); ++i) |
| qDebug() << " bounds" << i << bounds.at(i); |
| #endif |
| |
| QVector< QVector<int> > isects; |
| isects.resize(count); |
| |
| // find all intersections |
| for (int j=0; j<count; ++j) { |
| if (subpaths.at(j).size() <= 2) |
| continue; |
| QRectF cbounds = bounds.at(j); |
| for (int i=0; i<count; ++i) { |
| if (cbounds.intersects(bounds.at(i))) { |
| isects[j] << i; |
| } |
| } |
| } |
| |
| #ifdef QPP_FILLPOLYGONS_DEBUG |
| printf("Intersections before flattening:\n"); |
| for (int i = 0; i < count; ++i) { |
| printf("%d: ", i); |
| for (int j = 0; j < isects[i].size(); ++j) { |
| printf("%d ", isects[i][j]); |
| } |
| printf("\n"); |
| } |
| #endif |
| |
| // flatten the sets of intersections |
| for (int i=0; i<count; ++i) { |
| const QVector<int> ¤t_isects = isects.at(i); |
| for (int j=0; j<current_isects.size(); ++j) { |
| int isect_j = current_isects.at(j); |
| if (isect_j == i) |
| continue; |
| const QVector<int> &isects_j = isects.at(isect_j); |
| for (int k = 0, size = isects_j.size(); k < size; ++k) { |
| int isect_k = isects_j.at(k); |
| if (isect_k != i && !isects.at(i).contains(isect_k)) { |
| isects[i] += isect_k; |
| } |
| } |
| isects[isect_j].clear(); |
| } |
| } |
| |
| #ifdef QPP_FILLPOLYGONS_DEBUG |
| printf("Intersections after flattening:\n"); |
| for (int i = 0; i < count; ++i) { |
| printf("%d: ", i); |
| for (int j = 0; j < isects[i].size(); ++j) { |
| printf("%d ", isects[i][j]); |
| } |
| printf("\n"); |
| } |
| #endif |
| |
| // Join the intersected subpaths as rewinded polygons |
| for (int i=0; i<count; ++i) { |
| const QVector<int> &subpath_list = isects.at(i); |
| if (!subpath_list.isEmpty()) { |
| QPolygonF buildUp; |
| for (int j=0; j<subpath_list.size(); ++j) { |
| const QPolygonF &subpath = subpaths.at(subpath_list.at(j)); |
| buildUp += subpath; |
| if (!subpath.isClosed()) |
| buildUp += subpath.first(); |
| if (!buildUp.isClosed()) |
| buildUp += buildUp.constFirst(); |
| } |
| polys += buildUp; |
| } |
| } |
| |
| return polys; |
| } |
| |
| /*! |
| \overload |
| */ |
| QList<QPolygonF> QPainterPath::toFillPolygons(const QMatrix &matrix) const |
| { |
| return toFillPolygons(QTransform(matrix)); |
| } |
| |
| //same as qt_polygon_isect_line in qpolygon.cpp |
| static void qt_painterpath_isect_line(const QPointF &p1, |
| const QPointF &p2, |
| const QPointF &pos, |
| int *winding) |
| { |
| qreal x1 = p1.x(); |
| qreal y1 = p1.y(); |
| qreal x2 = p2.x(); |
| qreal y2 = p2.y(); |
| qreal y = pos.y(); |
| |
| int dir = 1; |
| |
| if (qFuzzyCompare(y1, y2)) { |
| // ignore horizontal lines according to scan conversion rule |
| return; |
| } else if (y2 < y1) { |
| qreal x_tmp = x2; x2 = x1; x1 = x_tmp; |
| qreal y_tmp = y2; y2 = y1; y1 = y_tmp; |
| dir = -1; |
| } |
| |
| if (y >= y1 && y < y2) { |
| qreal x = x1 + ((x2 - x1) / (y2 - y1)) * (y - y1); |
| |
| // count up the winding number if we're |
| if (x<=pos.x()) { |
| (*winding) += dir; |
| } |
| } |
| } |
| |
| static void qt_painterpath_isect_curve(const QBezier &bezier, const QPointF &pt, |
| int *winding, int depth = 0) |
| { |
| qreal y = pt.y(); |
| qreal x = pt.x(); |
| QRectF bounds = bezier.bounds(); |
| |
| // potential intersection, divide and try again... |
| // Please note that a sideeffect of the bottom exclusion is that |
| // horizontal lines are dropped, but this is correct according to |
| // scan conversion rules. |
| if (y >= bounds.y() && y < bounds.y() + bounds.height()) { |
| |
| // hit lower limit... This is a rough threshold, but its a |
| // tradeoff between speed and precision. |
| const qreal lower_bound = qreal(.001); |
| if (depth == 32 || (bounds.width() < lower_bound && bounds.height() < lower_bound)) { |
| // We make the assumption here that the curve starts to |
| // approximate a line after while (i.e. that it doesn't |
| // change direction drastically during its slope) |
| if (bezier.pt1().x() <= x) { |
| (*winding) += (bezier.pt4().y() > bezier.pt1().y() ? 1 : -1); |
| } |
| return; |
| } |
| |
| // split curve and try again... |
| const auto halves = bezier.split(); |
| qt_painterpath_isect_curve(halves.first, pt, winding, depth + 1); |
| qt_painterpath_isect_curve(halves.second, pt, winding, depth + 1); |
| } |
| } |
| |
| /*! |
| \fn bool QPainterPath::contains(const QPointF &point) const |
| |
| Returns \c true if the given \a point is inside the path, otherwise |
| returns \c false. |
| |
| \sa intersects() |
| */ |
| bool QPainterPath::contains(const QPointF &pt) const |
| { |
| if (isEmpty() || !controlPointRect().contains(pt)) |
| return false; |
| |
| QPainterPathData *d = d_func(); |
| |
| int winding_number = 0; |
| |
| QPointF last_pt; |
| QPointF last_start; |
| for (int i=0; i<d->elements.size(); ++i) { |
| const Element &e = d->elements.at(i); |
| |
| switch (e.type) { |
| |
| case MoveToElement: |
| if (i > 0) // implicitly close all paths. |
| qt_painterpath_isect_line(last_pt, last_start, pt, &winding_number); |
| last_start = last_pt = e; |
| break; |
| |
| case LineToElement: |
| qt_painterpath_isect_line(last_pt, e, pt, &winding_number); |
| last_pt = e; |
| break; |
| |
| case CurveToElement: |
| { |
| const QPainterPath::Element &cp2 = d->elements.at(++i); |
| const QPainterPath::Element &ep = d->elements.at(++i); |
| qt_painterpath_isect_curve(QBezier::fromPoints(last_pt, e, cp2, ep), |
| pt, &winding_number); |
| last_pt = ep; |
| |
| } |
| break; |
| |
| default: |
| break; |
| } |
| } |
| |
| // implicitly close last subpath |
| if (last_pt != last_start) |
| qt_painterpath_isect_line(last_pt, last_start, pt, &winding_number); |
| |
| return (d->fillRule == Qt::WindingFill |
| ? (winding_number != 0) |
| : ((winding_number % 2) != 0)); |
| } |
| |
| enum PainterDirections { Left, Right, Top, Bottom }; |
| |
| static bool qt_painterpath_isect_line_rect(qreal x1, qreal y1, qreal x2, qreal y2, |
| const QRectF &rect) |
| { |
| qreal left = rect.left(); |
| qreal right = rect.right(); |
| qreal top = rect.top(); |
| qreal bottom = rect.bottom(); |
| |
| // clip the lines, after cohen-sutherland, see e.g. http://www.nondot.org/~sabre/graphpro/line6.html |
| int p1 = ((x1 < left) << Left) |
| | ((x1 > right) << Right) |
| | ((y1 < top) << Top) |
| | ((y1 > bottom) << Bottom); |
| int p2 = ((x2 < left) << Left) |
| | ((x2 > right) << Right) |
| | ((y2 < top) << Top) |
| | ((y2 > bottom) << Bottom); |
| |
| if (p1 & p2) |
| // completely inside |
| return false; |
| |
| if (p1 | p2) { |
| qreal dx = x2 - x1; |
| qreal dy = y2 - y1; |
| |
| // clip x coordinates |
| if (x1 < left) { |
| y1 += dy/dx * (left - x1); |
| x1 = left; |
| } else if (x1 > right) { |
| y1 -= dy/dx * (x1 - right); |
| x1 = right; |
| } |
| if (x2 < left) { |
| y2 += dy/dx * (left - x2); |
| x2 = left; |
| } else if (x2 > right) { |
| y2 -= dy/dx * (x2 - right); |
| x2 = right; |
| } |
| |
| p1 = ((y1 < top) << Top) |
| | ((y1 > bottom) << Bottom); |
| p2 = ((y2 < top) << Top) |
| | ((y2 > bottom) << Bottom); |
| |
| if (p1 & p2) |
| return false; |
| |
| // clip y coordinates |
| if (y1 < top) { |
| x1 += dx/dy * (top - y1); |
| y1 = top; |
| } else if (y1 > bottom) { |
| x1 -= dx/dy * (y1 - bottom); |
| y1 = bottom; |
| } |
| if (y2 < top) { |
| x2 += dx/dy * (top - y2); |
| y2 = top; |
| } else if (y2 > bottom) { |
| x2 -= dx/dy * (y2 - bottom); |
| y2 = bottom; |
| } |
| |
| p1 = ((x1 < left) << Left) |
| | ((x1 > right) << Right); |
| p2 = ((x2 < left) << Left) |
| | ((x2 > right) << Right); |
| |
| if (p1 & p2) |
| return false; |
| |
| return true; |
| } |
| return false; |
| } |
| |
| static bool qt_isect_curve_horizontal(const QBezier &bezier, qreal y, qreal x1, qreal x2, int depth = 0) |
| { |
| QRectF bounds = bezier.bounds(); |
| |
| if (y >= bounds.top() && y < bounds.bottom() |
| && bounds.right() >= x1 && bounds.left() < x2) { |
| const qreal lower_bound = qreal(.01); |
| if (depth == 32 || (bounds.width() < lower_bound && bounds.height() < lower_bound)) |
| return true; |
| |
| const auto halves = bezier.split(); |
| if (qt_isect_curve_horizontal(halves.first, y, x1, x2, depth + 1) |
| || qt_isect_curve_horizontal(halves.second, y, x1, x2, depth + 1)) |
| return true; |
| } |
| return false; |
| } |
| |
| static bool qt_isect_curve_vertical(const QBezier &bezier, qreal x, qreal y1, qreal y2, int depth = 0) |
| { |
| QRectF bounds = bezier.bounds(); |
| |
| if (x >= bounds.left() && x < bounds.right() |
| && bounds.bottom() >= y1 && bounds.top() < y2) { |
| const qreal lower_bound = qreal(.01); |
| if (depth == 32 || (bounds.width() < lower_bound && bounds.height() < lower_bound)) |
| return true; |
| |
| const auto halves = bezier.split(); |
| if (qt_isect_curve_vertical(halves.first, x, y1, y2, depth + 1) |
| || qt_isect_curve_vertical(halves.second, x, y1, y2, depth + 1)) |
| return true; |
| } |
| return false; |
| } |
| |
| static bool pointOnEdge(const QRectF &rect, const QPointF &point) |
| { |
| if ((point.x() == rect.left() || point.x() == rect.right()) && |
| (point.y() >= rect.top() && point.y() <= rect.bottom())) |
| return true; |
| if ((point.y() == rect.top() || point.y() == rect.bottom()) && |
| (point.x() >= rect.left() && point.x() <= rect.right())) |
| return true; |
| return false; |
| } |
| |
| /* |
| Returns \c true if any lines or curves cross the four edges in of rect |
| */ |
| static bool qt_painterpath_check_crossing(const QPainterPath *path, const QRectF &rect) |
| { |
| QPointF last_pt; |
| QPointF last_start; |
| enum { OnRect, InsideRect, OutsideRect} edgeStatus = OnRect; |
| for (int i=0; i<path->elementCount(); ++i) { |
| const QPainterPath::Element &e = path->elementAt(i); |
| |
| switch (e.type) { |
| |
| case QPainterPath::MoveToElement: |
| if (i > 0 |
| && qFuzzyCompare(last_pt.x(), last_start.x()) |
| && qFuzzyCompare(last_pt.y(), last_start.y()) |
| && qt_painterpath_isect_line_rect(last_pt.x(), last_pt.y(), |
| last_start.x(), last_start.y(), rect)) |
| return true; |
| last_start = last_pt = e; |
| break; |
| |
| case QPainterPath::LineToElement: |
| if (qt_painterpath_isect_line_rect(last_pt.x(), last_pt.y(), e.x, e.y, rect)) |
| return true; |
| last_pt = e; |
| break; |
| |
| case QPainterPath::CurveToElement: |
| { |
| QPointF cp2 = path->elementAt(++i); |
| QPointF ep = path->elementAt(++i); |
| QBezier bezier = QBezier::fromPoints(last_pt, e, cp2, ep); |
| if (qt_isect_curve_horizontal(bezier, rect.top(), rect.left(), rect.right()) |
| || qt_isect_curve_horizontal(bezier, rect.bottom(), rect.left(), rect.right()) |
| || qt_isect_curve_vertical(bezier, rect.left(), rect.top(), rect.bottom()) |
| || qt_isect_curve_vertical(bezier, rect.right(), rect.top(), rect.bottom())) |
| return true; |
| last_pt = ep; |
| } |
| break; |
| |
| default: |
| break; |
| } |
| // Handle crossing the edges of the rect at the end-points of individual sub-paths. |
| // A point on on the edge itself is considered neither inside nor outside for this purpose. |
| if (!pointOnEdge(rect, last_pt)) { |
| bool contained = rect.contains(last_pt); |
| switch (edgeStatus) { |
| case OutsideRect: |
| if (contained) |
| return true; |
| break; |
| case InsideRect: |
| if (!contained) |
| return true; |
| break; |
| case OnRect: |
| edgeStatus = contained ? InsideRect : OutsideRect; |
| break; |
| } |
| } else { |
| if (last_pt == last_start) |
| edgeStatus = OnRect; |
| } |
| } |
| |
| // implicitly close last subpath |
| if (last_pt != last_start |
| && qt_painterpath_isect_line_rect(last_pt.x(), last_pt.y(), |
| last_start.x(), last_start.y(), rect)) |
| return true; |
| |
| return false; |
| } |
| |
| /*! |
| \fn bool QPainterPath::intersects(const QRectF &rectangle) const |
| |
| Returns \c true if any point in the given \a rectangle intersects the |
| path; otherwise returns \c false. |
| |
| There is an intersection if any of the lines making up the |
| rectangle crosses a part of the path or if any part of the |
| rectangle overlaps with any area enclosed by the path. This |
| function respects the current fillRule to determine what is |
| considered inside the path. |
| |
| \sa contains() |
| */ |
| bool QPainterPath::intersects(const QRectF &rect) const |
| { |
| if (elementCount() == 1 && rect.contains(elementAt(0))) |
| return true; |
| |
| if (isEmpty()) |
| return false; |
| |
| QRectF cp = controlPointRect(); |
| QRectF rn = rect.normalized(); |
| |
| // QRectF::intersects returns false if one of the rects is a null rect |
| // which would happen for a painter path consisting of a vertical or |
| // horizontal line |
| if (qMax(rn.left(), cp.left()) > qMin(rn.right(), cp.right()) |
| || qMax(rn.top(), cp.top()) > qMin(rn.bottom(), cp.bottom())) |
| return false; |
| |
| // If any path element cross the rect its bound to be an intersection |
| if (qt_painterpath_check_crossing(this, rect)) |
| return true; |
| |
| if (contains(rect.center())) |
| return true; |
| |
| Q_D(QPainterPath); |
| |
| // Check if the rectangle surounds any subpath... |
| for (int i=0; i<d->elements.size(); ++i) { |
| const Element &e = d->elements.at(i); |
| if (e.type == QPainterPath::MoveToElement && rect.contains(e)) |
| return true; |
| } |
| |
| return false; |
| } |
| |
| /*! |
| Translates all elements in the path by (\a{dx}, \a{dy}). |
| |
| \since 4.6 |
| \sa translated() |
| */ |
| void QPainterPath::translate(qreal dx, qreal dy) |
| { |
| if (!d_ptr || (dx == 0 && dy == 0)) |
| return; |
| |
| int elementsLeft = d_ptr->elements.size(); |
| if (elementsLeft <= 0) |
| return; |
| |
| detach(); |
| QPainterPath::Element *element = d_func()->elements.data(); |
| Q_ASSERT(element); |
| while (elementsLeft--) { |
| element->x += dx; |
| element->y += dy; |
| ++element; |
| } |
| } |
| |
| /*! |
| \fn void QPainterPath::translate(const QPointF &offset) |
| \overload |
| \since 4.6 |
| |
| Translates all elements in the path by the given \a offset. |
| |
| \sa translated() |
| */ |
| |
| /*! |
| Returns a copy of the path that is translated by (\a{dx}, \a{dy}). |
| |
| \since 4.6 |
| \sa translate() |
| */ |
| QPainterPath QPainterPath::translated(qreal dx, qreal dy) const |
| { |
| QPainterPath copy(*this); |
| copy.translate(dx, dy); |
| return copy; |
| } |
| |
| /*! |
| \fn QPainterPath QPainterPath::translated(const QPointF &offset) const; |
| \overload |
| \since 4.6 |
| |
| Returns a copy of the path that is translated by the given \a offset. |
| |
| \sa translate() |
| */ |
| |
| /*! |
| \fn bool QPainterPath::contains(const QRectF &rectangle) const |
| |
| Returns \c true if the given \a rectangle is inside the path, |
| otherwise returns \c false. |
| */ |
| bool QPainterPath::contains(const QRectF &rect) const |
| { |
| Q_D(QPainterPath); |
| |
| // the path is empty or the control point rect doesn't completely |
| // cover the rectangle we abort stratight away. |
| if (isEmpty() || !controlPointRect().contains(rect)) |
| return false; |
| |
| // if there are intersections, chances are that the rect is not |
| // contained, except if we have winding rule, in which case it |
| // still might. |
| if (qt_painterpath_check_crossing(this, rect)) { |
| if (fillRule() == Qt::OddEvenFill) { |
| return false; |
| } else { |
| // Do some wague sampling in the winding case. This is not |
| // precise but it should mostly be good enough. |
| if (!contains(rect.topLeft()) || |
| !contains(rect.topRight()) || |
| !contains(rect.bottomRight()) || |
| !contains(rect.bottomLeft())) |
| return false; |
| } |
| } |
| |
| // If there exists a point inside that is not part of the path its |
| // because: rectangle lies completely outside path or a subpath |
| // excludes parts of the rectangle. Both cases mean that the rect |
| // is not contained |
| if (!contains(rect.center())) |
| return false; |
| |
| // If there are any subpaths inside this rectangle we need to |
| // check if they are still contained as a result of the fill |
| // rule. This can only be the case for WindingFill though. For |
| // OddEvenFill the rect will never be contained if it surrounds a |
| // subpath. (the case where two subpaths are completely identical |
| // can be argued but we choose to neglect it). |
| for (int i=0; i<d->elements.size(); ++i) { |
| const Element &e = d->elements.at(i); |
| if (e.type == QPainterPath::MoveToElement && rect.contains(e)) { |
| if (fillRule() == Qt::OddEvenFill) |
| return false; |
| |
| bool stop = false; |
| for (; !stop && i<d->elements.size(); ++i) { |
| const Element &el = d->elements.at(i); |
| switch (el.type) { |
| case MoveToElement: |
| stop = true; |
| break; |
| case LineToElement: |
| if (!contains(el)) |
| return false; |
| break; |
| case CurveToElement: |
| if (!contains(d->elements.at(i+2))) |
| return false; |
| i += 2; |
| break; |
| default: |
| break; |
| } |
| } |
| |
| // compensate for the last ++i in the inner for |
| --i; |
| } |
| } |
| |
| return true; |
| } |
| |
| static inline bool epsilonCompare(const QPointF &a, const QPointF &b, const QSizeF &epsilon) |
| { |
| return qAbs(a.x() - b.x()) <= epsilon.width() |
| && qAbs(a.y() - b.y()) <= epsilon.height(); |
| } |
| |
| /*! |
| Returns \c true if this painterpath is equal to the given \a path. |
| |
| Note that comparing paths may involve a per element comparison |
| which can be slow for complex paths. |
| |
| \sa operator!=() |
| */ |
| |
| bool QPainterPath::operator==(const QPainterPath &path) const |
| { |
| QPainterPathData *d = reinterpret_cast<QPainterPathData *>(d_func()); |
| QPainterPathData *other_d = path.d_func(); |
| if (other_d == d) { |
| return true; |
| } else if (!d || !other_d) { |
| if (!other_d && isEmpty() && elementAt(0) == QPointF() && d->fillRule == Qt::OddEvenFill) |
| return true; |
| if (!d && path.isEmpty() && path.elementAt(0) == QPointF() && other_d->fillRule == Qt::OddEvenFill) |
| return true; |
| return false; |
| } |
| else if (d->fillRule != other_d->fillRule) |
| return false; |
| else if (d->elements.size() != other_d->elements.size()) |
| return false; |
| |
| const qreal qt_epsilon = sizeof(qreal) == sizeof(double) ? 1e-12 : qreal(1e-5); |
| |
| QSizeF epsilon = boundingRect().size(); |
| epsilon.rwidth() *= qt_epsilon; |
| epsilon.rheight() *= qt_epsilon; |
| |
| for (int i = 0; i < d->elements.size(); ++i) |
| if (d->elements.at(i).type != other_d->elements.at(i).type |
| || !epsilonCompare(d->elements.at(i), other_d->elements.at(i), epsilon)) |
| return false; |
| |
| return true; |
| } |
| |
| /*! |
| Returns \c true if this painter path differs from the given \a path. |
| |
| Note that comparing paths may involve a per element comparison |
| which can be slow for complex paths. |
| |
| \sa operator==() |
| */ |
| |
| bool QPainterPath::operator!=(const QPainterPath &path) const |
| { |
| return !(*this==path); |
| } |
| |
| /*! |
| \since 4.5 |
| |
| Returns the intersection of this path and the \a other path. |
| |
| \sa intersected(), operator&=(), united(), operator|() |
| */ |
| QPainterPath QPainterPath::operator&(const QPainterPath &other) const |
| { |
| return intersected(other); |
| } |
| |
| /*! |
| \since 4.5 |
| |
| Returns the union of this path and the \a other path. |
| |
| \sa united(), operator|=(), intersected(), operator&() |
| */ |
| QPainterPath QPainterPath::operator|(const QPainterPath &other) const |
| { |
| return united(other); |
| } |
| |
| /*! |
| \since 4.5 |
| |
| Returns the union of this path and the \a other path. This function is equivalent |
| to operator|(). |
| |
| \sa united(), operator+=(), operator-() |
| */ |
| QPainterPath QPainterPath::operator+(const QPainterPath &other) const |
| { |
| return united(other); |
| } |
| |
| /*! |
| \since 4.5 |
| |
| Subtracts the \a other path from a copy of this path, and returns the copy. |
| |
| \sa subtracted(), operator-=(), operator+() |
| */ |
| QPainterPath QPainterPath::operator-(const QPainterPath &other) const |
| { |
| return subtracted(other); |
| } |
| |
| /*! |
| \since 4.5 |
| |
| Intersects this path with \a other and returns a reference to this path. |
| |
| \sa intersected(), operator&(), operator|=() |
| */ |
| QPainterPath &QPainterPath::operator&=(const QPainterPath &other) |
| { |
| return *this = (*this & other); |
| } |
| |
| /*! |
| \since 4.5 |
| |
| Unites this path with \a other and returns a reference to this path. |
| |
| \sa united(), operator|(), operator&=() |
| */ |
| QPainterPath &QPainterPath::operator|=(const QPainterPath &other) |
| { |
| return *this = (*this | other); |
| } |
| |
| /*! |
| \since 4.5 |
| |
| Unites this path with \a other, and returns a reference to this path. This |
| is equivalent to operator|=(). |
| |
| \sa united(), operator+(), operator-=() |
| */ |
| QPainterPath &QPainterPath::operator+=(const QPainterPath &other) |
| { |
| return *this = (*this + other); |
| } |
| |
| /*! |
| \since 4.5 |
| |
| Subtracts \a other from this path, and returns a reference to this |
| path. |
| |
| \sa subtracted(), operator-(), operator+=() |
| */ |
| QPainterPath &QPainterPath::operator-=(const QPainterPath &other) |
| { |
| return *this = (*this - other); |
| } |
| |
| #ifndef QT_NO_DATASTREAM |
| /*! |
| \fn QDataStream &operator<<(QDataStream &stream, const QPainterPath &path) |
| \relates QPainterPath |
| |
| Writes the given painter \a path to the given \a stream, and |
| returns a reference to the \a stream. |
| |
| \sa {Serializing Qt Data Types} |
| */ |
| QDataStream &operator<<(QDataStream &s, const QPainterPath &p) |
| { |
| if (p.isEmpty()) { |
| s << 0; |
| return s; |
| } |
| |
| s << p.elementCount(); |
| for (int i=0; i < p.d_func()->elements.size(); ++i) { |
| const QPainterPath::Element &e = p.d_func()->elements.at(i); |
| s << int(e.type); |
| s << double(e.x) << double(e.y); |
| } |
| s << p.d_func()->cStart; |
| s << int(p.d_func()->fillRule); |
| return s; |
| } |
| |
| /*! |
| \fn QDataStream &operator>>(QDataStream &stream, QPainterPath &path) |
| \relates QPainterPath |
| |
| Reads a painter path from the given \a stream into the specified \a path, |
| and returns a reference to the \a stream. |
| |
| \sa {Serializing Qt Data Types} |
| */ |
| QDataStream &operator>>(QDataStream &s, QPainterPath &p) |
| { |
| bool errorDetected = false; |
| int size; |
| s >> size; |
| |
| if (size == 0) |
| return s; |
| |
| p.ensureData(); // in case if p.d_func() == 0 |
| if (p.d_func()->elements.size() == 1) { |
| Q_ASSERT(p.d_func()->elements.at(0).type == QPainterPath::MoveToElement); |
| p.d_func()->elements.clear(); |
| } |
| for (int i=0; i<size; ++i) { |
| int type; |
| double x, y; |
| s >> type; |
| s >> x; |
| s >> y; |
| Q_ASSERT(type >= 0 && type <= 3); |
| if (!isValidCoord(qreal(x)) || !isValidCoord(qreal(y))) { |
| #ifndef QT_NO_DEBUG |
| qWarning("QDataStream::operator>>: Invalid QPainterPath coordinates read, skipping it"); |
| #endif |
| errorDetected = true; |
| continue; |
| } |
| QPainterPath::Element elm = { qreal(x), qreal(y), QPainterPath::ElementType(type) }; |
| p.d_func()->elements.append(elm); |
| } |
| s >> p.d_func()->cStart; |
| int fillRule; |
| s >> fillRule; |
| Q_ASSERT(fillRule == Qt::OddEvenFill || fillRule == Qt::WindingFill); |
| p.d_func()->fillRule = Qt::FillRule(fillRule); |
| p.d_func()->dirtyBounds = true; |
| p.d_func()->dirtyControlBounds = true; |
| if (errorDetected) |
| p = QPainterPath(); // Better than to return path with possibly corrupt datastructure, which would likely cause crash |
| return s; |
| } |
| #endif // QT_NO_DATASTREAM |
| |
| |
| /******************************************************************************* |
| * class QPainterPathStroker |
| */ |
| |
| void qt_path_stroke_move_to(qfixed x, qfixed y, void *data) |
| { |
| ((QPainterPath *) data)->moveTo(qt_fixed_to_real(x), qt_fixed_to_real(y)); |
| } |
| |
| void qt_path_stroke_line_to(qfixed x, qfixed y, void *data) |
| { |
| ((QPainterPath *) data)->lineTo(qt_fixed_to_real(x), qt_fixed_to_real(y)); |
| } |
| |
| void qt_path_stroke_cubic_to(qfixed c1x, qfixed c1y, |
| qfixed c2x, qfixed c2y, |
| qfixed ex, qfixed ey, |
| void *data) |
| { |
| ((QPainterPath *) data)->cubicTo(qt_fixed_to_real(c1x), qt_fixed_to_real(c1y), |
| qt_fixed_to_real(c2x), qt_fixed_to_real(c2y), |
| qt_fixed_to_real(ex), qt_fixed_to_real(ey)); |
| } |
| |
| /*! |
| \since 4.1 |
| \class QPainterPathStroker |
| \ingroup painting |
| \inmodule QtGui |
| |
| \brief The QPainterPathStroker class is used to generate fillable |
| outlines for a given painter path. |
| |
| By calling the createStroke() function, passing a given |
| QPainterPath as argument, a new painter path representing the |
| outline of the given path is created. The newly created painter |
| path can then be filled to draw the original painter path's |
| outline. |
| |
| You can control the various design aspects (width, cap styles, |
| join styles and dash pattern) of the outlining using the following |
| functions: |
| |
| \list |
| \li setWidth() |
| \li setCapStyle() |
| \li setJoinStyle() |
| \li setDashPattern() |
| \endlist |
| |
| The setDashPattern() function accepts both a Qt::PenStyle object |
| and a vector representation of the pattern as argument. |
| |
| In addition you can specify a curve's threshold, controlling the |
| granularity with which a curve is drawn, using the |
| setCurveThreshold() function. The default threshold is a well |
| adjusted value (0.25), and normally you should not need to modify |
| it. However, you can make the curve's appearance smoother by |
| decreasing its value. |
| |
| You can also control the miter limit for the generated outline |
| using the setMiterLimit() function. The miter limit describes how |
| far from each join the miter join can extend. The limit is |
| specified in the units of width so the pixelwise miter limit will |
| be \c {miterlimit * width}. This value is only used if the join |
| style is Qt::MiterJoin. |
| |
| The painter path generated by the createStroke() function should |
| only be used for outlining the given painter path. Otherwise it |
| may cause unexpected behavior. Generated outlines also require the |
| Qt::WindingFill rule which is set by default. |
| |
| \sa QPen, QBrush |
| */ |
| |
| QPainterPathStrokerPrivate::QPainterPathStrokerPrivate() |
| : dashOffset(0) |
| { |
| stroker.setMoveToHook(qt_path_stroke_move_to); |
| stroker.setLineToHook(qt_path_stroke_line_to); |
| stroker.setCubicToHook(qt_path_stroke_cubic_to); |
| } |
| |
| /*! |
| Creates a new stroker. |
| */ |
| QPainterPathStroker::QPainterPathStroker() |
| : d_ptr(new QPainterPathStrokerPrivate) |
| { |
| } |
| |
| /*! |
| Creates a new stroker based on \a pen. |
| |
| \since 5.3 |
| */ |
| QPainterPathStroker::QPainterPathStroker(const QPen &pen) |
| : d_ptr(new QPainterPathStrokerPrivate) |
| { |
| setWidth(pen.widthF()); |
| setCapStyle(pen.capStyle()); |
| setJoinStyle(pen.joinStyle()); |
| setMiterLimit(pen.miterLimit()); |
| setDashOffset(pen.dashOffset()); |
| |
| if (pen.style() == Qt::CustomDashLine) |
| setDashPattern(pen.dashPattern()); |
| else |
| setDashPattern(pen.style()); |
| } |
| |
| /*! |
| Destroys the stroker. |
| */ |
| QPainterPathStroker::~QPainterPathStroker() |
| { |
| } |
| |
| |
| /*! |
| Generates a new path that is a fillable area representing the |
| outline of the given \a path. |
| |
| The various design aspects of the outline are based on the |
| stroker's properties: width(), capStyle(), joinStyle(), |
| dashPattern(), curveThreshold() and miterLimit(). |
| |
| The generated path should only be used for outlining the given |
| painter path. Otherwise it may cause unexpected |
| behavior. Generated outlines also require the Qt::WindingFill rule |
| which is set by default. |
| */ |
| QPainterPath QPainterPathStroker::createStroke(const QPainterPath &path) const |
| { |
| QPainterPathStrokerPrivate *d = const_cast<QPainterPathStrokerPrivate *>(d_func()); |
| QPainterPath stroke; |
| if (path.isEmpty()) |
| return path; |
| if (d->dashPattern.isEmpty()) { |
| d->stroker.strokePath(path, &stroke, QTransform()); |
| } else { |
| QDashStroker dashStroker(&d->stroker); |
| dashStroker.setDashPattern(d->dashPattern); |
| dashStroker.setDashOffset(d->dashOffset); |
| dashStroker.setClipRect(d->stroker.clipRect()); |
| dashStroker.strokePath(path, &stroke, QTransform()); |
| } |
| stroke.setFillRule(Qt::WindingFill); |
| return stroke; |
| } |
| |
| /*! |
| Sets the width of the generated outline painter path to \a width. |
| |
| The generated outlines will extend approximately 50% of \a width |
| to each side of the given input path's original outline. |
| */ |
| void QPainterPathStroker::setWidth(qreal width) |
| { |
| Q_D(QPainterPathStroker); |
| if (width <= 0) |
| width = 1; |
| d->stroker.setStrokeWidth(qt_real_to_fixed(width)); |
| } |
| |
| /*! |
| Returns the width of the generated outlines. |
| */ |
| qreal QPainterPathStroker::width() const |
| { |
| return qt_fixed_to_real(d_func()->stroker.strokeWidth()); |
| } |
| |
| |
| /*! |
| Sets the cap style of the generated outlines to \a style. If a |
| dash pattern is set, each segment of the pattern is subject to the |
| cap \a style. |
| */ |
| void QPainterPathStroker::setCapStyle(Qt::PenCapStyle style) |
| { |
| d_func()->stroker.setCapStyle(style); |
| } |
| |
| |
| /*! |
| Returns the cap style of the generated outlines. |
| */ |
| Qt::PenCapStyle QPainterPathStroker::capStyle() const |
| { |
| return d_func()->stroker.capStyle(); |
| } |
| |
| /*! |
| Sets the join style of the generated outlines to \a style. |
| */ |
| void QPainterPathStroker::setJoinStyle(Qt::PenJoinStyle style) |
| { |
| d_func()->stroker.setJoinStyle(style); |
| } |
| |
| /*! |
| Returns the join style of the generated outlines. |
| */ |
| Qt::PenJoinStyle QPainterPathStroker::joinStyle() const |
| { |
| return d_func()->stroker.joinStyle(); |
| } |
| |
| /*! |
| Sets the miter limit of the generated outlines to \a limit. |
| |
| The miter limit describes how far from each join the miter join |
| can extend. The limit is specified in units of the currently set |
| width. So the pixelwise miter limit will be \c { miterlimit * |
| width}. |
| |
| This value is only used if the join style is Qt::MiterJoin. |
| */ |
| void QPainterPathStroker::setMiterLimit(qreal limit) |
| { |
| d_func()->stroker.setMiterLimit(qt_real_to_fixed(limit)); |
| } |
| |
| /*! |
| Returns the miter limit for the generated outlines. |
| */ |
| qreal QPainterPathStroker::miterLimit() const |
| { |
| return qt_fixed_to_real(d_func()->stroker.miterLimit()); |
| } |
| |
| |
| /*! |
| Specifies the curve flattening \a threshold, controlling the |
| granularity with which the generated outlines' curve is drawn. |
| |
| The default threshold is a well adjusted value (0.25), and |
| normally you should not need to modify it. However, you can make |
| the curve's appearance smoother by decreasing its value. |
| */ |
| void QPainterPathStroker::setCurveThreshold(qreal threshold) |
| { |
| d_func()->stroker.setCurveThreshold(qt_real_to_fixed(threshold)); |
| } |
| |
| /*! |
| Returns the curve flattening threshold for the generated |
| outlines. |
| */ |
| qreal QPainterPathStroker::curveThreshold() const |
| { |
| return qt_fixed_to_real(d_func()->stroker.curveThreshold()); |
| } |
| |
| /*! |
| Sets the dash pattern for the generated outlines to \a style. |
| */ |
| void QPainterPathStroker::setDashPattern(Qt::PenStyle style) |
| { |
| d_func()->dashPattern = QDashStroker::patternForStyle(style); |
| } |
| |
| /*! |
| \overload |
| |
| Sets the dash pattern for the generated outlines to \a |
| dashPattern. This function makes it possible to specify custom |
| dash patterns. |
| |
| Each element in the vector contains the lengths of the dashes and spaces |
| in the stroke, beginning with the first dash in the first element, the |
| first space in the second element, and alternating between dashes and |
| spaces for each following pair of elements. |
| |
| The vector can contain an odd number of elements, in which case the last |
| element will be extended by the length of the first element when the |
| pattern repeats. |
| */ |
| void QPainterPathStroker::setDashPattern(const QVector<qreal> &dashPattern) |
| { |
| d_func()->dashPattern.clear(); |
| for (int i=0; i<dashPattern.size(); ++i) |
| d_func()->dashPattern << qt_real_to_fixed(dashPattern.at(i)); |
| } |
| |
| /*! |
| Returns the dash pattern for the generated outlines. |
| */ |
| QVector<qreal> QPainterPathStroker::dashPattern() const |
| { |
| return d_func()->dashPattern; |
| } |
| |
| /*! |
| Returns the dash offset for the generated outlines. |
| */ |
| qreal QPainterPathStroker::dashOffset() const |
| { |
| return d_func()->dashOffset; |
| } |
| |
| /*! |
| Sets the dash offset for the generated outlines to \a offset. |
| |
| See the documentation for QPen::setDashOffset() for a description of the |
| dash offset. |
| */ |
| void QPainterPathStroker::setDashOffset(qreal offset) |
| { |
| d_func()->dashOffset = offset; |
| } |
| |
| /*! |
| Converts the path into a polygon using the QTransform |
| \a matrix, and returns the polygon. |
| |
| The polygon is created by first converting all subpaths to |
| polygons, then using a rewinding technique to make sure that |
| overlapping subpaths can be filled using the correct fill rule. |
| |
| Note that rewinding inserts addition lines in the polygon so |
| the outline of the fill polygon does not match the outline of |
| the path. |
| |
| \sa toSubpathPolygons(), toFillPolygons(), |
| {QPainterPath#QPainterPath Conversion}{QPainterPath Conversion} |
| */ |
| QPolygonF QPainterPath::toFillPolygon(const QTransform &matrix) const |
| { |
| |
| const QList<QPolygonF> flats = toSubpathPolygons(matrix); |
| QPolygonF polygon; |
| if (flats.isEmpty()) |
| return polygon; |
| QPointF first = flats.first().first(); |
| for (int i=0; i<flats.size(); ++i) { |
| polygon += flats.at(i); |
| if (!flats.at(i).isClosed()) |
| polygon += flats.at(i).first(); |
| if (i > 0) |
| polygon += first; |
| } |
| return polygon; |
| } |
| |
| /*! |
| \overload |
| */ |
| QPolygonF QPainterPath::toFillPolygon(const QMatrix &matrix) const |
| { |
| return toFillPolygon(QTransform(matrix)); |
| } |
| |
| |
| //derivative of the equation |
| static inline qreal slopeAt(qreal t, qreal a, qreal b, qreal c, qreal d) |
| { |
| return 3*t*t*(d - 3*c + 3*b - a) + 6*t*(c - 2*b + a) + 3*(b - a); |
| } |
| |
| /*! |
| Returns the length of the current path. |
| */ |
| qreal QPainterPath::length() const |
| { |
| Q_D(QPainterPath); |
| if (isEmpty()) |
| return 0; |
| |
| qreal len = 0; |
| for (int i=1; i<d->elements.size(); ++i) { |
| const Element &e = d->elements.at(i); |
| |
| switch (e.type) { |
| case MoveToElement: |
| break; |
| case LineToElement: |
| { |
| len += QLineF(d->elements.at(i-1), e).length(); |
| break; |
| } |
| case CurveToElement: |
| { |
| QBezier b = QBezier::fromPoints(d->elements.at(i-1), |
| e, |
| d->elements.at(i+1), |
| d->elements.at(i+2)); |
| len += b.length(); |
| i += 2; |
| break; |
| } |
| default: |
| break; |
| } |
| } |
| return len; |
| } |
| |
| /*! |
| Returns percentage of the whole path at the specified length \a len. |
| |
| Note that similarly to other percent methods, the percentage measurement |
| is not linear with regards to the length, if curves are present |
| in the path. When curves are present the percentage argument is mapped |
| to the t parameter of the Bezier equations. |
| */ |
| qreal QPainterPath::percentAtLength(qreal len) const |
| { |
| Q_D(QPainterPath); |
| if (isEmpty() || len <= 0) |
| return 0; |
| |
| qreal totalLength = length(); |
| if (len > totalLength) |
| return 1; |
| |
| qreal curLen = 0; |
| for (int i=1; i<d->elements.size(); ++i) { |
| const Element &e = d->elements.at(i); |
| |
| switch (e.type) { |
| case MoveToElement: |
| break; |
| case LineToElement: |
| { |
| QLineF line(d->elements.at(i-1), e); |
| qreal llen = line.length(); |
| curLen += llen; |
| if (curLen >= len) { |
| return len/totalLength ; |
| } |
| |
| break; |
| } |
| case CurveToElement: |
| { |
| QBezier b = QBezier::fromPoints(d->elements.at(i-1), |
| e, |
| d->elements.at(i+1), |
| d->elements.at(i+2)); |
| qreal blen = b.length(); |
| qreal prevLen = curLen; |
| curLen += blen; |
| |
| if (curLen >= len) { |
| qreal res = b.tAtLength(len - prevLen); |
| return (res * blen + prevLen)/totalLength; |
| } |
| |
| i += 2; |
| break; |
| } |
| default: |
| break; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static inline QBezier bezierAtT(const QPainterPath &path, qreal t, qreal *startingLength, qreal *bezierLength) |
| { |
| *startingLength = 0; |
| if (t > 1) |
| return QBezier(); |
| |
| qreal curLen = 0; |
| qreal totalLength = path.length(); |
| |
| const int lastElement = path.elementCount() - 1; |
| for (int i=0; i <= lastElement; ++i) { |
| const QPainterPath::Element &e = path.elementAt(i); |
| |
| switch (e.type) { |
| case QPainterPath::MoveToElement: |
| break; |
| case QPainterPath::LineToElement: |
| { |
| QLineF line(path.elementAt(i-1), e); |
| qreal llen = line.length(); |
| curLen += llen; |
| if (i == lastElement || curLen/totalLength >= t) { |
| *bezierLength = llen; |
| QPointF a = path.elementAt(i-1); |
| QPointF delta = e - a; |
| return QBezier::fromPoints(a, a + delta / 3, a + 2 * delta / 3, e); |
| } |
| break; |
| } |
| case QPainterPath::CurveToElement: |
| { |
| QBezier b = QBezier::fromPoints(path.elementAt(i-1), |
| e, |
| path.elementAt(i+1), |
| path.elementAt(i+2)); |
| qreal blen = b.length(); |
| curLen += blen; |
| |
| if (i + 2 == lastElement || curLen/totalLength >= t) { |
| *bezierLength = blen; |
| return b; |
| } |
| |
| i += 2; |
| break; |
| } |
| default: |
| break; |
| } |
| *startingLength = curLen; |
| } |
| return QBezier(); |
| } |
| |
| /*! |
| Returns the point at at the percentage \a t of the current path. |
| The argument \a t has to be between 0 and 1. |
| |
| Note that similarly to other percent methods, the percentage measurement |
| is not linear with regards to the length, if curves are present |
| in the path. When curves are present the percentage argument is mapped |
| to the t parameter of the Bezier equations. |
| */ |
| QPointF QPainterPath::pointAtPercent(qreal t) const |
| { |
| if (t < 0 || t > 1) { |
| qWarning("QPainterPath::pointAtPercent accepts only values between 0 and 1"); |
| return QPointF(); |
| } |
| |
| if (!d_ptr || d_ptr->elements.size() == 0) |
| return QPointF(); |
| |
| if (d_ptr->elements.size() == 1) |
| return d_ptr->elements.at(0); |
| |
| qreal totalLength = length(); |
| qreal curLen = 0; |
| qreal bezierLen = 0; |
| QBezier b = bezierAtT(*this, t, &curLen, &bezierLen); |
| qreal realT = (totalLength * t - curLen) / bezierLen; |
| |
| return b.pointAt(qBound(qreal(0), realT, qreal(1))); |
| } |
| |
| /*! |
| Returns the angle of the path tangent at the percentage \a t. |
| The argument \a t has to be between 0 and 1. |
| |
| Positive values for the angles mean counter-clockwise while negative values |
| mean the clockwise direction. Zero degrees is at the 3 o'clock position. |
| |
| Note that similarly to the other percent methods, the percentage measurement |
| is not linear with regards to the length if curves are present |
| in the path. When curves are present the percentage argument is mapped |
| to the t parameter of the Bezier equations. |
| */ |
| qreal QPainterPath::angleAtPercent(qreal t) const |
| { |
| if (t < 0 || t > 1) { |
| qWarning("QPainterPath::angleAtPercent accepts only values between 0 and 1"); |
| return 0; |
| } |
| |
| qreal totalLength = length(); |
| qreal curLen = 0; |
| qreal bezierLen = 0; |
| QBezier bez = bezierAtT(*this, t, &curLen, &bezierLen); |
| qreal realT = (totalLength * t - curLen) / bezierLen; |
| |
| qreal m1 = slopeAt(realT, bez.x1, bez.x2, bez.x3, bez.x4); |
| qreal m2 = slopeAt(realT, bez.y1, bez.y2, bez.y3, bez.y4); |
| |
| return QLineF(0, 0, m1, m2).angle(); |
| } |
| |
| |
| /*! |
| Returns the slope of the path at the percentage \a t. The |
| argument \a t has to be between 0 and 1. |
| |
| Note that similarly to other percent methods, the percentage measurement |
| is not linear with regards to the length, if curves are present |
| in the path. When curves are present the percentage argument is mapped |
| to the t parameter of the Bezier equations. |
| */ |
| qreal QPainterPath::slopeAtPercent(qreal t) const |
| { |
| if (t < 0 || t > 1) { |
| qWarning("QPainterPath::slopeAtPercent accepts only values between 0 and 1"); |
| return 0; |
| } |
| |
| qreal totalLength = length(); |
| qreal curLen = 0; |
| qreal bezierLen = 0; |
| QBezier bez = bezierAtT(*this, t, &curLen, &bezierLen); |
| qreal realT = (totalLength * t - curLen) / bezierLen; |
| |
| qreal m1 = slopeAt(realT, bez.x1, bez.x2, bez.x3, bez.x4); |
| qreal m2 = slopeAt(realT, bez.y1, bez.y2, bez.y3, bez.y4); |
| //tangent line |
| qreal slope = 0; |
| |
| if (m1) |
| slope = m2/m1; |
| else { |
| if (std::numeric_limits<qreal>::has_infinity) { |
| slope = (m2 < 0) ? -std::numeric_limits<qreal>::infinity() |
| : std::numeric_limits<qreal>::infinity(); |
| } else { |
| if (sizeof(qreal) == sizeof(double)) { |
| return 1.79769313486231570e+308; |
| } else { |
| return ((qreal)3.40282346638528860e+38); |
| } |
| } |
| } |
| |
| return slope; |
| } |
| |
| /*! |
| \since 4.4 |
| |
| Adds the given rectangle \a rect with rounded corners to the path. |
| |
| The \a xRadius and \a yRadius arguments specify the radii of |
| the ellipses defining the corners of the rounded rectangle. |
| When \a mode is Qt::RelativeSize, \a xRadius and |
| \a yRadius are specified in percentage of half the rectangle's |
| width and height respectively, and should be in the range 0.0 to 100.0. |
| |
| \sa addRect() |
| */ |
| void QPainterPath::addRoundedRect(const QRectF &rect, qreal xRadius, qreal yRadius, |
| Qt::SizeMode mode) |
| { |
| QRectF r = rect.normalized(); |
| |
| if (r.isNull()) |
| return; |
| |
| if (mode == Qt::AbsoluteSize) { |
| qreal w = r.width() / 2; |
| qreal h = r.height() / 2; |
| |
| if (w == 0) { |
| xRadius = 0; |
| } else { |
| xRadius = 100 * qMin(xRadius, w) / w; |
| } |
| if (h == 0) { |
| yRadius = 0; |
| } else { |
| yRadius = 100 * qMin(yRadius, h) / h; |
| } |
| } else { |
| if (xRadius > 100) // fix ranges |
| xRadius = 100; |
| |
| if (yRadius > 100) |
| yRadius = 100; |
| } |
| |
| if (xRadius <= 0 || yRadius <= 0) { // add normal rectangle |
| addRect(r); |
| return; |
| } |
| |
| qreal x = r.x(); |
| qreal y = r.y(); |
| qreal w = r.width(); |
| qreal h = r.height(); |
| qreal rxx2 = w*xRadius/100; |
| qreal ryy2 = h*yRadius/100; |
| |
| ensureData(); |
| detach(); |
| |
| bool first = d_func()->elements.size() < 2; |
| |
| arcMoveTo(x, y, rxx2, ryy2, 180); |
| arcTo(x, y, rxx2, ryy2, 180, -90); |
| arcTo(x+w-rxx2, y, rxx2, ryy2, 90, -90); |
| arcTo(x+w-rxx2, y+h-ryy2, rxx2, ryy2, 0, -90); |
| arcTo(x, y+h-ryy2, rxx2, ryy2, 270, -90); |
| closeSubpath(); |
| |
| d_func()->require_moveTo = true; |
| d_func()->convex = first; |
| } |
| |
| /*! |
| \fn void QPainterPath::addRoundedRect(qreal x, qreal y, qreal w, qreal h, qreal xRadius, qreal yRadius, Qt::SizeMode mode = Qt::AbsoluteSize); |
| \since 4.4 |
| \overload |
| |
| Adds the given rectangle \a x, \a y, \a w, \a h with rounded corners to the path. |
| */ |
| |
| #if QT_DEPRECATED_SINCE(5, 13) |
| /*! |
| \obsolete |
| |
| Adds a rectangle \a r with rounded corners to the path. |
| |
| The \a xRnd and \a yRnd arguments specify how rounded the corners |
| should be. 0 is angled corners, 99 is maximum roundedness. |
| |
| \sa addRoundedRect() |
| */ |
| void QPainterPath::addRoundRect(const QRectF &r, int xRnd, int yRnd) |
| { |
| if(xRnd >= 100) // fix ranges |
| xRnd = 99; |
| if(yRnd >= 100) |
| yRnd = 99; |
| if(xRnd <= 0 || yRnd <= 0) { // add normal rectangle |
| addRect(r); |
| return; |
| } |
| |
| QRectF rect = r.normalized(); |
| |
| if (rect.isNull()) |
| return; |
| |
| qreal x = rect.x(); |
| qreal y = rect.y(); |
| qreal w = rect.width(); |
| qreal h = rect.height(); |
| qreal rxx2 = w*xRnd/100; |
| qreal ryy2 = h*yRnd/100; |
| |
| ensureData(); |
| detach(); |
| |
| bool first = d_func()->elements.size() < 2; |
| |
| arcMoveTo(x, y, rxx2, ryy2, 180); |
| arcTo(x, y, rxx2, ryy2, 180, -90); |
| arcTo(x+w-rxx2, y, rxx2, ryy2, 90, -90); |
| arcTo(x+w-rxx2, y+h-ryy2, rxx2, ryy2, 0, -90); |
| arcTo(x, y+h-ryy2, rxx2, ryy2, 270, -90); |
| closeSubpath(); |
| |
| d_func()->require_moveTo = true; |
| d_func()->convex = first; |
| } |
| |
| /*! |
| \obsolete |
| |
| \fn bool QPainterPath::addRoundRect(const QRectF &rect, int roundness); |
| \since 4.3 |
| \overload |
| |
| Adds a rounded rectangle, \a rect, to the path. |
| |
| The \a roundness argument specifies uniform roundness for the |
| rectangle. Vertical and horizontal roundness factors will be |
| adjusted accordingly to act uniformly around both axes. Use this |
| method if you want a rectangle equally rounded across both the X and |
| Y axis. |
| |
| \sa addRoundedRect() |
| */ |
| void QPainterPath::addRoundRect(const QRectF &rect, |
| int roundness) |
| { |
| int xRnd = roundness; |
| int yRnd = roundness; |
| if (rect.width() > rect.height()) |
| xRnd = int(roundness * rect.height()/rect.width()); |
| else |
| yRnd = int(roundness * rect.width()/rect.height()); |
| addRoundedRect(rect, xRnd, yRnd, Qt::RelativeSize); |
| } |
| |
| /*! |
| \obsolete |
| |
| \fn void QPainterPath::addRoundRect(qreal x, qreal y, qreal w, qreal h, int xRnd, int yRnd); |
| \overload |
| |
| Adds a rectangle with rounded corners to the path. The rectangle |
| is constructed from \a x, \a y, and the width and height \a w |
| and \a h. |
| |
| The \a xRnd and \a yRnd arguments specify how rounded the corners |
| should be. 0 is angled corners, 99 is maximum roundedness. |
| |
| \sa addRoundedRect() |
| */ |
| void QPainterPath::addRoundRect(qreal x, qreal y, qreal w, qreal h, |
| int xRnd, int yRnd) |
| { |
| addRoundedRect(QRectF(x, y, w, h), xRnd, yRnd, Qt::RelativeSize); |
| } |
| |
| /*! |
| \obsolete |
| |
| \fn bool QPainterPath::addRoundRect(qreal x, qreal y, qreal width, qreal height, int roundness); |
| \since 4.3 |
| \overload |
| |
| Adds a rounded rectangle to the path, defined by the coordinates \a |
| x and \a y with the specified \a width and \a height. |
| |
| The \a roundness argument specifies uniform roundness for the |
| rectangle. Vertical and horizontal roundness factors will be |
| adjusted accordingly to act uniformly around both axes. Use this |
| method if you want a rectangle equally rounded across both the X and |
| Y axis. |
| |
| \sa addRoundedRect() |
| */ |
| void QPainterPath::addRoundRect(qreal x, qreal y, qreal w, qreal h, |
| int roundness) |
| { |
| addRoundedRect(QRectF(x, y, w, h), roundness, Qt::RelativeSize); |
| } |
| #endif |
| |
| /*! |
| \since 4.3 |
| |
| Returns a path which is the union of this path's fill area and \a p's fill area. |
| |
| Set operations on paths will treat the paths as areas. Non-closed |
| paths will be treated as implicitly closed. |
| Bezier curves may be flattened to line segments due to numerical instability of |
| doing bezier curve intersections. |
| |
| \sa intersected(), subtracted() |
| */ |
| QPainterPath QPainterPath::united(const QPainterPath &p) const |
| { |
| if (isEmpty() || p.isEmpty()) |
| return isEmpty() ? p : *this; |
| QPathClipper clipper(*this, p); |
| return clipper.clip(QPathClipper::BoolOr); |
| } |
| |
| /*! |
| \since 4.3 |
| |
| Returns a path which is the intersection of this path's fill area and \a p's fill area. |
| Bezier curves may be flattened to line segments due to numerical instability of |
| doing bezier curve intersections. |
| */ |
| QPainterPath QPainterPath::intersected(const QPainterPath &p) const |
| { |
| if (isEmpty() || p.isEmpty()) |
| return QPainterPath(); |
| QPathClipper clipper(*this, p); |
| return clipper.clip(QPathClipper::BoolAnd); |
| } |
| |
| /*! |
| \since 4.3 |
| |
| Returns a path which is \a p's fill area subtracted from this path's fill area. |
| |
| Set operations on paths will treat the paths as areas. Non-closed |
| paths will be treated as implicitly closed. |
| Bezier curves may be flattened to line segments due to numerical instability of |
| doing bezier curve intersections. |
| */ |
| QPainterPath QPainterPath::subtracted(const QPainterPath &p) const |
| { |
| if (isEmpty() || p.isEmpty()) |
| return *this; |
| QPathClipper clipper(*this, p); |
| return clipper.clip(QPathClipper::BoolSub); |
| } |
| |
| #if QT_DEPRECATED_SINCE(5, 13) |
| /*! |
| \since 4.3 |
| \obsolete |
| |
| Use subtracted() instead. |
| |
| \sa subtracted() |
| */ |
| QPainterPath QPainterPath::subtractedInverted(const QPainterPath &p) const |
| { |
| return p.subtracted(*this); |
| } |
| #endif |
| |
| /*! |
| \since 4.4 |
| |
| Returns a simplified version of this path. This implies merging all subpaths that intersect, |
| and returning a path containing no intersecting edges. Consecutive parallel lines will also |
| be merged. The simplified path will always use the default fill rule, Qt::OddEvenFill. |
| Bezier curves may be flattened to line segments due to numerical instability of |
| doing bezier curve intersections. |
| */ |
| QPainterPath QPainterPath::simplified() const |
| { |
| if(isEmpty()) |
| return *this; |
| QPathClipper clipper(*this, QPainterPath()); |
| return clipper.clip(QPathClipper::Simplify); |
| } |
| |
| /*! |
| \since 4.3 |
| |
| Returns \c true if the current path intersects at any point the given path \a p. |
| Also returns \c true if the current path contains or is contained by any part of \a p. |
| |
| Set operations on paths will treat the paths as areas. Non-closed |
| paths will be treated as implicitly closed. |
| |
| \sa contains() |
| */ |
| bool QPainterPath::intersects(const QPainterPath &p) const |
| { |
| if (p.elementCount() == 1) |
| return contains(p.elementAt(0)); |
| if (isEmpty() || p.isEmpty()) |
| return false; |
| QPathClipper clipper(*this, p); |
| return clipper.intersect(); |
| } |
| |
| /*! |
| \since 4.3 |
| |
| Returns \c true if the given path \a p is contained within |
| the current path. Returns \c false if any edges of the current path and |
| \a p intersect. |
| |
| Set operations on paths will treat the paths as areas. Non-closed |
| paths will be treated as implicitly closed. |
| |
| \sa intersects() |
| */ |
| bool QPainterPath::contains(const QPainterPath &p) const |
| { |
| if (p.elementCount() == 1) |
| return contains(p.elementAt(0)); |
| if (isEmpty() || p.isEmpty()) |
| return false; |
| QPathClipper clipper(*this, p); |
| return clipper.contains(); |
| } |
| |
| void QPainterPath::setDirty(bool dirty) |
| { |
| d_func()->dirtyBounds = dirty; |
| d_func()->dirtyControlBounds = dirty; |
| d_func()->pathConverter.reset(); |
| d_func()->convex = false; |
| } |
| |
| void QPainterPath::computeBoundingRect() const |
| { |
| QPainterPathData *d = d_func(); |
| d->dirtyBounds = false; |
| if (!d_ptr) { |
| d->bounds = QRect(); |
| return; |
| } |
| |
| qreal minx, maxx, miny, maxy; |
| minx = maxx = d->elements.at(0).x; |
| miny = maxy = d->elements.at(0).y; |
| for (int i=1; i<d->elements.size(); ++i) { |
| const Element &e = d->elements.at(i); |
| |
| switch (e.type) { |
| case MoveToElement: |
| case LineToElement: |
| if (e.x > maxx) maxx = e.x; |
| else if (e.x < minx) minx = e.x; |
| if (e.y > maxy) maxy = e.y; |
| else if (e.y < miny) miny = e.y; |
| break; |
| case CurveToElement: |
| { |
| QBezier b = QBezier::fromPoints(d->elements.at(i-1), |
| e, |
| d->elements.at(i+1), |
| d->elements.at(i+2)); |
| QRectF r = qt_painterpath_bezier_extrema(b); |
| qreal right = r.right(); |
| qreal bottom = r.bottom(); |
| if (r.x() < minx) minx = r.x(); |
| if (right > maxx) maxx = right; |
| if (r.y() < miny) miny = r.y(); |
| if (bottom > maxy) maxy = bottom; |
| i += 2; |
| } |
| break; |
| default: |
| break; |
| } |
| } |
| d->bounds = QRectF(minx, miny, maxx - minx, maxy - miny); |
| } |
| |
| |
| void QPainterPath::computeControlPointRect() const |
| { |
| QPainterPathData *d = d_func(); |
| d->dirtyControlBounds = false; |
| if (!d_ptr) { |
| d->controlBounds = QRect(); |
| return; |
| } |
| |
| qreal minx, maxx, miny, maxy; |
| minx = maxx = d->elements.at(0).x; |
| miny = maxy = d->elements.at(0).y; |
| for (int i=1; i<d->elements.size(); ++i) { |
| const Element &e = d->elements.at(i); |
| if (e.x > maxx) maxx = e.x; |
| else if (e.x < minx) minx = e.x; |
| if (e.y > maxy) maxy = e.y; |
| else if (e.y < miny) miny = e.y; |
| } |
| d->controlBounds = QRectF(minx, miny, maxx - minx, maxy - miny); |
| } |
| |
| #ifndef QT_NO_DEBUG_STREAM |
| QDebug operator<<(QDebug s, const QPainterPath &p) |
| { |
| s.nospace() << "QPainterPath: Element count=" << p.elementCount() << Qt::endl; |
| const char *types[] = {"MoveTo", "LineTo", "CurveTo", "CurveToData"}; |
| for (int i=0; i<p.elementCount(); ++i) { |
| s.nospace() << " -> " << types[p.elementAt(i).type] << "(x=" << p.elementAt(i).x << ", y=" << p.elementAt(i).y << ')' << Qt::endl; |
| |
| } |
| return s; |
| } |
| #endif |
| |
| QT_END_NAMESPACE |