blob: 845f9b37f81f5bd20587b84339a2b73c14de817c [file] [log] [blame]
/****************************************************************************
**
** Copyright (C) 2016 The Qt Company Ltd.
** Copyright (C) 2016 Ivan Komissarov.
** Contact: https://www.qt.io/licensing/
**
** This file is part of the DDS plugin in the Qt ImageFormats module.
**
** $QT_BEGIN_LICENSE:LGPL$
** Commercial License Usage
** Licensees holding valid commercial Qt licenses may use this file in
** accordance with the commercial license agreement provided with the
** Software or, alternatively, in accordance with the terms contained in
** a written agreement between you and The Qt Company. For licensing terms
** and conditions see https://www.qt.io/terms-conditions. For further
** information use the contact form at https://www.qt.io/contact-us.
**
** GNU Lesser General Public License Usage
** Alternatively, this file may be used under the terms of the GNU Lesser
** General Public License version 3 as published by the Free Software
** Foundation and appearing in the file LICENSE.LGPL3 included in the
** packaging of this file. Please review the following information to
** ensure the GNU Lesser General Public License version 3 requirements
** will be met: https://www.gnu.org/licenses/lgpl-3.0.html.
**
** GNU General Public License Usage
** Alternatively, this file may be used under the terms of the GNU
** General Public License version 2.0 or (at your option) the GNU General
** Public license version 3 or any later version approved by the KDE Free
** Qt Foundation. The licenses are as published by the Free Software
** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3
** included in the packaging of this file. Please review the following
** information to ensure the GNU General Public License requirements will
** be met: https://www.gnu.org/licenses/gpl-2.0.html and
** https://www.gnu.org/licenses/gpl-3.0.html.
**
** $QT_END_LICENSE$
**
****************************************************************************/
#include "qddshandler.h"
#include <QtCore/qdebug.h>
#include <QtGui/qimage.h>
#include <cmath>
#include "ddsheader.h"
#include <cmath>
#ifndef QT_NO_DATASTREAM
QT_BEGIN_NAMESPACE
enum Colors {
Red = 0,
Green,
Blue,
Alpha,
ColorCount
};
enum DXTVersions {
One = 1,
Two = 2,
Three = 3,
Four = 4,
Five = 5,
RXGB = 6
};
// All magic numbers are little-endian as long as dds format has little
// endian byte order
static const quint32 ddsMagic = 0x20534444; // "DDS "
static const quint32 dx10Magic = 0x30315844; // "DX10"
static const qint64 headerSize = 128;
static const quint32 ddsSize = 124; // headerSize without magic
static const quint32 pixelFormatSize = 32;
struct FaceOffset
{
int x, y;
};
static const FaceOffset faceOffsets[6] = { {2, 1}, {0, 1}, {1, 0}, {1, 2}, {1, 1}, {3, 1} };
static int faceFlags[6] = {
DDSHeader::Caps2CubeMapPositiveX,
DDSHeader::Caps2CubeMapNegativeX,
DDSHeader::Caps2CubeMapPositiveY,
DDSHeader::Caps2CubeMapNegativeY,
DDSHeader::Caps2CubeMapPositiveZ,
DDSHeader::Caps2CubeMapNegativeZ
};
struct FormatInfo
{
Format format;
quint32 flags;
quint32 bitCount;
quint32 rBitMask;
quint32 gBitMask;
quint32 bBitMask;
quint32 aBitMask;
};
static const FormatInfo formatInfos[] = {
{ FormatA8R8G8B8, DDSPixelFormat::FlagRGBA, 32, 0x00ff0000, 0x0000ff00, 0x000000ff, 0xff000000 },
{ FormatX8R8G8B8, DDSPixelFormat::FlagRGB, 32, 0x00ff0000, 0x0000ff00, 0x000000ff, 0x00000000 },
{ FormatA2B10G10R10, DDSPixelFormat::FlagRGBA, 32, 0x000003ff, 0x000ffc00, 0x3ff00000, 0xc0000000 },
{ FormatA8B8G8R8, DDSPixelFormat::FlagRGBA, 32, 0x000000ff, 0x0000ff00, 0x00ff0000, 0xff000000 },
{ FormatX8B8G8R8, DDSPixelFormat::FlagRGB, 32, 0x000000ff, 0x0000ff00, 0x00ff0000, 0x00000000 },
{ FormatG16R16, DDSPixelFormat::FlagRGBA, 32, 0x0000ffff, 0xffff0000, 0x00000000, 0x00000000 },
{ FormatG16R16, DDSPixelFormat::FlagRGB, 32, 0x0000ffff, 0xffff0000, 0x00000000, 0x00000000 },
{ FormatA2R10G10B10, DDSPixelFormat::FlagRGBA, 32, 0x3ff00000, 0x000ffc00, 0x000003ff, 0xc0000000 },
{ FormatR8G8B8, DDSPixelFormat::FlagRGB, 24, 0x00ff0000, 0x0000ff00, 0x000000ff, 0x00000000 },
{ FormatR5G6B5, DDSPixelFormat::FlagRGB, 16, 0x0000f800, 0x000007e0, 0x0000001f, 0x00000000 },
{ FormatX1R5G5B5, DDSPixelFormat::FlagRGB, 16, 0x00007c00, 0x000003e0, 0x0000001f, 0x00000000 },
{ FormatA1R5G5B5, DDSPixelFormat::FlagRGBA, 16, 0x00007c00, 0x000003e0, 0x0000001f, 0x00008000 },
{ FormatA4R4G4B4, DDSPixelFormat::FlagRGBA, 16, 0x00000f00, 0x000000f0, 0x0000000f, 0x0000f000 },
{ FormatA8R3G3B2, DDSPixelFormat::FlagRGBA, 16, 0x000000e0, 0x0000001c, 0x00000003, 0x0000ff00 },
{ FormatX4R4G4B4, DDSPixelFormat::FlagRGB, 16, 0x00000f00, 0x000000f0, 0x0000000f, 0x00000000 },
{ FormatA8L8, DDSPixelFormat::FlagLA, 16, 0x000000ff, 0x00000000, 0x00000000, 0x0000ff00 },
{ FormatL16, DDSPixelFormat::FlagLuminance, 16, 0x0000ffff, 0x00000000, 0x00000000, 0x00000000 },
{ FormatR3G3B2, DDSPixelFormat::FlagRGB, 8, 0x000000e0, 0x0000001c, 0x00000003, 0x00000000 },
{ FormatA8, DDSPixelFormat::FlagAlpha, 8, 0x00000000, 0x00000000, 0x00000000, 0x000000ff },
{ FormatL8, DDSPixelFormat::FlagLuminance, 8, 0x000000ff, 0x00000000, 0x00000000, 0x00000000 },
{ FormatA4L4, DDSPixelFormat::FlagLA, 8, 0x0000000f, 0x00000000, 0x00000000, 0x000000f0 },
{ FormatV8U8, DDSPixelFormat::FlagNormal, 16, 0x000000ff, 0x0000ff00, 0x00000000, 0x00000000 },
{ FormatL6V5U5, 0, 16, 0x0000001f, 0x000003e0, 0x0000fc00, 0x00000000 },
{ FormatX8L8V8U8, 0, 32, 0x000000ff, 0x0000ff00, 0x00ff0000, 0x00000000 },
{ FormatQ8W8V8U8, DDSPixelFormat::FlagNormal, 32, 0x000000ff, 0x0000ff00, 0x00ff0000, 0xff000000 },
{ FormatV16U16, DDSPixelFormat::FlagNormal, 32, 0x0000ffff, 0xffff0000, 0x00000000, 0x00000000 },
{ FormatA2W10V10U10, DDSPixelFormat::FlagNormal, 32, 0x3ff00000, 0x000ffc00, 0x000003ff, 0xc0000000 }
};
static const size_t formatInfosSize = sizeof(formatInfos)/sizeof(FormatInfo);
static const Format knownFourCCs[] = {
FormatA16B16G16R16,
FormatV8U8,
FormatUYVY,
FormatR8G8B8G8,
FormatYUY2,
FormatG8R8G8B8,
FormatDXT1,
FormatDXT2,
FormatDXT3,
FormatDXT4,
FormatDXT5,
FormatRXGB,
FormatATI2,
FormatQ16W16V16U16,
FormatR16F,
FormatG16R16F,
FormatA16B16G16R16F,
FormatR32F,
FormatG32R32F,
FormatA32B32G32R32F,
FormatCxV8U8
};
static const size_t knownFourCCsSize = sizeof(knownFourCCs)/sizeof(Format);
struct FormatName
{
Format format;
const char *const name;
};
static const FormatName formatNames[] = {
{ FormatUnknown, "unknown" },
{ FormatR8G8B8, "R8G8B8" },
{ FormatA8R8G8B8, "A8R8G8B8" },
{ FormatX8R8G8B8, "X8R8G8B8" },
{ FormatR5G6B5, "R5G6B5" },
{ FormatX1R5G5B5, "X1R5G5B5" },
{ FormatA1R5G5B5, "A1R5G5B5" },
{ FormatA4R4G4B4, "A4R4G4B4" },
{ FormatR3G3B2, "R3G3B2" },
{ FormatA8, "A8" },
{ FormatA8R3G3B2, "A8R3G3B2" },
{ FormatX4R4G4B4, "X4R4G4B4" },
{ FormatA2B10G10R10, "A2B10G10R10" },
{ FormatA8B8G8R8, "A8B8G8R8" },
{ FormatX8B8G8R8, "X8B8G8R8" },
{ FormatG16R16, "G16R16" },
{ FormatA2R10G10B10, "A2R10G10B10" },
{ FormatA16B16G16R16, "A16B16G16R16" },
{ FormatA8P8, "A8P8" },
{ FormatP8, "P8" },
{ FormatL8, "L8" },
{ FormatA8L8, "A8L8" },
{ FormatA4L4, "A4L4" },
{ FormatV8U8, "V8U8" },
{ FormatL6V5U5, "L6V5U5" },
{ FormatX8L8V8U8, "X8L8V8U8" },
{ FormatQ8W8V8U8, "Q8W8V8U8" },
{ FormatV16U16, "V16U16" },
{ FormatA2W10V10U10, "A2W10V10U10" },
{ FormatUYVY, "UYVY" },
{ FormatR8G8B8G8, "R8G8_B8G8" },
{ FormatYUY2, "YUY2" },
{ FormatG8R8G8B8, "G8R8_G8B8" },
{ FormatDXT1, "DXT1" },
{ FormatDXT2, "DXT2" },
{ FormatDXT3, "DXT3" },
{ FormatDXT4, "DXT4" },
{ FormatDXT5, "DXT5" },
{ FormatRXGB, "RXGB" },
{ FormatATI2, "ATI2" },
{ FormatD16Lockable, "D16Lockable" },
{ FormatD32, "D32" },
{ FormatD15S1, "D15S1" },
{ FormatD24S8, "D24S8" },
{ FormatD24X8, "D24X8" },
{ FormatD24X4S4, "D24X4S4" },
{ FormatD16, "D16" },
{ FormatD32FLockable, "D32FLockable" },
{ FormatD24FS8, "D24FS8" },
{ FormatD32Lockable, "D32Lockable" },
{ FormatS8Lockable, "S8Lockable" },
{ FormatL16, "L16" },
{ FormatVertexData, "VertexData" },
{ FormatIndex32, "Index32" },
{ FormatIndex32, "Index32" },
{ FormatQ16W16V16U16, "Q16W16V16U16" },
{ FormatMulti2ARGB8, "Multi2ARGB8" },
{ FormatR16F, "R16F" },
{ FormatG16R16F, "G16R16F" },
{ FormatA16B16G16R16F, "A16B16G16R16F" },
{ FormatR32F, "R32F" },
{ FormatG32R32F, "G32R32F" },
{ FormatA32B32G32R32F, "A32B32G32R32F" },
{ FormatCxV8U8, "CxV8U8" },
{ FormatA1, "A1" },
{ FormatA2B10G10R10_XR_BIAS, "A2B10G10R10_XR_BIAS" },
{ FormatBinaryBuffer, "BinaryBuffer" },
{ FormatP4, "P4" },
{ FormatA4P4, "A4P4" }
};
static const size_t formatNamesSize = sizeof(formatNames)/sizeof(FormatName);
static inline int maskToShift(quint32 mask)
{
if (mask == 0)
return 0;
int result = 0;
while (!((mask >> result) & 1))
result++;
return result;
}
static inline int maskLength(quint32 mask)
{
int result = 0;
while (mask) {
if (mask & 1)
result++;
mask >>= 1;
}
return result;
}
static inline quint32 readValue(QDataStream &s, quint32 size)
{
Q_ASSERT(size == 8 || size == 16 || size == 24 || size == 32);
quint32 value = 0;
quint8 tmp;
for (unsigned bit = 0; bit < size; bit += 8) {
s >> tmp;
value += (quint32(tmp) << bit);
}
return value;
}
static inline bool hasAlpha(const DDSHeader &dds)
{
return (dds.pixelFormat.flags & (DDSPixelFormat::FlagAlphaPixels | DDSPixelFormat::FlagAlpha)) != 0;
}
static inline bool isCubeMap(const DDSHeader &dds)
{
return (dds.caps2 & DDSHeader::Caps2CubeMap) != 0;
}
static inline QRgb yuv2rgb(quint8 Y, quint8 U, quint8 V)
{
return qRgb(quint8(Y + 1.13983 * (V - 128)),
quint8(Y - 0.39465 * (U - 128) - 0.58060 * (V - 128)),
quint8(Y + 2.03211 * (U - 128)));
}
static Format getFormat(const DDSHeader &dds)
{
const DDSPixelFormat &format = dds.pixelFormat;
if (format.flags & DDSPixelFormat::FlagPaletteIndexed4) {
return FormatP4;
} else if (format.flags & DDSPixelFormat::FlagPaletteIndexed8) {
return FormatP8;
} else if (format.flags & DDSPixelFormat::FlagFourCC) {
for (size_t i = 0; i < knownFourCCsSize; ++i) {
if (dds.pixelFormat.fourCC == knownFourCCs[i])
return knownFourCCs[i];
}
} else {
for (size_t i = 0; i < formatInfosSize; ++i) {
const FormatInfo &info = formatInfos[i];
if ((format.flags & info.flags) == info.flags &&
format.rgbBitCount == info.bitCount &&
format.rBitMask == info.rBitMask &&
format.gBitMask == info.gBitMask &&
format.bBitMask == info.bBitMask &&
format.aBitMask == info.aBitMask) {
return info.format;
}
}
}
return FormatUnknown;
}
static inline quint8 getNormalZ(quint8 nx, quint8 ny)
{
const double fx = nx / 127.5 - 1.0;
const double fy = ny / 127.5 - 1.0;
const double fxfy = 1.0 - fx * fx - fy * fy;
return fxfy > 0 ? 255 * std::sqrt(fxfy) : 0;
}
static inline void decodeColor(quint16 color, quint8 &red, quint8 &green, quint8 &blue)
{
red = ((color >> 11) & 0x1f) << 3;
green = ((color >> 5) & 0x3f) << 2;
blue = (color & 0x1f) << 3;
}
static inline quint8 calcC2(quint8 c0, quint8 c1)
{
return 2.0 * c0 / 3.0 + c1 / 3.0;
}
static inline quint8 calcC2a(quint8 c0, quint8 c1)
{
return c0 / 2.0 + c1 / 2.0;
}
static inline quint8 calcC3(quint8 c0, quint8 c1)
{
return c0 / 3.0 + 2.0 * c1 / 3.0;
}
static void DXTFillColors(QRgb *result, quint16 c0, quint16 c1, quint32 table, bool dxt1a = false)
{
quint8 r[4];
quint8 g[4];
quint8 b[4];
quint8 a[4];
a[0] = a[1] = a[2] = a[3] = 255;
decodeColor(c0, r[0], g[0], b[0]);
decodeColor(c1, r[1], g[1], b[1]);
if (!dxt1a) {
r[2] = calcC2(r[0], r[1]);
g[2] = calcC2(g[0], g[1]);
b[2] = calcC2(b[0], b[1]);
r[3] = calcC3(r[0], r[1]);
g[3] = calcC3(g[0], g[1]);
b[3] = calcC3(b[0], b[1]);
} else {
r[2] = calcC2a(r[0], r[1]);
g[2] = calcC2a(g[0], g[1]);
b[2] = calcC2a(b[0], b[1]);
r[3] = g[3] = b[3] = a[3] = 0;
}
for (int k = 0; k < 4; k++)
for (int l = 0; l < 4; l++) {
unsigned index = table & 0x0003;
table >>= 2;
result[k * 4 + l] = qRgba(r[index], g[index], b[index], a[index]);
}
}
template <DXTVersions version>
inline void setAlphaDXT32Helper(QRgb *rgbArr, quint64 alphas)
{
Q_STATIC_ASSERT(version == Two || version == Three);
for (int i = 0; i < 16; i++) {
quint8 alpha = 16 * (alphas & 0x0f);
QRgb rgb = rgbArr[i];
if (version == Two) // DXT2
rgbArr[i] = qRgba(qRed(rgb) * alpha / 0xff, qGreen(rgb) * alpha / 0xff, qBlue(rgb) * alpha / 0xff, alpha);
else if (version == Three) // DXT3
rgbArr[i] = qRgba(qRed(rgb), qGreen(rgb), qBlue(rgb), alpha);
alphas = alphas >> 4;
}
}
template <DXTVersions version>
inline void setAlphaDXT45Helper(QRgb *rgbArr, quint64 alphas)
{
Q_STATIC_ASSERT(version == Four || version == Five);
quint8 a[8];
a[0] = alphas & 0xff;
a[1] = (alphas >> 8) & 0xff;
if (a[0] > a[1]) {
a[2] = (6*a[0] + 1*a[1]) / 7;
a[3] = (5*a[0] + 2*a[1]) / 7;
a[4] = (4*a[0] + 3*a[1]) / 7;
a[5] = (3*a[0] + 4*a[1]) / 7;
a[6] = (2*a[0] + 5*a[1]) / 7;
a[7] = (1*a[0] + 6*a[1]) / 7;
} else {
a[2] = (4*a[0] + 1*a[1]) / 5;
a[3] = (3*a[0] + 2*a[1]) / 5;
a[4] = (2*a[0] + 3*a[1]) / 5;
a[5] = (1*a[0] + 4*a[1]) / 5;
a[6] = 0;
a[7] = 255;
}
alphas >>= 16;
for (int i = 0; i < 16; i++) {
quint8 index = alphas & 0x07;
quint8 alpha = a[index];
QRgb rgb = rgbArr[i];
if (version == Four) // DXT4
rgbArr[i] = qRgba(qRed(rgb) * alpha / 0xff, qGreen(rgb) * alpha / 0xff, qBlue(rgb) * alpha / 0xff, alpha);
else if (version == Five) // DXT5
rgbArr[i] = qRgba(qRed(rgb), qGreen(rgb), qBlue(rgb), alpha);
alphas = alphas >> 3;
}
}
template <DXTVersions version>
inline void setAlphaDXT(QRgb *rgbArr, quint64 alphas)
{
Q_UNUSED(rgbArr);
Q_UNUSED(alphas);
}
template <>
inline void setAlphaDXT<Two>(QRgb *rgbArr, quint64 alphas)
{
setAlphaDXT32Helper<Two>(rgbArr, alphas);
}
template <>
inline void setAlphaDXT<Three>(QRgb *rgbArr, quint64 alphas)
{
setAlphaDXT32Helper<Three>(rgbArr, alphas);
}
template <>
inline void setAlphaDXT<Four>(QRgb *rgbArr, quint64 alphas)
{
setAlphaDXT45Helper<Four>(rgbArr, alphas);
}
template <>
inline void setAlphaDXT<Five>(QRgb *rgbArr, quint64 alphas)
{
setAlphaDXT45Helper<Five>(rgbArr, alphas);
}
template <>
inline void setAlphaDXT<RXGB>(QRgb *rgbArr, quint64 alphas)
{
setAlphaDXT45Helper<Five>(rgbArr, alphas);
}
static inline QRgb invertRXGBColors(QRgb pixel)
{
return qRgb(qAlpha(pixel), qGreen(pixel), qBlue(pixel));
}
template <DXTVersions version>
static QImage readDXT(QDataStream &s, quint32 width, quint32 height)
{
QImage::Format format = (version == Two || version == Four) ?
QImage::Format_ARGB32_Premultiplied : QImage::Format_ARGB32;
QImage image(width, height, format);
for (quint32 i = 0; i < height; i += 4) {
for (quint32 j = 0; j < width; j += 4) {
quint64 alpha = 0;
quint16 c0, c1;
quint32 table;
if (version != One)
s >> alpha;
s >> c0;
s >> c1;
s >> table;
QRgb arr[16];
DXTFillColors(arr, c0, c1, table, version == One && c0 <= c1);
setAlphaDXT<version>(arr, alpha);
const quint32 kMax = qMin<quint32>(4, height - i);
const quint32 lMax = qMin<quint32>(4, width - j);
for (quint32 k = 0; k < kMax; k++) {
QRgb *line = reinterpret_cast<QRgb *>(image.scanLine(i + k));
for (quint32 l = 0; l < lMax; l++) {
QRgb pixel = arr[k * 4 + l];
if (version == RXGB)
pixel = invertRXGBColors(pixel);
line[j + l] = pixel;
}
}
}
}
return image;
}
static inline QImage readDXT1(QDataStream &s, quint32 width, quint32 height)
{
return readDXT<One>(s, width, height);
}
static inline QImage readDXT2(QDataStream &s, quint32 width, quint32 height)
{
return readDXT<Two>(s, width, height);
}
static inline QImage readDXT3(QDataStream &s, quint32 width, quint32 height)
{
return readDXT<Three>(s, width, height);
}
static inline QImage readDXT4(QDataStream &s, quint32 width, quint32 height)
{
return readDXT<Four>(s, width, height);
}
static inline QImage readDXT5(QDataStream &s, quint32 width, quint32 height)
{
return readDXT<Five>(s, width, height);
}
static inline QImage readRXGB(QDataStream &s, quint32 width, quint32 height)
{
return readDXT<RXGB>(s, width, height);
}
static QImage readATI2(QDataStream &s, quint32 width, quint32 height)
{
QImage image(width, height, QImage::Format_RGB32);
for (quint32 i = 0; i < height; i += 4) {
for (quint32 j = 0; j < width; j += 4) {
quint64 alpha1;
quint64 alpha2;
s >> alpha1;
s >> alpha2;
QRgb arr[16];
memset(arr, 0, sizeof(QRgb) * 16);
setAlphaDXT<Five>(arr, alpha1);
for (int k = 0; k < 16; ++k) {
quint8 a = qAlpha(arr[k]);
arr[k] = qRgba(0, 0, a, 0);
}
setAlphaDXT<Five>(arr, alpha2);
const quint32 kMax = qMin<quint32>(4, height - i);
const quint32 lMax = qMin<quint32>(4, width - j);
for (quint32 k = 0; k < kMax; k++) {
QRgb *line = reinterpret_cast<QRgb *>(image.scanLine(i + k));
for (quint32 l = 0; l < lMax; l++) {
QRgb pixel = arr[k * 4 + l];
const quint8 nx = qAlpha(pixel);
const quint8 ny = qBlue(pixel);
const quint8 nz = getNormalZ(nx, ny);
line[j + l] = qRgb(nx, ny, nz);
}
}
}
}
return image;
}
static QImage readUnsignedImage(QDataStream &s, const DDSHeader &dds, quint32 width, quint32 height, bool hasAlpha)
{
quint32 flags = dds.pixelFormat.flags;
quint32 masks[ColorCount];
quint8 shifts[ColorCount];
quint8 bits[ColorCount];
masks[Red] = dds.pixelFormat.rBitMask;
masks[Green] = dds.pixelFormat.gBitMask;
masks[Blue] = dds.pixelFormat.bBitMask;
masks[Alpha] = hasAlpha ? dds.pixelFormat.aBitMask : 0;
for (int i = 0; i < ColorCount; ++i) {
shifts[i] = maskToShift(masks[i]);
bits[i] = maskLength(masks[i]);
// move mask to the left
if (bits[i] <= 8)
masks[i] = (masks[i] >> shifts[i]) << (8 - bits[i]);
}
const QImage::Format format = hasAlpha ? QImage::Format_ARGB32 : QImage::Format_RGB32;
QImage image(width, height, format);
for (quint32 y = 0; y < height; y++) {
for (quint32 x = 0; x < width; x++) {
QRgb *line = reinterpret_cast<QRgb *>(image.scanLine(y));
quint32 value = readValue(s, dds.pixelFormat.rgbBitCount);
quint8 colors[ColorCount];
for (int c = 0; c < ColorCount; ++c) {
if (bits[c] > 8) {
// truncate unneseccary bits
colors[c] = (value & masks[c]) >> shifts[c] >> (bits[c] - 8);
} else {
// move color to the left
quint8 color = value >> shifts[c] << (8 - bits[c]) & masks[c];
if (masks[c])
colors[c] = color * 0xff / masks[c];
else
colors[c] = 0;
}
}
if (flags & DDSPixelFormat::FlagLuminance)
line[x] = qRgba(colors[Red], colors[Red], colors[Red], colors[Alpha]);
else if (flags & DDSPixelFormat::FlagYUV)
line[x] = yuv2rgb(colors[Red], colors[Green], colors[Blue]);
else
line[x] = qRgba(colors[Red], colors[Green], colors[Blue], colors[Alpha]);
}
}
return image;
}
static double readFloat16(QDataStream &s)
{
quint16 value;
s >> value;
double sign = (value & 0x8000) == 0x8000 ? -1.0 : 1.0;
qint8 exp = (value & 0x7C00) >> 10;
quint16 fraction = value & 0x3FF;
if (exp == 0)
return sign * std::pow(2.0, -14.0) * fraction / 1024.0;
else
return sign * std::pow(2.0, exp - 15) * (1 + fraction / 1024.0);
}
static inline float readFloat32(QDataStream &s)
{
Q_ASSERT(sizeof(float) == 4);
float value;
// TODO: find better way to avoid setting precision each time
QDataStream::FloatingPointPrecision precision = s.floatingPointPrecision();
s.setFloatingPointPrecision(QDataStream::SinglePrecision);
s >> value;
s.setFloatingPointPrecision(precision);
return value;
}
static QImage readR16F(QDataStream &s, const quint32 width, const quint32 height)
{
QImage image(width, height, QImage::Format_RGB32);
for (quint32 y = 0; y < height; y++) {
QRgb *line = reinterpret_cast<QRgb *>(image.scanLine(y));
for (quint32 x = 0; x < width; x++) {
quint8 r = readFloat16(s) * 255;
line[x] = qRgba(r, 0, 0, 0);
}
}
return image;
}
static QImage readRG16F(QDataStream &s, const quint32 width, const quint32 height)
{
QImage image(width, height, QImage::Format_RGB32);
for (quint32 y = 0; y < height; y++) {
QRgb *line = reinterpret_cast<QRgb *>(image.scanLine(y));
for (quint32 x = 0; x < width; x++) {
quint8 r = readFloat16(s) * 255;
quint8 g = readFloat16(s) * 255;
line[x] = qRgba(r, g, 0, 0);
}
}
return image;
}
static QImage readARGB16F(QDataStream &s, const quint32 width, const quint32 height)
{
QImage image(width, height, QImage::Format_ARGB32);
for (quint32 y = 0; y < height; y++) {
QRgb *line = reinterpret_cast<QRgb *>(image.scanLine(y));
for (quint32 x = 0; x < width; x++) {
quint8 colors[ColorCount];
for (int c = 0; c < ColorCount; ++c)
colors[c] = readFloat16(s) * 255;
line[x] = qRgba(colors[Red], colors[Green], colors[Blue], colors[Alpha]);
}
}
return image;
}
static QImage readR32F(QDataStream &s, const quint32 width, const quint32 height)
{
QImage image(width, height, QImage::Format_RGB32);
for (quint32 y = 0; y < height; y++) {
QRgb *line = reinterpret_cast<QRgb *>(image.scanLine(y));
for (quint32 x = 0; x < width; x++) {
quint8 r = readFloat32(s) * 255;
line[x] = qRgba(r, 0, 0, 0);
}
}
return image;
}
static QImage readRG32F(QDataStream &s, const quint32 width, const quint32 height)
{
QImage image(width, height, QImage::Format_RGB32);
for (quint32 y = 0; y < height; y++) {
QRgb *line = reinterpret_cast<QRgb *>(image.scanLine(y));
for (quint32 x = 0; x < width; x++) {
quint8 r = readFloat32(s) * 255;
quint8 g = readFloat32(s) * 255;
line[x] = qRgba(r, g, 0, 0);
}
}
return image;
}
static QImage readARGB32F(QDataStream &s, const quint32 width, const quint32 height)
{
QImage image(width, height, QImage::Format_ARGB32);
for (quint32 y = 0; y < height; y++) {
QRgb *line = reinterpret_cast<QRgb *>(image.scanLine(y));
for (quint32 x = 0; x < width; x++) {
quint8 colors[ColorCount];
for (int c = 0; c < ColorCount; ++c)
colors[c] = readFloat32(s) * 255;
line[x] = qRgba(colors[Red], colors[Green], colors[Blue], colors[Alpha]);
}
}
return image;
}
static QImage readQ16W16V16U16(QDataStream &s, const quint32 width, const quint32 height)
{
QImage image(width, height, QImage::Format_ARGB32);
quint8 colors[ColorCount];
qint16 tmp;
for (quint32 y = 0; y < height; y++) {
QRgb *line = reinterpret_cast<QRgb *>(image.scanLine(y));
for (quint32 x = 0; x < width; x++) {
for (int i = 0; i < ColorCount; i++) {
s >> tmp;
colors[i] = (tmp + 0x7FFF) >> 8;
}
line[x] = qRgba(colors[Red], colors[Green], colors[Blue], colors[Alpha]);
}
}
return image;
}
static QImage readCxV8U8(QDataStream &s, const quint32 width, const quint32 height)
{
QImage image(width, height, QImage::Format_RGB32);
for (quint32 y = 0; y < height; y++) {
QRgb *line = reinterpret_cast<QRgb *>(image.scanLine(y));
for (quint32 x = 0; x < width; x++) {
qint8 v, u;
s >> v >> u;
const quint8 vn = v + 128;
const quint8 un = u + 128;
const quint8 c = getNormalZ(vn, un);
line[x] = qRgb(vn, un, c);
}
}
return image;
}
static QImage readPalette8Image(QDataStream &s, quint32 width, quint32 height)
{
QImage image(width, height, QImage::Format_Indexed8);
for (int i = 0; i < 256; ++i) {
quint8 r, g, b, a;
s >> r >> g >> b >> a;
image.setColor(i, qRgba(r, g, b, a));
}
for (quint32 y = 0; y < height; y++) {
for (quint32 x = 0; x < width; x++) {
quint8 index;
s >> index;
image.setPixel(x, y, index);
}
}
return image;
}
static QImage readPalette4Image(QDataStream &s, quint32 width, quint32 height)
{
QImage image(width, height, QImage::Format_Indexed8);
for (int i = 0; i < 16; ++i) {
quint8 r, g, b, a;
s >> r >> g >> b >> a;
image.setColor(i, qRgba(r, g, b, a));
}
for (quint32 y = 0; y < height; y++) {
quint8 index;
for (quint32 x = 0; x < width - 1; ) {
s >> index;
image.setPixel(x++, y, (index & 0x0f) >> 0);
image.setPixel(x++, y, (index & 0xf0) >> 4);
}
if (width % 2 == 1) {
s >> index;
image.setPixel(width - 1, y, (index & 0x0f) >> 0);
}
}
return image;
}
static QImage readARGB16(QDataStream &s, quint32 width, quint32 height)
{
QImage image(width, height, QImage::Format_ARGB32);
for (quint32 y = 0; y < height; y++) {
QRgb *line = reinterpret_cast<QRgb *>(image.scanLine(y));
for (quint32 x = 0; x < width; x++) {
quint8 colors[ColorCount];
for (int i = 0; i < ColorCount; ++i) {
quint16 color;
s >> color;
colors[i] = quint8(color >> 8);
}
line[x] = qRgba(colors[Red], colors[Green], colors[Blue], colors[Alpha]);
}
}
return image;
}
static QImage readV8U8(QDataStream &s, quint32 width, quint32 height)
{
QImage image(width, height, QImage::Format_RGB32);
for (quint32 y = 0; y < height; y++) {
QRgb *line = reinterpret_cast<QRgb *>(image.scanLine(y));
for (quint32 x = 0; x < width; x++) {
qint8 v, u;
s >> v >> u;
line[x] = qRgb(v + 128, u + 128, 255);
}
}
return image;
}
static QImage readL6V5U5(QDataStream &s, quint32 width, quint32 height)
{
QImage image(width, height, QImage::Format_ARGB32);
quint16 tmp;
for (quint32 y = 0; y < height; y++) {
QRgb *line = reinterpret_cast<QRgb *>(image.scanLine(y));
for (quint32 x = 0; x < width; x++) {
s >> tmp;
quint8 r = qint8((tmp & 0x001f) >> 0) * 0xff/0x1f + 128;
quint8 g = qint8((tmp & 0x03e0) >> 5) * 0xff/0x1f + 128;
quint8 b = quint8((tmp & 0xfc00) >> 10) * 0xff/0x3f;
line[x] = qRgba(r, g, 0xff, b);
}
}
return image;
}
static QImage readX8L8V8U8(QDataStream &s, quint32 width, quint32 height)
{
QImage image(width, height, QImage::Format_ARGB32);
quint8 a, l;
qint8 v, u;
for (quint32 y = 0; y < height; y++) {
QRgb *line = reinterpret_cast<QRgb *>(image.scanLine(y));
for (quint32 x = 0; x < width; x++) {
s >> v >> u >> a >> l;
line[x] = qRgba(v + 128, u + 128, 255, a);
}
}
return image;
}
static QImage readQ8W8V8U8(QDataStream &s, quint32 width, quint32 height)
{
QImage image(width, height, QImage::Format_ARGB32);
quint8 colors[ColorCount];
qint8 tmp;
for (quint32 y = 0; y < height; y++) {
QRgb *line = reinterpret_cast<QRgb *>(image.scanLine(y));
for (quint32 x = 0; x < width; x++) {
for (int i = 0; i < ColorCount; i++) {
s >> tmp;
colors[i] = tmp + 128;
}
line[x] = qRgba(colors[Red], colors[Green], colors[Blue], colors[Alpha]);
}
}
return image;
}
static QImage readV16U16(QDataStream &s, quint32 width, quint32 height)
{
QImage image(width, height, QImage::Format_RGB32);
for (quint32 y = 0; y < height; y++) {
QRgb *line = reinterpret_cast<QRgb *>(image.scanLine(y));
for (quint32 x = 0; x < width; x++) {
qint16 v, u;
s >> v >> u;
v = (v + 0x8000) >> 8;
u = (u + 0x8000) >> 8;
line[x] = qRgb(v, u, 255);
}
}
return image;
}
static QImage readA2W10V10U10(QDataStream &s, quint32 width, quint32 height)
{
QImage image(width, height, QImage::Format_ARGB32);
quint32 tmp;
for (quint32 y = 0; y < height; y++) {
QRgb *line = reinterpret_cast<QRgb *>(image.scanLine(y));
for (quint32 x = 0; x < width; x++) {
s >> tmp;
quint8 r = qint8((tmp & 0x3ff00000) >> 20 >> 2) + 128;
quint8 g = qint8((tmp & 0x000ffc00) >> 10 >> 2) + 128;
quint8 b = qint8((tmp & 0x000003ff) >> 0 >> 2) + 128;
quint8 a = 0xff * ((tmp & 0xc0000000) >> 30) / 3;
// dunno why we should swap b and r here
std::swap(b, r);
line[x] = qRgba(r, g, b, a);
}
}
return image;
}
static QImage readUYVY(QDataStream &s, quint32 width, quint32 height)
{
QImage image(width, height, QImage::Format_RGB32);
quint8 uyvy[4];
for (quint32 y = 0; y < height; y++) {
QRgb *line = reinterpret_cast<QRgb *>(image.scanLine(y));
for (quint32 x = 0; x < width - 1; ) {
s >> uyvy[0] >> uyvy[1] >> uyvy[2] >> uyvy[3];
line[x++] = yuv2rgb(uyvy[1], uyvy[0], uyvy[2]);
line[x++] = yuv2rgb(uyvy[3], uyvy[0], uyvy[2]);
}
if (width % 2 == 1) {
s >> uyvy[0] >> uyvy[1] >> uyvy[2] >> uyvy[3];
line[width - 1] = yuv2rgb(uyvy[1], uyvy[0], uyvy[2]);
}
}
return image;
}
static QImage readR8G8B8G8(QDataStream &s, quint32 width, quint32 height)
{
QImage image(width, height, QImage::Format_RGB32);
quint8 rgbg[4];
for (quint32 y = 0; y < height; y++) {
QRgb *line = reinterpret_cast<QRgb *>(image.scanLine(y));
for (quint32 x = 0; x < width - 1; ) {
s >> rgbg[1] >> rgbg[0] >> rgbg[3] >> rgbg[2];
line[x++] = qRgb(rgbg[0], rgbg[1], rgbg[2]);
line[x++] = qRgb(rgbg[0], rgbg[3], rgbg[2]);
}
if (width % 2 == 1) {
s >> rgbg[1] >> rgbg[0] >> rgbg[3] >> rgbg[2];
line[width - 1] = qRgb(rgbg[0], rgbg[1], rgbg[2]);
}
}
return image;
}
static QImage readYUY2(QDataStream &s, quint32 width, quint32 height)
{
QImage image(width, height, QImage::Format_RGB32);
quint8 yuyv[4];
for (quint32 y = 0; y < height; y++) {
QRgb *line = reinterpret_cast<QRgb *>(image.scanLine(y));
for (quint32 x = 0; x < width - 1; ) {
s >> yuyv[0] >> yuyv[1] >> yuyv[2] >> yuyv[3];
line[x++] = yuv2rgb(yuyv[0], yuyv[1], yuyv[3]);
line[x++] = yuv2rgb(yuyv[2], yuyv[1], yuyv[3]);
}
if (width % 2 == 1) {
s >> yuyv[0] >> yuyv[1] >> yuyv[2] >> yuyv[3];
line[width - 1] = yuv2rgb(yuyv[2], yuyv[1], yuyv[3]);
}
}
return image;
}
static QImage readG8R8G8B8(QDataStream &s, quint32 width, quint32 height)
{
QImage image(width, height, QImage::Format_RGB32);
quint8 grgb[4];
for (quint32 y = 0; y < height; y++) {
QRgb *line = reinterpret_cast<QRgb *>(image.scanLine(y));
for (quint32 x = 0; x < width - 1; ) {
s >> grgb[1] >> grgb[0] >> grgb[3] >> grgb[2];
line[x++] = qRgb(grgb[1], grgb[0], grgb[3]);
line[x++] = qRgb(grgb[1], grgb[2], grgb[3]);
}
if (width % 2 == 1) {
s >> grgb[1] >> grgb[0] >> grgb[3] >> grgb[2];
line[width - 1] = qRgb(grgb[1], grgb[0], grgb[3]);
}
}
return image;
}
static QImage readA2R10G10B10(QDataStream &s, const DDSHeader &dds, quint32 width, quint32 height)
{
QImage image = readUnsignedImage(s, dds, width, height, true);
for (quint32 y = 0; y < height; y++) {
QRgb *line = reinterpret_cast<QRgb *>(image.scanLine(y));
for (quint32 x = 0; x < width; x++) {
QRgb pixel = image.pixel(x, y);
line[x] = qRgba(qBlue(pixel), qGreen(pixel), qRed(pixel), qAlpha(pixel));
}
}
return image;
}
static QImage readLayer(QDataStream &s, const DDSHeader &dds, const int format, quint32 width, quint32 height)
{
if (width * height == 0)
return QImage();
switch (format) {
case FormatR8G8B8:
case FormatX8R8G8B8:
case FormatR5G6B5:
case FormatR3G3B2:
case FormatX1R5G5B5:
case FormatX4R4G4B4:
case FormatX8B8G8R8:
case FormatG16R16:
case FormatL8:
case FormatL16:
return readUnsignedImage(s, dds, width, height, false);
case FormatA8R8G8B8:
case FormatA1R5G5B5:
case FormatA4R4G4B4:
case FormatA8:
case FormatA8R3G3B2:
case FormatA8B8G8R8:
case FormatA8L8:
case FormatA4L4:
return readUnsignedImage(s, dds, width, height, true);
case FormatA2R10G10B10:
case FormatA2B10G10R10:
return readA2R10G10B10(s, dds, width, height);
case FormatP8:
case FormatA8P8:
return readPalette8Image(s, width, height);
case FormatP4:
case FormatA4P4:
return readPalette4Image(s, width, height);
case FormatA16B16G16R16:
return readARGB16(s, width, height);
case FormatV8U8:
return readV8U8(s, width, height);
case FormatL6V5U5:
return readL6V5U5(s, width, height);
case FormatX8L8V8U8:
return readX8L8V8U8(s, width, height);
case FormatQ8W8V8U8:
return readQ8W8V8U8(s, width, height);
case FormatV16U16:
return readV16U16(s, width, height);
case FormatA2W10V10U10:
return readA2W10V10U10(s, width, height);
case FormatUYVY:
return readUYVY(s, width, height);
case FormatR8G8B8G8:
return readR8G8B8G8(s, width, height);
case FormatYUY2:
return readYUY2(s, width, height);
case FormatG8R8G8B8:
return readG8R8G8B8(s, width, height);
case FormatDXT1:
return readDXT1(s, width, height);
case FormatDXT2:
return readDXT2(s, width, height);
case FormatDXT3:
return readDXT3(s, width, height);
case FormatDXT4:
return readDXT4(s, width, height);
case FormatDXT5:
return readDXT5(s, width, height);
case FormatRXGB:
return readRXGB(s, width, height);
case FormatATI2:
return readATI2(s, width, height);
case FormatR16F:
return readR16F(s, width, height);
case FormatG16R16F:
return readRG16F(s, width, height);
case FormatA16B16G16R16F:
return readARGB16F(s, width, height);
case FormatR32F:
return readR32F(s, width, height);
case FormatG32R32F:
return readRG32F(s, width, height);
case FormatA32B32G32R32F:
return readARGB32F(s, width, height);
case FormatD16Lockable:
case FormatD32:
case FormatD15S1:
case FormatD24S8:
case FormatD24X8:
case FormatD24X4S4:
case FormatD16:
case FormatD32FLockable:
case FormatD24FS8:
case FormatD32Lockable:
case FormatS8Lockable:
case FormatVertexData:
case FormatIndex16:
case FormatIndex32:
break;
case FormatQ16W16V16U16:
return readQ16W16V16U16(s, width, height);
case FormatMulti2ARGB8:
break;
case FormatCxV8U8:
return readCxV8U8(s, width, height);
case FormatA1:
case FormatA2B10G10R10_XR_BIAS:
case FormatBinaryBuffer:
case FormatLast:
break;
}
return QImage();
}
static inline QImage readTexture(QDataStream &s, const DDSHeader &dds, const int format, const int mipmapLevel)
{
quint32 width = dds.width / (1 << mipmapLevel);
quint32 height = dds.height / (1 << mipmapLevel);
return readLayer(s, dds, format, width, height);
}
static qint64 mipmapSize(const DDSHeader &dds, const int format, const int level)
{
quint32 w = dds.width/(1 << level);
quint32 h = dds.height/(1 << level);
switch (format) {
case FormatR8G8B8:
case FormatX8R8G8B8:
case FormatR5G6B5:
case FormatX1R5G5B5:
case FormatX4R4G4B4:
case FormatX8B8G8R8:
case FormatG16R16:
case FormatL8:
case FormatL16:
return w * h * dds.pixelFormat.rgbBitCount / 8;
case FormatA8R8G8B8:
case FormatA1R5G5B5:
case FormatA4R4G4B4:
case FormatA8:
case FormatA8R3G3B2:
case FormatA2B10G10R10:
case FormatA8B8G8R8:
case FormatA2R10G10B10:
case FormatA8L8:
case FormatA4L4:
return w * h * dds.pixelFormat.rgbBitCount / 8;
case FormatP8:
return 256 + w * h * 8;
case FormatA16B16G16R16:
return w * h * 4 * 2;
case FormatA8P8:
break;
case FormatV8U8:
case FormatL6V5U5:
return w * h * 2;
case FormatX8L8V8U8:
case FormatQ8W8V8U8:
case FormatV16U16:
case FormatA2W10V10U10:
return w * h * 4;
case FormatUYVY:
case FormatR8G8B8G8:
case FormatYUY2:
case FormatG8R8G8B8:
return w * h * 2;
case FormatDXT1:
return ((w + 3)/4) * ((h + 3)/4) * 8;
case FormatDXT2:
case FormatDXT3:
case FormatDXT4:
case FormatDXT5:
return ((w + 3)/4) * ((h + 3)/4) * 16;
case FormatD16Lockable:
case FormatD32:
case FormatD15S1:
case FormatD24S8:
case FormatD24X8:
case FormatD24X4S4:
case FormatD16:
case FormatD32FLockable:
case FormatD24FS8:
case FormatD32Lockable:
case FormatS8Lockable:
case FormatVertexData:
case FormatIndex16:
case FormatIndex32:
break;
case FormatQ16W16V16U16:
return w * h * 4 * 2;
case FormatMulti2ARGB8:
break;
case FormatR16F:
return w * h * 1 * 2;
case FormatG16R16F:
return w * h * 2 * 2;
case FormatA16B16G16R16F:
return w * h * 4 * 2;
case FormatR32F:
return w * h * 1 * 4;
case FormatG32R32F:
return w * h * 2 * 4;
case FormatA32B32G32R32F:
return w * h * 4 * 4;
case FormatCxV8U8:
return w * h * 2;
case FormatA1:
case FormatA2B10G10R10_XR_BIAS:
case FormatBinaryBuffer:
case FormatLast:
break;
}
return 0;
}
static qint64 mipmapOffset(const DDSHeader &dds, const int format, const int level)
{
qint64 result = 0;
for (int i = 0; i < level; ++i)
result += mipmapSize(dds, format, i);
return result;
}
static QImage readCubeMap(QDataStream &s, const DDSHeader &dds, const int fmt)
{
QImage::Format format = hasAlpha(dds) ? QImage::Format_ARGB32 : QImage::Format_RGB32;
QImage image(4 * dds.width, 3 * dds.height, format);
image.fill(0);
for (int i = 0; i < 6; i++) {
if (!(dds.caps2 & faceFlags[i]))
continue; // Skip face.
const QImage face = readLayer(s, dds, fmt, dds.width, dds.height);
// Compute face offsets.
int offset_x = faceOffsets[i].x * dds.width;
int offset_y = faceOffsets[i].y * dds.height;
// Copy face on the image.
for (quint32 y = 0; y < dds.height; y++) {
const QRgb *src = reinterpret_cast<const QRgb *>(face.scanLine(y));
QRgb *dst = reinterpret_cast<QRgb *>(image.scanLine(y + offset_y)) + offset_x;
memcpy(dst, src, sizeof(QRgb) * dds.width);
}
}
return image;
}
static QByteArray formatName(int format)
{
for (size_t i = 0; i < formatNamesSize; ++i) {
if (formatNames[i].format == format)
return formatNames[i].name;
}
return formatNames[0].name;
}
static int formatByName(const QByteArray &name)
{
const QByteArray loweredName = name.toLower();
for (size_t i = 0; i < formatNamesSize; ++i) {
if (QByteArray(formatNames[i].name).toLower() == loweredName)
return formatNames[i].format;
}
return FormatUnknown;
}
QDDSHandler::QDDSHandler() :
m_header(),
m_format(FormatA8R8G8B8),
m_header10(),
m_currentImage(0),
m_scanState(ScanNotScanned)
{
}
#if QT_DEPRECATED_SINCE(5, 13)
QByteArray QDDSHandler::name() const
{
return QByteArrayLiteral("dds");
}
#endif
bool QDDSHandler::canRead() const
{
if (m_scanState == ScanNotScanned && !canRead(device()))
return false;
if (m_scanState != ScanError) {
setFormat(QByteArrayLiteral("dds"));
return true;
}
return false;
}
bool QDDSHandler::read(QImage *outImage)
{
if (!ensureScanned() || device()->isSequential())
return false;
qint64 pos = headerSize + mipmapOffset(m_header, m_format, m_currentImage);
if (!device()->seek(pos))
return false;
QDataStream s(device());
s.setByteOrder(QDataStream::LittleEndian);
QImage image = isCubeMap(m_header) ?
readCubeMap(s, m_header, m_format) :
readTexture(s, m_header, m_format, m_currentImage);
bool ok = s.status() == QDataStream::Ok && !image.isNull();
if (ok)
*outImage = image;
return ok;
}
bool QDDSHandler::write(const QImage &outImage)
{
if (m_format != FormatA8R8G8B8) {
qWarning() << "Format" << formatName(m_format) << "is not supported";
return false;
}
const QImage image = outImage.convertToFormat(QImage::Format_ARGB32);
QDataStream s(device());
s.setByteOrder(QDataStream::LittleEndian);
DDSHeader dds;
// Filling header
dds.magic = ddsMagic;
dds.size = 124;
dds.flags = DDSHeader::FlagCaps | DDSHeader::FlagHeight |
DDSHeader::FlagWidth | DDSHeader::FlagPixelFormat;
dds.height = image.height();
dds.width = image.width();
dds.pitchOrLinearSize = 128;
dds.depth = 0;
dds.mipMapCount = 0;
for (int i = 0; i < DDSHeader::ReservedCount; i++)
dds.reserved1[i] = 0;
dds.caps = DDSHeader::CapsTexture;
dds.caps2 = 0;
dds.caps3 = 0;
dds.caps4 = 0;
dds.reserved2 = 0;
// Filling pixelformat
dds.pixelFormat.size = 32;
dds.pixelFormat.flags = DDSPixelFormat::FlagAlphaPixels | DDSPixelFormat::FlagRGB;
dds.pixelFormat.fourCC = 0;
dds.pixelFormat.rgbBitCount = 32;
dds.pixelFormat.aBitMask = 0xff000000;
dds.pixelFormat.rBitMask = 0x00ff0000;
dds.pixelFormat.gBitMask = 0x0000ff00;
dds.pixelFormat.bBitMask = 0x000000ff;
s << dds;
for (int height = 0; height < image.height(); height++) {
for (int width = 0; width < image.width(); width++) {
QRgb pixel = image.pixel(width, height);
quint32 color;
quint8 alpha = qAlpha(pixel);
quint8 red = qRed(pixel);
quint8 green = qGreen(pixel);
quint8 blue = qBlue(pixel);
color = (alpha << 24) + (red << 16) + (green << 8) + blue;
s << color;
}
}
return true;
}
QVariant QDDSHandler::option(QImageIOHandler::ImageOption option) const
{
if (!supportsOption(option) || !ensureScanned())
return QVariant();
switch (option) {
case QImageIOHandler::Size:
return QSize(m_header.width, m_header.height);
case QImageIOHandler::SubType:
return formatName(m_format);
case QImageIOHandler::SupportedSubTypes:
return QVariant::fromValue(QList<QByteArray>() << formatName(FormatA8R8G8B8));
default:
break;
}
return QVariant();
}
void QDDSHandler::setOption(QImageIOHandler::ImageOption option, const QVariant &value)
{
if (option == QImageIOHandler::SubType) {
const QByteArray subType = value.toByteArray();
m_format = formatByName(subType.toUpper());
if (m_format == FormatUnknown)
qWarning() << "unknown format" << subType;
}
}
bool QDDSHandler::supportsOption(QImageIOHandler::ImageOption option) const
{
return (option == QImageIOHandler::Size)
|| (option == QImageIOHandler::SubType)
|| (option == QImageIOHandler::SupportedSubTypes);
}
int QDDSHandler::imageCount() const
{
if (!ensureScanned())
return 0;
return qMax<quint32>(1, m_header.mipMapCount);
}
bool QDDSHandler::jumpToImage(int imageNumber)
{
if (imageNumber >= imageCount())
return false;
m_currentImage = imageNumber;
return true;
}
bool QDDSHandler::canRead(QIODevice *device)
{
if (!device) {
qWarning() << "DDSHandler::canRead() called with no device";
return false;
}
if (device->isSequential())
return false;
return device->peek(4) == QByteArrayLiteral("DDS ");
}
bool QDDSHandler::ensureScanned() const
{
if (m_scanState != ScanNotScanned)
return m_scanState == ScanSuccess;
m_scanState = ScanError;
QDDSHandler *that = const_cast<QDDSHandler *>(this);
that->m_format = FormatUnknown;
if (device()->isSequential()) {
qWarning() << "Sequential devices are not supported";
return false;
}
qint64 oldPos = device()->pos();
device()->seek(0);
QDataStream s(device());
s.setByteOrder(QDataStream::LittleEndian);
s >> that->m_header;
if (m_header.pixelFormat.fourCC == dx10Magic)
s >> that->m_header10;
device()->seek(oldPos);
if (s.status() != QDataStream::Ok)
return false;
if (!verifyHeader(m_header))
return false;
that->m_format = getFormat(m_header);
if (that->m_format == FormatUnknown)
return false;
m_scanState = ScanSuccess;
return true;
}
bool QDDSHandler::verifyHeader(const DDSHeader &dds) const
{
quint32 flags = dds.flags;
quint32 requiredFlags = DDSHeader::FlagCaps | DDSHeader::FlagHeight
| DDSHeader::FlagWidth | DDSHeader::FlagPixelFormat;
if ((flags & requiredFlags) != requiredFlags) {
qWarning() << "Wrong dds.flags - not all required flags present. "
"Actual flags :" << flags;
return false;
}
if (dds.size != ddsSize) {
qWarning() << "Wrong dds.size: actual =" << dds.size
<< "expected =" << ddsSize;
return false;
}
if (dds.pixelFormat.size != pixelFormatSize) {
qWarning() << "Wrong dds.pixelFormat.size: actual =" << dds.pixelFormat.size
<< "expected =" << pixelFormatSize;
return false;
}
if (dds.width > INT_MAX || dds.height > INT_MAX) {
qWarning() << "Can't read image with w/h bigger than INT_MAX";
return false;
}
return true;
}
QT_END_NAMESPACE
#endif // QT_NO_DATASTREAM