blob: 32cc7f1f956bdce1f2a40f922a5bdff48b005622 [file] [log] [blame]
/****************************************************************************
**
** Copyright (C) 2016 The Qt Company Ltd.
** Contact: https://www.qt.io/licensing/
**
** This file is part of the QtGui module of the Qt Toolkit.
**
** $QT_BEGIN_LICENSE:LGPL$
** Commercial License Usage
** Licensees holding valid commercial Qt licenses may use this file in
** accordance with the commercial license agreement provided with the
** Software or, alternatively, in accordance with the terms contained in
** a written agreement between you and The Qt Company. For licensing terms
** and conditions see https://www.qt.io/terms-conditions. For further
** information use the contact form at https://www.qt.io/contact-us.
**
** GNU Lesser General Public License Usage
** Alternatively, this file may be used under the terms of the GNU Lesser
** General Public License version 3 as published by the Free Software
** Foundation and appearing in the file LICENSE.LGPL3 included in the
** packaging of this file. Please review the following information to
** ensure the GNU Lesser General Public License version 3 requirements
** will be met: https://www.gnu.org/licenses/lgpl-3.0.html.
**
** GNU General Public License Usage
** Alternatively, this file may be used under the terms of the GNU
** General Public License version 2.0 or (at your option) the GNU General
** Public license version 3 or any later version approved by the KDE Free
** Qt Foundation. The licenses are as published by the Free Software
** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3
** included in the packaging of this file. Please review the following
** information to ensure the GNU General Public License requirements will
** be met: https://www.gnu.org/licenses/gpl-2.0.html and
** https://www.gnu.org/licenses/gpl-3.0.html.
**
** $QT_END_LICENSE$
**
****************************************************************************/
#include "qdoublematrix4x4_p.h"
#include <QtCore/qmath.h>
//#include <QtCore/qvariant.h>
#include <QtCore/qdatastream.h>
#include <cmath>
QT_BEGIN_NAMESPACE
static const double inv_dist_to_plane = 1.0 / 1024.0;
QDoubleMatrix4x4::QDoubleMatrix4x4(const double *values)
{
for (int row = 0; row < 4; ++row)
for (int col = 0; col < 4; ++col)
m[col][row] = values[row * 4 + col];
flagBits = General;
}
QDoubleMatrix4x4::QDoubleMatrix4x4(const double *values, int cols, int rows)
{
for (int col = 0; col < 4; ++col) {
for (int row = 0; row < 4; ++row) {
if (col < cols && row < rows)
m[col][row] = values[col * rows + row];
else if (col == row)
m[col][row] = 1.0;
else
m[col][row] = 0.0;
}
}
flagBits = General;
}
static inline double matrixDet2(const double m[4][4], int col0, int col1, int row0, int row1)
{
return m[col0][row0] * m[col1][row1] - m[col0][row1] * m[col1][row0];
}
static inline double matrixDet3
(const double m[4][4], int col0, int col1, int col2,
int row0, int row1, int row2)
{
return m[col0][row0] * matrixDet2(m, col1, col2, row1, row2)
- m[col1][row0] * matrixDet2(m, col0, col2, row1, row2)
+ m[col2][row0] * matrixDet2(m, col0, col1, row1, row2);
}
static inline double matrixDet4(const double m[4][4])
{
double det;
det = m[0][0] * matrixDet3(m, 1, 2, 3, 1, 2, 3);
det -= m[1][0] * matrixDet3(m, 0, 2, 3, 1, 2, 3);
det += m[2][0] * matrixDet3(m, 0, 1, 3, 1, 2, 3);
det -= m[3][0] * matrixDet3(m, 0, 1, 2, 1, 2, 3);
return det;
}
double QDoubleMatrix4x4::determinant() const
{
if ((flagBits & ~(Translation | Rotation2D | Rotation)) == Identity)
return 1.0;
if (flagBits < Rotation2D)
return m[0][0] * m[1][1] * m[2][2]; // Translation | Scale
if (flagBits < Perspective)
return matrixDet3(m, 0, 1, 2, 0, 1, 2);
return matrixDet4(m);
}
QDoubleMatrix4x4 QDoubleMatrix4x4::inverted(bool *invertible) const
{
// Handle some of the easy cases first.
if (flagBits == Identity) {
if (invertible)
*invertible = true;
return QDoubleMatrix4x4();
} else if (flagBits == Translation) {
QDoubleMatrix4x4 inv;
inv.m[3][0] = -m[3][0];
inv.m[3][1] = -m[3][1];
inv.m[3][2] = -m[3][2];
inv.flagBits = Translation;
if (invertible)
*invertible = true;
return inv;
} else if (flagBits < Rotation2D) {
// Translation | Scale
if (m[0][0] == 0 || m[1][1] == 0 || m[2][2] == 0) {
if (invertible)
*invertible = false;
return QDoubleMatrix4x4();
}
QDoubleMatrix4x4 inv;
inv.m[0][0] = 1.0 / m[0][0];
inv.m[1][1] = 1.0 / m[1][1];
inv.m[2][2] = 1.0 / m[2][2];
inv.m[3][0] = -m[3][0] * inv.m[0][0];
inv.m[3][1] = -m[3][1] * inv.m[1][1];
inv.m[3][2] = -m[3][2] * inv.m[2][2];
inv.flagBits = flagBits;
if (invertible)
*invertible = true;
return inv;
} else if ((flagBits & ~(Translation | Rotation2D | Rotation)) == Identity) {
if (invertible)
*invertible = true;
return orthonormalInverse();
} else if (flagBits < Perspective) {
QDoubleMatrix4x4 inv(1); // The "1" says to not load the identity.
double det = matrixDet3(m, 0, 1, 2, 0, 1, 2);
if (det == 0.0) {
if (invertible)
*invertible = false;
return QDoubleMatrix4x4();
}
det = 1.0 / det;
inv.m[0][0] = matrixDet2(m, 1, 2, 1, 2) * det;
inv.m[0][1] = -matrixDet2(m, 0, 2, 1, 2) * det;
inv.m[0][2] = matrixDet2(m, 0, 1, 1, 2) * det;
inv.m[0][3] = 0;
inv.m[1][0] = -matrixDet2(m, 1, 2, 0, 2) * det;
inv.m[1][1] = matrixDet2(m, 0, 2, 0, 2) * det;
inv.m[1][2] = -matrixDet2(m, 0, 1, 0, 2) * det;
inv.m[1][3] = 0;
inv.m[2][0] = matrixDet2(m, 1, 2, 0, 1) * det;
inv.m[2][1] = -matrixDet2(m, 0, 2, 0, 1) * det;
inv.m[2][2] = matrixDet2(m, 0, 1, 0, 1) * det;
inv.m[2][3] = 0;
inv.m[3][0] = -inv.m[0][0] * m[3][0] - inv.m[1][0] * m[3][1] - inv.m[2][0] * m[3][2];
inv.m[3][1] = -inv.m[0][1] * m[3][0] - inv.m[1][1] * m[3][1] - inv.m[2][1] * m[3][2];
inv.m[3][2] = -inv.m[0][2] * m[3][0] - inv.m[1][2] * m[3][1] - inv.m[2][2] * m[3][2];
inv.m[3][3] = 1;
inv.flagBits = flagBits;
if (invertible)
*invertible = true;
return inv;
}
QDoubleMatrix4x4 inv(1); // The "1" says to not load the identity.
double det = matrixDet4(m);
if (det == 0.0) {
if (invertible)
*invertible = false;
return QDoubleMatrix4x4();
}
det = 1.0 / det;
inv.m[0][0] = matrixDet3(m, 1, 2, 3, 1, 2, 3) * det;
inv.m[0][1] = -matrixDet3(m, 0, 2, 3, 1, 2, 3) * det;
inv.m[0][2] = matrixDet3(m, 0, 1, 3, 1, 2, 3) * det;
inv.m[0][3] = -matrixDet3(m, 0, 1, 2, 1, 2, 3) * det;
inv.m[1][0] = -matrixDet3(m, 1, 2, 3, 0, 2, 3) * det;
inv.m[1][1] = matrixDet3(m, 0, 2, 3, 0, 2, 3) * det;
inv.m[1][2] = -matrixDet3(m, 0, 1, 3, 0, 2, 3) * det;
inv.m[1][3] = matrixDet3(m, 0, 1, 2, 0, 2, 3) * det;
inv.m[2][0] = matrixDet3(m, 1, 2, 3, 0, 1, 3) * det;
inv.m[2][1] = -matrixDet3(m, 0, 2, 3, 0, 1, 3) * det;
inv.m[2][2] = matrixDet3(m, 0, 1, 3, 0, 1, 3) * det;
inv.m[2][3] = -matrixDet3(m, 0, 1, 2, 0, 1, 3) * det;
inv.m[3][0] = -matrixDet3(m, 1, 2, 3, 0, 1, 2) * det;
inv.m[3][1] = matrixDet3(m, 0, 2, 3, 0, 1, 2) * det;
inv.m[3][2] = -matrixDet3(m, 0, 1, 3, 0, 1, 2) * det;
inv.m[3][3] = matrixDet3(m, 0, 1, 2, 0, 1, 2) * det;
inv.flagBits = flagBits;
if (invertible)
*invertible = true;
return inv;
}
QDoubleMatrix4x4 QDoubleMatrix4x4::transposed() const
{
QDoubleMatrix4x4 result(1); // The "1" says to not load the identity.
for (int row = 0; row < 4; ++row) {
for (int col = 0; col < 4; ++col) {
result.m[col][row] = m[row][col];
}
}
// When a translation is transposed, it becomes a perspective transformation.
result.flagBits = (flagBits & Translation ? General : flagBits);
return result;
}
QDoubleMatrix4x4& QDoubleMatrix4x4::operator/=(double divisor)
{
m[0][0] /= divisor;
m[0][1] /= divisor;
m[0][2] /= divisor;
m[0][3] /= divisor;
m[1][0] /= divisor;
m[1][1] /= divisor;
m[1][2] /= divisor;
m[1][3] /= divisor;
m[2][0] /= divisor;
m[2][1] /= divisor;
m[2][2] /= divisor;
m[2][3] /= divisor;
m[3][0] /= divisor;
m[3][1] /= divisor;
m[3][2] /= divisor;
m[3][3] /= divisor;
flagBits = General;
return *this;
}
QDoubleMatrix4x4 operator/(const QDoubleMatrix4x4& matrix, double divisor)
{
QDoubleMatrix4x4 m(1); // The "1" says to not load the identity.
m.m[0][0] = matrix.m[0][0] / divisor;
m.m[0][1] = matrix.m[0][1] / divisor;
m.m[0][2] = matrix.m[0][2] / divisor;
m.m[0][3] = matrix.m[0][3] / divisor;
m.m[1][0] = matrix.m[1][0] / divisor;
m.m[1][1] = matrix.m[1][1] / divisor;
m.m[1][2] = matrix.m[1][2] / divisor;
m.m[1][3] = matrix.m[1][3] / divisor;
m.m[2][0] = matrix.m[2][0] / divisor;
m.m[2][1] = matrix.m[2][1] / divisor;
m.m[2][2] = matrix.m[2][2] / divisor;
m.m[2][3] = matrix.m[2][3] / divisor;
m.m[3][0] = matrix.m[3][0] / divisor;
m.m[3][1] = matrix.m[3][1] / divisor;
m.m[3][2] = matrix.m[3][2] / divisor;
m.m[3][3] = matrix.m[3][3] / divisor;
m.flagBits = QDoubleMatrix4x4::General;
return m;
}
void QDoubleMatrix4x4::scale(const QDoubleVector3D& vector)
{
double vx = vector.x();
double vy = vector.y();
double vz = vector.z();
if (flagBits < Scale) {
m[0][0] = vx;
m[1][1] = vy;
m[2][2] = vz;
} else if (flagBits < Rotation2D) {
m[0][0] *= vx;
m[1][1] *= vy;
m[2][2] *= vz;
} else if (flagBits < Rotation) {
m[0][0] *= vx;
m[0][1] *= vx;
m[1][0] *= vy;
m[1][1] *= vy;
m[2][2] *= vz;
} else {
m[0][0] *= vx;
m[0][1] *= vx;
m[0][2] *= vx;
m[0][3] *= vx;
m[1][0] *= vy;
m[1][1] *= vy;
m[1][2] *= vy;
m[1][3] *= vy;
m[2][0] *= vz;
m[2][1] *= vz;
m[2][2] *= vz;
m[2][3] *= vz;
}
flagBits |= Scale;
}
void QDoubleMatrix4x4::scale(double x, double y)
{
if (flagBits < Scale) {
m[0][0] = x;
m[1][1] = y;
} else if (flagBits < Rotation2D) {
m[0][0] *= x;
m[1][1] *= y;
} else if (flagBits < Rotation) {
m[0][0] *= x;
m[0][1] *= x;
m[1][0] *= y;
m[1][1] *= y;
} else {
m[0][0] *= x;
m[0][1] *= x;
m[0][2] *= x;
m[0][3] *= x;
m[1][0] *= y;
m[1][1] *= y;
m[1][2] *= y;
m[1][3] *= y;
}
flagBits |= Scale;
}
void QDoubleMatrix4x4::scale(double x, double y, double z)
{
if (flagBits < Scale) {
m[0][0] = x;
m[1][1] = y;
m[2][2] = z;
} else if (flagBits < Rotation2D) {
m[0][0] *= x;
m[1][1] *= y;
m[2][2] *= z;
} else if (flagBits < Rotation) {
m[0][0] *= x;
m[0][1] *= x;
m[1][0] *= y;
m[1][1] *= y;
m[2][2] *= z;
} else {
m[0][0] *= x;
m[0][1] *= x;
m[0][2] *= x;
m[0][3] *= x;
m[1][0] *= y;
m[1][1] *= y;
m[1][2] *= y;
m[1][3] *= y;
m[2][0] *= z;
m[2][1] *= z;
m[2][2] *= z;
m[2][3] *= z;
}
flagBits |= Scale;
}
void QDoubleMatrix4x4::scale(double factor)
{
if (flagBits < Scale) {
m[0][0] = factor;
m[1][1] = factor;
m[2][2] = factor;
} else if (flagBits < Rotation2D) {
m[0][0] *= factor;
m[1][1] *= factor;
m[2][2] *= factor;
} else if (flagBits < Rotation) {
m[0][0] *= factor;
m[0][1] *= factor;
m[1][0] *= factor;
m[1][1] *= factor;
m[2][2] *= factor;
} else {
m[0][0] *= factor;
m[0][1] *= factor;
m[0][2] *= factor;
m[0][3] *= factor;
m[1][0] *= factor;
m[1][1] *= factor;
m[1][2] *= factor;
m[1][3] *= factor;
m[2][0] *= factor;
m[2][1] *= factor;
m[2][2] *= factor;
m[2][3] *= factor;
}
flagBits |= Scale;
}
void QDoubleMatrix4x4::translate(const QDoubleVector3D& vector)
{
double vx = vector.x();
double vy = vector.y();
double vz = vector.z();
if (flagBits == Identity) {
m[3][0] = vx;
m[3][1] = vy;
m[3][2] = vz;
} else if (flagBits == Translation) {
m[3][0] += vx;
m[3][1] += vy;
m[3][2] += vz;
} else if (flagBits == Scale) {
m[3][0] = m[0][0] * vx;
m[3][1] = m[1][1] * vy;
m[3][2] = m[2][2] * vz;
} else if (flagBits == (Translation | Scale)) {
m[3][0] += m[0][0] * vx;
m[3][1] += m[1][1] * vy;
m[3][2] += m[2][2] * vz;
} else if (flagBits < Rotation) {
m[3][0] += m[0][0] * vx + m[1][0] * vy;
m[3][1] += m[0][1] * vx + m[1][1] * vy;
m[3][2] += m[2][2] * vz;
} else {
m[3][0] += m[0][0] * vx + m[1][0] * vy + m[2][0] * vz;
m[3][1] += m[0][1] * vx + m[1][1] * vy + m[2][1] * vz;
m[3][2] += m[0][2] * vx + m[1][2] * vy + m[2][2] * vz;
m[3][3] += m[0][3] * vx + m[1][3] * vy + m[2][3] * vz;
}
flagBits |= Translation;
}
void QDoubleMatrix4x4::translate(double x, double y)
{
if (flagBits == Identity) {
m[3][0] = x;
m[3][1] = y;
} else if (flagBits == Translation) {
m[3][0] += x;
m[3][1] += y;
} else if (flagBits == Scale) {
m[3][0] = m[0][0] * x;
m[3][1] = m[1][1] * y;
} else if (flagBits == (Translation | Scale)) {
m[3][0] += m[0][0] * x;
m[3][1] += m[1][1] * y;
} else if (flagBits < Rotation) {
m[3][0] += m[0][0] * x + m[1][0] * y;
m[3][1] += m[0][1] * x + m[1][1] * y;
} else {
m[3][0] += m[0][0] * x + m[1][0] * y;
m[3][1] += m[0][1] * x + m[1][1] * y;
m[3][2] += m[0][2] * x + m[1][2] * y;
m[3][3] += m[0][3] * x + m[1][3] * y;
}
flagBits |= Translation;
}
void QDoubleMatrix4x4::translate(double x, double y, double z)
{
if (flagBits == Identity) {
m[3][0] = x;
m[3][1] = y;
m[3][2] = z;
} else if (flagBits == Translation) {
m[3][0] += x;
m[3][1] += y;
m[3][2] += z;
} else if (flagBits == Scale) {
m[3][0] = m[0][0] * x;
m[3][1] = m[1][1] * y;
m[3][2] = m[2][2] * z;
} else if (flagBits == (Translation | Scale)) {
m[3][0] += m[0][0] * x;
m[3][1] += m[1][1] * y;
m[3][2] += m[2][2] * z;
} else if (flagBits < Rotation) {
m[3][0] += m[0][0] * x + m[1][0] * y;
m[3][1] += m[0][1] * x + m[1][1] * y;
m[3][2] += m[2][2] * z;
} else {
m[3][0] += m[0][0] * x + m[1][0] * y + m[2][0] * z;
m[3][1] += m[0][1] * x + m[1][1] * y + m[2][1] * z;
m[3][2] += m[0][2] * x + m[1][2] * y + m[2][2] * z;
m[3][3] += m[0][3] * x + m[1][3] * y + m[2][3] * z;
}
flagBits |= Translation;
}
void QDoubleMatrix4x4::rotate(double angle, const QDoubleVector3D& vector)
{
rotate(angle, vector.x(), vector.y(), vector.z());
}
void QDoubleMatrix4x4::rotate(double angle, double x, double y, double z)
{
if (angle == 0.0)
return;
double c, s;
if (angle == 90.0 || angle == -270.0) {
s = 1.0;
c = 0.0;
} else if (angle == -90.0 || angle == 270.0) {
s = -1.0;
c = 0.0;
} else if (angle == 180.0 || angle == -180.0) {
s = 0.0;
c = -1.0;
} else {
double a = qDegreesToRadians(angle);
c = std::cos(a);
s = std::sin(a);
}
if (x == 0.0) {
if (y == 0.0) {
if (z != 0.0) {
// Rotate around the Z axis.
if (z < 0)
s = -s;
double tmp;
m[0][0] = (tmp = m[0][0]) * c + m[1][0] * s;
m[1][0] = m[1][0] * c - tmp * s;
m[0][1] = (tmp = m[0][1]) * c + m[1][1] * s;
m[1][1] = m[1][1] * c - tmp * s;
m[0][2] = (tmp = m[0][2]) * c + m[1][2] * s;
m[1][2] = m[1][2] * c - tmp * s;
m[0][3] = (tmp = m[0][3]) * c + m[1][3] * s;
m[1][3] = m[1][3] * c - tmp * s;
flagBits |= Rotation2D;
return;
}
} else if (z == 0.0) {
// Rotate around the Y axis.
if (y < 0)
s = -s;
double tmp;
m[2][0] = (tmp = m[2][0]) * c + m[0][0] * s;
m[0][0] = m[0][0] * c - tmp * s;
m[2][1] = (tmp = m[2][1]) * c + m[0][1] * s;
m[0][1] = m[0][1] * c - tmp * s;
m[2][2] = (tmp = m[2][2]) * c + m[0][2] * s;
m[0][2] = m[0][2] * c - tmp * s;
m[2][3] = (tmp = m[2][3]) * c + m[0][3] * s;
m[0][3] = m[0][3] * c - tmp * s;
flagBits |= Rotation;
return;
}
} else if (y == 0.0 && z == 0.0) {
// Rotate around the X axis.
if (x < 0)
s = -s;
double tmp;
m[1][0] = (tmp = m[1][0]) * c + m[2][0] * s;
m[2][0] = m[2][0] * c - tmp * s;
m[1][1] = (tmp = m[1][1]) * c + m[2][1] * s;
m[2][1] = m[2][1] * c - tmp * s;
m[1][2] = (tmp = m[1][2]) * c + m[2][2] * s;
m[2][2] = m[2][2] * c - tmp * s;
m[1][3] = (tmp = m[1][3]) * c + m[2][3] * s;
m[2][3] = m[2][3] * c - tmp * s;
flagBits |= Rotation;
return;
}
double len = double(x) * double(x) +
double(y) * double(y) +
double(z) * double(z);
if (!qFuzzyCompare(len, 1.0) && !qFuzzyIsNull(len)) {
len = std::sqrt(len);
x = double(double(x) / len);
y = double(double(y) / len);
z = double(double(z) / len);
}
double ic = 1.0 - c;
QDoubleMatrix4x4 rot(1); // The "1" says to not load the identity.
rot.m[0][0] = x * x * ic + c;
rot.m[1][0] = x * y * ic - z * s;
rot.m[2][0] = x * z * ic + y * s;
rot.m[3][0] = 0.0;
rot.m[0][1] = y * x * ic + z * s;
rot.m[1][1] = y * y * ic + c;
rot.m[2][1] = y * z * ic - x * s;
rot.m[3][1] = 0.0;
rot.m[0][2] = x * z * ic - y * s;
rot.m[1][2] = y * z * ic + x * s;
rot.m[2][2] = z * z * ic + c;
rot.m[3][2] = 0.0;
rot.m[0][3] = 0.0;
rot.m[1][3] = 0.0;
rot.m[2][3] = 0.0;
rot.m[3][3] = 1.0;
rot.flagBits = Rotation;
*this *= rot;
}
void QDoubleMatrix4x4::projectedRotate(double angle, double x, double y, double z)
{
// Used by QGraphicsRotation::applyTo() to perform a rotation
// and projection back to 2D in a single step.
if (angle == 0.0)
return;
double c, s;
if (angle == 90.0 || angle == -270.0) {
s = 1.0;
c = 0.0;
} else if (angle == -90.0 || angle == 270.0) {
s = -1.0;
c = 0.0;
} else if (angle == 180.0 || angle == -180.0) {
s = 0.0;
c = -1.0;
} else {
double a = qDegreesToRadians(angle);
c = std::cos(a);
s = std::sin(a);
}
if (x == 0.0) {
if (y == 0.0) {
if (z != 0.0) {
// Rotate around the Z axis.
if (z < 0)
s = -s;
double tmp;
m[0][0] = (tmp = m[0][0]) * c + m[1][0] * s;
m[1][0] = m[1][0] * c - tmp * s;
m[0][1] = (tmp = m[0][1]) * c + m[1][1] * s;
m[1][1] = m[1][1] * c - tmp * s;
m[0][2] = (tmp = m[0][2]) * c + m[1][2] * s;
m[1][2] = m[1][2] * c - tmp * s;
m[0][3] = (tmp = m[0][3]) * c + m[1][3] * s;
m[1][3] = m[1][3] * c - tmp * s;
flagBits |= Rotation2D;
return;
}
} else if (z == 0.0) {
// Rotate around the Y axis.
if (y < 0)
s = -s;
m[0][0] = m[0][0] * c + m[3][0] * s * inv_dist_to_plane;
m[0][1] = m[0][1] * c + m[3][1] * s * inv_dist_to_plane;
m[0][2] = m[0][2] * c + m[3][2] * s * inv_dist_to_plane;
m[0][3] = m[0][3] * c + m[3][3] * s * inv_dist_to_plane;
flagBits = General;
return;
}
} else if (y == 0.0 && z == 0.0) {
// Rotate around the X axis.
if (x < 0)
s = -s;
m[1][0] = m[1][0] * c - m[3][0] * s * inv_dist_to_plane;
m[1][1] = m[1][1] * c - m[3][1] * s * inv_dist_to_plane;
m[1][2] = m[1][2] * c - m[3][2] * s * inv_dist_to_plane;
m[1][3] = m[1][3] * c - m[3][3] * s * inv_dist_to_plane;
flagBits = General;
return;
}
double len = double(x) * double(x) +
double(y) * double(y) +
double(z) * double(z);
if (!qFuzzyCompare(len, 1.0) && !qFuzzyIsNull(len)) {
len = std::sqrt(len);
x = double(double(x) / len);
y = double(double(y) / len);
z = double(double(z) / len);
}
double ic = 1.0 - c;
QDoubleMatrix4x4 rot(1); // The "1" says to not load the identity.
rot.m[0][0] = x * x * ic + c;
rot.m[1][0] = x * y * ic - z * s;
rot.m[2][0] = 0.0;
rot.m[3][0] = 0.0;
rot.m[0][1] = y * x * ic + z * s;
rot.m[1][1] = y * y * ic + c;
rot.m[2][1] = 0.0;
rot.m[3][1] = 0.0;
rot.m[0][2] = 0.0;
rot.m[1][2] = 0.0;
rot.m[2][2] = 1.0;
rot.m[3][2] = 0.0;
rot.m[0][3] = (x * z * ic - y * s) * -inv_dist_to_plane;
rot.m[1][3] = (y * z * ic + x * s) * -inv_dist_to_plane;
rot.m[2][3] = 0.0;
rot.m[3][3] = 1.0;
rot.flagBits = General;
*this *= rot;
}
void QDoubleMatrix4x4::ortho(const QRect& rect)
{
// Note: rect.right() and rect.bottom() subtract 1 in QRect,
// which gives the location of a pixel within the rectangle,
// instead of the extent of the rectangle. We want the extent.
// QRectF expresses the extent properly.
ortho(rect.x(), rect.x() + rect.width(), rect.y() + rect.height(), rect.y(), -1.0, 1.0);
}
void QDoubleMatrix4x4::ortho(const QRectF& rect)
{
ortho(rect.left(), rect.right(), rect.bottom(), rect.top(), -1.0, 1.0);
}
void QDoubleMatrix4x4::ortho(double left, double right, double bottom, double top, double nearPlane, double farPlane)
{
// Bail out if the projection volume is zero-sized.
if (left == right || bottom == top || nearPlane == farPlane)
return;
// Construct the projection.
double width = right - left;
double invheight = top - bottom;
double clip = farPlane - nearPlane;
QDoubleMatrix4x4 m(1);
m.m[0][0] = 2.0 / width;
m.m[1][0] = 0.0;
m.m[2][0] = 0.0;
m.m[3][0] = -(left + right) / width;
m.m[0][1] = 0.0;
m.m[1][1] = 2.0 / invheight;
m.m[2][1] = 0.0;
m.m[3][1] = -(top + bottom) / invheight;
m.m[0][2] = 0.0;
m.m[1][2] = 0.0;
m.m[2][2] = -2.0 / clip;
m.m[3][2] = -(nearPlane + farPlane) / clip;
m.m[0][3] = 0.0;
m.m[1][3] = 0.0;
m.m[2][3] = 0.0;
m.m[3][3] = 1.0;
m.flagBits = Translation | Scale;
// Apply the projection.
*this *= m;
}
void QDoubleMatrix4x4::frustum(double left, double right, double bottom, double top, double nearPlane, double farPlane)
{
// Bail out if the projection volume is zero-sized.
if (left == right || bottom == top || nearPlane == farPlane)
return;
// Construct the projection.
QDoubleMatrix4x4 m(1);
double width = right - left;
double invheight = top - bottom;
double clip = farPlane - nearPlane;
m.m[0][0] = 2.0 * nearPlane / width;
m.m[1][0] = 0.0;
m.m[2][0] = (left + right) / width;
m.m[3][0] = 0.0;
m.m[0][1] = 0.0;
m.m[1][1] = 2.0 * nearPlane / invheight;
m.m[2][1] = (top + bottom) / invheight;
m.m[3][1] = 0.0;
m.m[0][2] = 0.0;
m.m[1][2] = 0.0;
m.m[2][2] = -(nearPlane + farPlane) / clip;
m.m[3][2] = -2.0 * nearPlane * farPlane / clip;
m.m[0][3] = 0.0;
m.m[1][3] = 0.0;
m.m[2][3] = -1.0;
m.m[3][3] = 0.0;
m.flagBits = General;
// Apply the projection.
*this *= m;
}
void QDoubleMatrix4x4::perspective(double verticalAngle, double aspectRatio, double nearPlane, double farPlane)
{
// Bail out if the projection volume is zero-sized.
if (nearPlane == farPlane || aspectRatio == 0.0)
return;
// Construct the projection.
QDoubleMatrix4x4 m(1);
double radians = qDegreesToRadians(verticalAngle / 2.0);
double sine = std::sin(radians);
if (sine == 0.0)
return;
double cotan = std::cos(radians) / sine;
double clip = farPlane - nearPlane;
m.m[0][0] = cotan / aspectRatio;
m.m[1][0] = 0.0;
m.m[2][0] = 0.0;
m.m[3][0] = 0.0;
m.m[0][1] = 0.0;
m.m[1][1] = cotan;
m.m[2][1] = 0.0;
m.m[3][1] = 0.0;
m.m[0][2] = 0.0;
m.m[1][2] = 0.0;
m.m[2][2] = -(nearPlane + farPlane) / clip;
m.m[3][2] = -(2.0 * nearPlane * farPlane) / clip;
m.m[0][3] = 0.0;
m.m[1][3] = 0.0;
m.m[2][3] = -1.0;
m.m[3][3] = 0.0;
m.flagBits = General;
// Apply the projection.
*this *= m;
}
void QDoubleMatrix4x4::lookAt(const QDoubleVector3D& eye, const QDoubleVector3D& center, const QDoubleVector3D& up)
{
QDoubleVector3D forward = center - eye;
if (qFuzzyIsNull(forward.x()) && qFuzzyIsNull(forward.y()) && qFuzzyIsNull(forward.z()))
return;
forward.normalize();
QDoubleVector3D side = QDoubleVector3D::crossProduct(forward, up).normalized();
QDoubleVector3D upVector = QDoubleVector3D::crossProduct(side, forward);
QDoubleMatrix4x4 m(1);
m.m[0][0] = side.x();
m.m[1][0] = side.y();
m.m[2][0] = side.z();
m.m[3][0] = 0.0;
m.m[0][1] = upVector.x();
m.m[1][1] = upVector.y();
m.m[2][1] = upVector.z();
m.m[3][1] = 0.0;
m.m[0][2] = -forward.x();
m.m[1][2] = -forward.y();
m.m[2][2] = -forward.z();
m.m[3][2] = 0.0;
m.m[0][3] = 0.0;
m.m[1][3] = 0.0;
m.m[2][3] = 0.0;
m.m[3][3] = 1.0;
m.flagBits = Rotation;
*this *= m;
translate(-eye);
}
void QDoubleMatrix4x4::viewport(double left, double bottom, double width, double height, double nearPlane, double farPlane)
{
const double w2 = width / 2.0;
const double h2 = height / 2.0;
QDoubleMatrix4x4 m(1);
m.m[0][0] = w2;
m.m[1][0] = 0.0;
m.m[2][0] = 0.0;
m.m[3][0] = left + w2;
m.m[0][1] = 0.0;
m.m[1][1] = h2;
m.m[2][1] = 0.0;
m.m[3][1] = bottom + h2;
m.m[0][2] = 0.0;
m.m[1][2] = 0.0;
m.m[2][2] = (farPlane - nearPlane) / 2.0;
m.m[3][2] = (nearPlane + farPlane) / 2.0;
m.m[0][3] = 0.0;
m.m[1][3] = 0.0;
m.m[2][3] = 0.0;
m.m[3][3] = 1.0;
m.flagBits = General;
*this *= m;
}
void QDoubleMatrix4x4::flipCoordinates()
{
// Multiplying the y and z coordinates with -1 does NOT flip between right-handed and
// left-handed coordinate systems, it just rotates 180 degrees around the x axis, so
// I'm deprecating this function.
if (flagBits < Rotation2D) {
// Translation | Scale
m[1][1] = -m[1][1];
m[2][2] = -m[2][2];
} else {
m[1][0] = -m[1][0];
m[1][1] = -m[1][1];
m[1][2] = -m[1][2];
m[1][3] = -m[1][3];
m[2][0] = -m[2][0];
m[2][1] = -m[2][1];
m[2][2] = -m[2][2];
m[2][3] = -m[2][3];
}
flagBits |= Scale;
}
void QDoubleMatrix4x4::copyDataTo(double *values) const
{
for (int row = 0; row < 4; ++row)
for (int col = 0; col < 4; ++col)
values[row * 4 + col] = double(m[col][row]);
}
QRect QDoubleMatrix4x4::mapRect(const QRect& rect) const
{
if (flagBits < Scale) {
// Translation
return QRect(qRound(rect.x() + m[3][0]),
qRound(rect.y() + m[3][1]),
rect.width(), rect.height());
} else if (flagBits < Rotation2D) {
// Translation | Scale
double x = rect.x() * m[0][0] + m[3][0];
double y = rect.y() * m[1][1] + m[3][1];
double w = rect.width() * m[0][0];
double h = rect.height() * m[1][1];
if (w < 0) {
w = -w;
x -= w;
}
if (h < 0) {
h = -h;
y -= h;
}
return QRect(qRound(x), qRound(y), qRound(w), qRound(h));
}
QPoint tl = map(rect.topLeft());
QPoint tr = map(QPoint(rect.x() + rect.width(), rect.y()));
QPoint bl = map(QPoint(rect.x(), rect.y() + rect.height()));
QPoint br = map(QPoint(rect.x() + rect.width(),
rect.y() + rect.height()));
int xmin = qMin(qMin(tl.x(), tr.x()), qMin(bl.x(), br.x()));
int xmax = qMax(qMax(tl.x(), tr.x()), qMax(bl.x(), br.x()));
int ymin = qMin(qMin(tl.y(), tr.y()), qMin(bl.y(), br.y()));
int ymax = qMax(qMax(tl.y(), tr.y()), qMax(bl.y(), br.y()));
return QRect(xmin, ymin, xmax - xmin, ymax - ymin);
}
QRectF QDoubleMatrix4x4::mapRect(const QRectF& rect) const
{
if (flagBits < Scale) {
// Translation
return rect.translated(m[3][0], m[3][1]);
} else if (flagBits < Rotation2D) {
// Translation | Scale
double x = rect.x() * m[0][0] + m[3][0];
double y = rect.y() * m[1][1] + m[3][1];
double w = rect.width() * m[0][0];
double h = rect.height() * m[1][1];
if (w < 0) {
w = -w;
x -= w;
}
if (h < 0) {
h = -h;
y -= h;
}
return QRectF(x, y, w, h);
}
QPointF tl = map(rect.topLeft()); QPointF tr = map(rect.topRight());
QPointF bl = map(rect.bottomLeft()); QPointF br = map(rect.bottomRight());
double xmin = qMin(qMin(tl.x(), tr.x()), qMin(bl.x(), br.x()));
double xmax = qMax(qMax(tl.x(), tr.x()), qMax(bl.x(), br.x()));
double ymin = qMin(qMin(tl.y(), tr.y()), qMin(bl.y(), br.y()));
double ymax = qMax(qMax(tl.y(), tr.y()), qMax(bl.y(), br.y()));
return QRectF(QPointF(xmin, ymin), QPointF(xmax, ymax));
}
QDoubleMatrix4x4 QDoubleMatrix4x4::orthonormalInverse() const
{
QDoubleMatrix4x4 result(1); // The '1' says not to load identity
result.m[0][0] = m[0][0];
result.m[1][0] = m[0][1];
result.m[2][0] = m[0][2];
result.m[0][1] = m[1][0];
result.m[1][1] = m[1][1];
result.m[2][1] = m[1][2];
result.m[0][2] = m[2][0];
result.m[1][2] = m[2][1];
result.m[2][2] = m[2][2];
result.m[0][3] = 0.0;
result.m[1][3] = 0.0;
result.m[2][3] = 0.0;
result.m[3][0] = -(result.m[0][0] * m[3][0] + result.m[1][0] * m[3][1] + result.m[2][0] * m[3][2]);
result.m[3][1] = -(result.m[0][1] * m[3][0] + result.m[1][1] * m[3][1] + result.m[2][1] * m[3][2]);
result.m[3][2] = -(result.m[0][2] * m[3][0] + result.m[1][2] * m[3][1] + result.m[2][2] * m[3][2]);
result.m[3][3] = 1.0;
result.flagBits = flagBits;
return result;
}
void QDoubleMatrix4x4::optimize()
{
// If the last row is not (0, 0, 0, 1), the matrix is not a special type.
flagBits = General;
if (m[0][3] != 0 || m[1][3] != 0 || m[2][3] != 0 || m[3][3] != 1)
return;
flagBits &= ~Perspective;
// If the last column is (0, 0, 0, 1), then there is no translation.
if (m[3][0] == 0 && m[3][1] == 0 && m[3][2] == 0)
flagBits &= ~Translation;
// If the two first elements of row 3 and column 3 are 0, then any rotation must be about Z.
if (!m[0][2] && !m[1][2] && !m[2][0] && !m[2][1]) {
flagBits &= ~Rotation;
// If the six non-diagonal elements in the top left 3x3 matrix are 0, there is no rotation.
if (!m[0][1] && !m[1][0]) {
flagBits &= ~Rotation2D;
// Check for identity.
if (m[0][0] == 1 && m[1][1] == 1 && m[2][2] == 1)
flagBits &= ~Scale;
} else {
// If the columns are orthonormal and form a right-handed system, then there is no scale.
double det = matrixDet2(m, 0, 1, 0, 1);
double lenX = m[0][0] * m[0][0] + m[0][1] * m[0][1];
double lenY = m[1][0] * m[1][0] + m[1][1] * m[1][1];
double lenZ = m[2][2];
if (qFuzzyCompare(det, 1.0) && qFuzzyCompare(lenX, 1.0)
&& qFuzzyCompare(lenY, 1.0) && qFuzzyCompare(lenZ, 1.0))
{
flagBits &= ~Scale;
}
}
} else {
// If the columns are orthonormal and form a right-handed system, then there is no scale.
double det = matrixDet3(m, 0, 1, 2, 0, 1, 2);
double lenX = m[0][0] * m[0][0] + m[0][1] * m[0][1] + m[0][2] * m[0][2];
double lenY = m[1][0] * m[1][0] + m[1][1] * m[1][1] + m[1][2] * m[1][2];
double lenZ = m[2][0] * m[2][0] + m[2][1] * m[2][1] + m[2][2] * m[2][2];
if (qFuzzyCompare(det, 1.0) && qFuzzyCompare(lenX, 1.0)
&& qFuzzyCompare(lenY, 1.0) && qFuzzyCompare(lenZ, 1.0))
{
flagBits &= ~Scale;
}
}
}
#ifndef QT_NO_DEBUG_STREAM
QDebug operator<<(QDebug dbg, const QDoubleMatrix4x4 &m)
{
QDebugStateSaver saver(dbg);
// Create a string that represents the matrix type.
QByteArray bits;
if (m.flagBits == QDoubleMatrix4x4::Identity) {
bits = "Identity";
} else if (m.flagBits == QDoubleMatrix4x4::General) {
bits = "General";
} else {
if ((m.flagBits & QDoubleMatrix4x4::Translation) != 0)
bits += "Translation,";
if ((m.flagBits & QDoubleMatrix4x4::Scale) != 0)
bits += "Scale,";
if ((m.flagBits & QDoubleMatrix4x4::Rotation2D) != 0)
bits += "Rotation2D,";
if ((m.flagBits & QDoubleMatrix4x4::Rotation) != 0)
bits += "Rotation,";
if ((m.flagBits & QDoubleMatrix4x4::Perspective) != 0)
bits += "Perspective,";
if (bits.size() > 0)
bits = bits.left(bits.size() - 1);
}
// Output in row-major order because it is more human-readable.
dbg.nospace() << "QDoubleMatrix4x4(type:" << bits.constData() << endl
<< qSetFieldWidth(10)
<< m(0, 0) << m(0, 1) << m(0, 2) << m(0, 3) << endl
<< m(1, 0) << m(1, 1) << m(1, 2) << m(1, 3) << endl
<< m(2, 0) << m(2, 1) << m(2, 2) << m(2, 3) << endl
<< m(3, 0) << m(3, 1) << m(3, 2) << m(3, 3) << endl
<< qSetFieldWidth(0) << ')';
return dbg;
}
#endif
#ifndef QT_NO_DATASTREAM
QDataStream &operator<<(QDataStream &stream, const QDoubleMatrix4x4 &matrix)
{
for (int row = 0; row < 4; ++row)
for (int col = 0; col < 4; ++col)
stream << matrix(row, col);
return stream;
}
QDataStream &operator>>(QDataStream &stream, QDoubleMatrix4x4 &matrix)
{
double x;
for (int row = 0; row < 4; ++row) {
for (int col = 0; col < 4; ++col) {
stream >> x;
matrix(row, col) = x;
}
}
matrix.optimize();
return stream;
}
#endif // QT_NO_DATASTREAM
QT_END_NAMESPACE