blob: 77b5ab42c5bf414f339d71c9607a888c6cd16e0d [file] [log] [blame]
/****************************************************************************
**
** Copyright (C) 2016 The Qt Company Ltd.
** Copyright (C) 2016 Intel Corporation.
** Contact: https://www.qt.io/licensing/
**
** This file is part of the QtGui module of the Qt Toolkit.
**
** $QT_BEGIN_LICENSE:LGPL$
** Commercial License Usage
** Licensees holding valid commercial Qt licenses may use this file in
** accordance with the commercial license agreement provided with the
** Software or, alternatively, in accordance with the terms contained in
** a written agreement between you and The Qt Company. For licensing terms
** and conditions see https://www.qt.io/terms-conditions. For further
** information use the contact form at https://www.qt.io/contact-us.
**
** GNU Lesser General Public License Usage
** Alternatively, this file may be used under the terms of the GNU Lesser
** General Public License version 3 as published by the Free Software
** Foundation and appearing in the file LICENSE.LGPL3 included in the
** packaging of this file. Please review the following information to
** ensure the GNU Lesser General Public License version 3 requirements
** will be met: https://www.gnu.org/licenses/lgpl-3.0.html.
**
** GNU General Public License Usage
** Alternatively, this file may be used under the terms of the GNU
** General Public License version 2.0 or (at your option) the GNU General
** Public license version 3 or any later version approved by the KDE Free
** Qt Foundation. The licenses are as published by the Free Software
** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3
** included in the packaging of this file. Please review the following
** information to ensure the GNU General Public License requirements will
** be met: https://www.gnu.org/licenses/gpl-2.0.html and
** https://www.gnu.org/licenses/gpl-3.0.html.
**
** $QT_END_LICENSE$
**
****************************************************************************/
#include <private/qdrawhelper_x86_p.h>
#ifdef QT_COMPILER_SUPPORTS_SSE2
#include <private/qdrawingprimitive_sse2_p.h>
#include <private/qpaintengine_raster_p.h>
QT_BEGIN_NAMESPACE
#ifndef QDRAWHELPER_AVX
// in AVX mode, we'll use the SSSE3 code
void qt_blend_argb32_on_argb32_sse2(uchar *destPixels, int dbpl,
const uchar *srcPixels, int sbpl,
int w, int h,
int const_alpha)
{
const quint32 *src = (const quint32 *) srcPixels;
quint32 *dst = (quint32 *) destPixels;
if (const_alpha == 256) {
const __m128i alphaMask = _mm_set1_epi32(0xff000000);
const __m128i nullVector = _mm_set1_epi32(0);
const __m128i half = _mm_set1_epi16(0x80);
const __m128i one = _mm_set1_epi16(0xff);
const __m128i colorMask = _mm_set1_epi32(0x00ff00ff);
for (int y = 0; y < h; ++y) {
BLEND_SOURCE_OVER_ARGB32_SSE2(dst, src, w, nullVector, half, one, colorMask, alphaMask);
dst = (quint32 *)(((uchar *) dst) + dbpl);
src = (const quint32 *)(((const uchar *) src) + sbpl);
}
} else if (const_alpha != 0) {
// dest = (s + d * sia) * ca + d * cia
// = s * ca + d * (sia * ca + cia)
// = s * ca + d * (1 - sa*ca)
const_alpha = (const_alpha * 255) >> 8;
const __m128i nullVector = _mm_set1_epi32(0);
const __m128i half = _mm_set1_epi16(0x80);
const __m128i one = _mm_set1_epi16(0xff);
const __m128i colorMask = _mm_set1_epi32(0x00ff00ff);
const __m128i constAlphaVector = _mm_set1_epi16(const_alpha);
for (int y = 0; y < h; ++y) {
BLEND_SOURCE_OVER_ARGB32_WITH_CONST_ALPHA_SSE2(dst, src, w, nullVector, half, one, colorMask, constAlphaVector)
dst = (quint32 *)(((uchar *) dst) + dbpl);
src = (const quint32 *)(((const uchar *) src) + sbpl);
}
}
}
#endif
// qblendfunctions.cpp
void qt_blend_rgb32_on_rgb32(uchar *destPixels, int dbpl,
const uchar *srcPixels, int sbpl,
int w, int h,
int const_alpha);
void qt_blend_rgb32_on_rgb32_sse2(uchar *destPixels, int dbpl,
const uchar *srcPixels, int sbpl,
int w, int h,
int const_alpha)
{
const quint32 *src = (const quint32 *) srcPixels;
quint32 *dst = (quint32 *) destPixels;
if (const_alpha != 256) {
if (const_alpha != 0) {
const __m128i half = _mm_set1_epi16(0x80);
const __m128i colorMask = _mm_set1_epi32(0x00ff00ff);
const_alpha = (const_alpha * 255) >> 8;
int one_minus_const_alpha = 255 - const_alpha;
const __m128i constAlphaVector = _mm_set1_epi16(const_alpha);
const __m128i oneMinusConstAlpha = _mm_set1_epi16(one_minus_const_alpha);
for (int y = 0; y < h; ++y) {
int x = 0;
// First, align dest to 16 bytes:
ALIGNMENT_PROLOGUE_16BYTES(dst, x, w) {
dst[x] = INTERPOLATE_PIXEL_255(src[x], const_alpha, dst[x], one_minus_const_alpha);
}
for (; x < w-3; x += 4) {
__m128i srcVector = _mm_loadu_si128((const __m128i *)&src[x]);
const __m128i dstVector = _mm_load_si128((__m128i *)&dst[x]);
__m128i result;
INTERPOLATE_PIXEL_255_SSE2(result, srcVector, dstVector, constAlphaVector, oneMinusConstAlpha, colorMask, half);
_mm_store_si128((__m128i *)&dst[x], result);
}
SIMD_EPILOGUE(x, w, 3)
dst[x] = INTERPOLATE_PIXEL_255(src[x], const_alpha, dst[x], one_minus_const_alpha);
dst = (quint32 *)(((uchar *) dst) + dbpl);
src = (const quint32 *)(((const uchar *) src) + sbpl);
}
}
} else {
qt_blend_rgb32_on_rgb32(destPixels, dbpl, srcPixels, sbpl, w, h, const_alpha);
}
}
void QT_FASTCALL comp_func_SourceOver_sse2(uint *destPixels, const uint *srcPixels, int length, uint const_alpha)
{
Q_ASSERT(const_alpha < 256);
const quint32 *src = (const quint32 *) srcPixels;
quint32 *dst = (quint32 *) destPixels;
const __m128i nullVector = _mm_set1_epi32(0);
const __m128i half = _mm_set1_epi16(0x80);
const __m128i one = _mm_set1_epi16(0xff);
const __m128i colorMask = _mm_set1_epi32(0x00ff00ff);
if (const_alpha == 255) {
const __m128i alphaMask = _mm_set1_epi32(0xff000000);
BLEND_SOURCE_OVER_ARGB32_SSE2(dst, src, length, nullVector, half, one, colorMask, alphaMask);
} else {
const __m128i constAlphaVector = _mm_set1_epi16(const_alpha);
BLEND_SOURCE_OVER_ARGB32_WITH_CONST_ALPHA_SSE2(dst, src, length, nullVector, half, one, colorMask, constAlphaVector);
}
}
void QT_FASTCALL comp_func_Plus_sse2(uint *dst, const uint *src, int length, uint const_alpha)
{
int x = 0;
if (const_alpha == 255) {
// 1) Prologue: align destination on 16 bytes
ALIGNMENT_PROLOGUE_16BYTES(dst, x, length)
dst[x] = comp_func_Plus_one_pixel(dst[x], src[x]);
// 2) composition with SSE2
for (; x < length - 3; x += 4) {
const __m128i srcVector = _mm_loadu_si128((const __m128i *)&src[x]);
const __m128i dstVector = _mm_load_si128((__m128i *)&dst[x]);
const __m128i result = _mm_adds_epu8(srcVector, dstVector);
_mm_store_si128((__m128i *)&dst[x], result);
}
// 3) Epilogue:
SIMD_EPILOGUE(x, length, 3)
dst[x] = comp_func_Plus_one_pixel(dst[x], src[x]);
} else {
const int one_minus_const_alpha = 255 - const_alpha;
const __m128i constAlphaVector = _mm_set1_epi16(const_alpha);
const __m128i oneMinusConstAlpha = _mm_set1_epi16(one_minus_const_alpha);
// 1) Prologue: align destination on 16 bytes
ALIGNMENT_PROLOGUE_16BYTES(dst, x, length)
dst[x] = comp_func_Plus_one_pixel_const_alpha(dst[x], src[x], const_alpha, one_minus_const_alpha);
const __m128i half = _mm_set1_epi16(0x80);
const __m128i colorMask = _mm_set1_epi32(0x00ff00ff);
// 2) composition with SSE2
for (; x < length - 3; x += 4) {
const __m128i srcVector = _mm_loadu_si128((const __m128i *)&src[x]);
const __m128i dstVector = _mm_load_si128((__m128i *)&dst[x]);
__m128i result = _mm_adds_epu8(srcVector, dstVector);
INTERPOLATE_PIXEL_255_SSE2(result, result, dstVector, constAlphaVector, oneMinusConstAlpha, colorMask, half)
_mm_store_si128((__m128i *)&dst[x], result);
}
// 3) Epilogue:
SIMD_EPILOGUE(x, length, 3)
dst[x] = comp_func_Plus_one_pixel_const_alpha(dst[x], src[x], const_alpha, one_minus_const_alpha);
}
}
void QT_FASTCALL comp_func_Source_sse2(uint *dst, const uint *src, int length, uint const_alpha)
{
if (const_alpha == 255) {
::memcpy(dst, src, length * sizeof(uint));
} else {
const int ialpha = 255 - const_alpha;
int x = 0;
// 1) prologue, align on 16 bytes
ALIGNMENT_PROLOGUE_16BYTES(dst, x, length)
dst[x] = INTERPOLATE_PIXEL_255(src[x], const_alpha, dst[x], ialpha);
// 2) interpolate pixels with SSE2
const __m128i half = _mm_set1_epi16(0x80);
const __m128i colorMask = _mm_set1_epi32(0x00ff00ff);
const __m128i constAlphaVector = _mm_set1_epi16(const_alpha);
const __m128i oneMinusConstAlpha = _mm_set1_epi16(ialpha);
for (; x < length - 3; x += 4) {
const __m128i srcVector = _mm_loadu_si128((const __m128i *)&src[x]);
__m128i dstVector = _mm_load_si128((__m128i *)&dst[x]);
INTERPOLATE_PIXEL_255_SSE2(dstVector, srcVector, dstVector, constAlphaVector, oneMinusConstAlpha, colorMask, half)
_mm_store_si128((__m128i *)&dst[x], dstVector);
}
// 3) Epilogue
SIMD_EPILOGUE(x, length, 3)
dst[x] = INTERPOLATE_PIXEL_255(src[x], const_alpha, dst[x], ialpha);
}
}
#ifndef __AVX2__
static Q_NEVER_INLINE
void Q_DECL_VECTORCALL qt_memfillXX_aligned(void *dest, __m128i value128, quintptr bytecount)
{
__m128i *dst128 = reinterpret_cast<__m128i *>(dest);
__m128i *end128 = reinterpret_cast<__m128i *>(static_cast<uchar *>(dest) + bytecount);
while (dst128 + 4 <= end128) {
_mm_store_si128(dst128 + 0, value128);
_mm_store_si128(dst128 + 1, value128);
_mm_store_si128(dst128 + 2, value128);
_mm_store_si128(dst128 + 3, value128);
dst128 += 4;
}
bytecount %= 4 * sizeof(__m128i);
switch (bytecount / sizeof(__m128i)) {
case 3: _mm_store_si128(dst128++, value128); Q_FALLTHROUGH();
case 2: _mm_store_si128(dst128++, value128); Q_FALLTHROUGH();
case 1: _mm_store_si128(dst128++, value128);
}
}
void qt_memfill64_sse2(quint64 *dest, quint64 value, qsizetype count)
{
quintptr misaligned = quintptr(dest) % sizeof(__m128i);
if (misaligned && count) {
#if defined(Q_PROCESSOR_X86_32)
// Before SSE came out, the alignment of the stack used to be only 4
// bytes and some OS/ABIs (notably, code generated by MSVC) still only
// align to that. In any case, we cannot count on the alignment of
// quint64 to be 8 -- see QtPrivate::AlignOf_WorkaroundForI386Abi in
// qglobal.h.
//
// If the pointer is not aligned to at least 8 bytes, then we'll never
// in turn hit a multiple of 16 for the qt_memfillXX_aligned call
// below.
if (Q_UNLIKELY(misaligned % sizeof(quint64)))
return qt_memfill_template(dest, value, count);
#endif
*dest++ = value;
--count;
}
if (count % 2) {
dest[count - 1] = value;
--count;
}
qt_memfillXX_aligned(dest, _mm_set1_epi64x(value), count * sizeof(quint64));
}
void qt_memfill32_sse2(quint32 *dest, quint32 value, qsizetype count)
{
if (count < 4) {
// this simplifies the code below: the first switch can fall through
// without checking the value of count
switch (count) {
case 3: *dest++ = value; Q_FALLTHROUGH();
case 2: *dest++ = value; Q_FALLTHROUGH();
case 1: *dest = value;
}
return;
}
const int align = (quintptr)(dest) & 0xf;
switch (align) {
case 4: *dest++ = value; --count; Q_FALLTHROUGH();
case 8: *dest++ = value; --count; Q_FALLTHROUGH();
case 12: *dest++ = value; --count;
}
const int rest = count & 0x3;
if (rest) {
switch (rest) {
case 3: dest[count - 3] = value; Q_FALLTHROUGH();
case 2: dest[count - 2] = value; Q_FALLTHROUGH();
case 1: dest[count - 1] = value;
}
}
qt_memfillXX_aligned(dest, _mm_set1_epi32(value), count * sizeof(quint32));
}
#endif // !__AVX2__
void QT_FASTCALL comp_func_solid_Source_sse2(uint *destPixels, int length, uint color, uint const_alpha)
{
if (const_alpha == 255) {
qt_memfill32(destPixels, color, length);
} else {
const quint32 ialpha = 255 - const_alpha;
color = BYTE_MUL(color, const_alpha);
int x = 0;
quint32 *dst = (quint32 *) destPixels;
const __m128i colorVector = _mm_set1_epi32(color);
const __m128i colorMask = _mm_set1_epi32(0x00ff00ff);
const __m128i half = _mm_set1_epi16(0x80);
const __m128i iAlphaVector = _mm_set1_epi16(ialpha);
ALIGNMENT_PROLOGUE_16BYTES(dst, x, length)
destPixels[x] = color + BYTE_MUL(destPixels[x], ialpha);
for (; x < length-3; x += 4) {
__m128i dstVector = _mm_load_si128((__m128i *)&dst[x]);
BYTE_MUL_SSE2(dstVector, dstVector, iAlphaVector, colorMask, half);
dstVector = _mm_add_epi8(colorVector, dstVector);
_mm_store_si128((__m128i *)&dst[x], dstVector);
}
SIMD_EPILOGUE(x, length, 3)
destPixels[x] = color + BYTE_MUL(destPixels[x], ialpha);
}
}
void QT_FASTCALL comp_func_solid_SourceOver_sse2(uint *destPixels, int length, uint color, uint const_alpha)
{
if ((const_alpha & qAlpha(color)) == 255) {
qt_memfill32(destPixels, color, length);
} else {
if (const_alpha != 255)
color = BYTE_MUL(color, const_alpha);
const quint32 minusAlphaOfColor = qAlpha(~color);
int x = 0;
quint32 *dst = (quint32 *) destPixels;
const __m128i colorVector = _mm_set1_epi32(color);
const __m128i colorMask = _mm_set1_epi32(0x00ff00ff);
const __m128i half = _mm_set1_epi16(0x80);
const __m128i minusAlphaOfColorVector = _mm_set1_epi16(minusAlphaOfColor);
ALIGNMENT_PROLOGUE_16BYTES(dst, x, length)
destPixels[x] = color + BYTE_MUL(destPixels[x], minusAlphaOfColor);
for (; x < length-3; x += 4) {
__m128i dstVector = _mm_load_si128((__m128i *)&dst[x]);
BYTE_MUL_SSE2(dstVector, dstVector, minusAlphaOfColorVector, colorMask, half);
dstVector = _mm_add_epi8(colorVector, dstVector);
_mm_store_si128((__m128i *)&dst[x], dstVector);
}
SIMD_EPILOGUE(x, length, 3)
destPixels[x] = color + BYTE_MUL(destPixels[x], minusAlphaOfColor);
}
}
void qt_bitmapblit32_sse2_base(QRasterBuffer *rasterBuffer, int x, int y,
quint32 color,
const uchar *src, int width, int height, int stride)
{
quint32 *dest = reinterpret_cast<quint32*>(rasterBuffer->scanLine(y)) + x;
const int destStride = rasterBuffer->stride<quint32>();
const __m128i c128 = _mm_set1_epi32(color);
const __m128i maskmask1 = _mm_set_epi32(0x10101010, 0x20202020,
0x40404040, 0x80808080);
const __m128i maskadd1 = _mm_set_epi32(0x70707070, 0x60606060,
0x40404040, 0x00000000);
if (width > 4) {
const __m128i maskmask2 = _mm_set_epi32(0x01010101, 0x02020202,
0x04040404, 0x08080808);
const __m128i maskadd2 = _mm_set_epi32(0x7f7f7f7f, 0x7e7e7e7e,
0x7c7c7c7c, 0x78787878);
while (height--) {
for (int x = 0; x < width; x += 8) {
const quint8 s = src[x >> 3];
if (!s)
continue;
__m128i mask1 = _mm_set1_epi8(s);
__m128i mask2 = mask1;
mask1 = _mm_and_si128(mask1, maskmask1);
mask1 = _mm_add_epi8(mask1, maskadd1);
_mm_maskmoveu_si128(c128, mask1, (char*)(dest + x));
mask2 = _mm_and_si128(mask2, maskmask2);
mask2 = _mm_add_epi8(mask2, maskadd2);
_mm_maskmoveu_si128(c128, mask2, (char*)(dest + x + 4));
}
dest += destStride;
src += stride;
}
} else {
while (height--) {
const quint8 s = *src;
if (s) {
__m128i mask1 = _mm_set1_epi8(s);
mask1 = _mm_and_si128(mask1, maskmask1);
mask1 = _mm_add_epi8(mask1, maskadd1);
_mm_maskmoveu_si128(c128, mask1, (char*)(dest));
}
dest += destStride;
src += stride;
}
}
}
void qt_bitmapblit32_sse2(QRasterBuffer *rasterBuffer, int x, int y,
const QRgba64 &color,
const uchar *src, int width, int height, int stride)
{
qt_bitmapblit32_sse2_base(rasterBuffer, x, y, color.toArgb32(), src, width, height, stride);
}
void qt_bitmapblit8888_sse2(QRasterBuffer *rasterBuffer, int x, int y,
const QRgba64 &color,
const uchar *src, int width, int height, int stride)
{
qt_bitmapblit32_sse2_base(rasterBuffer, x, y, ARGB2RGBA(color.toArgb32()), src, width, height, stride);
}
void qt_bitmapblit16_sse2(QRasterBuffer *rasterBuffer, int x, int y,
const QRgba64 &color,
const uchar *src, int width, int height, int stride)
{
const quint16 c = qConvertRgb32To16(color.toArgb32());
quint16 *dest = reinterpret_cast<quint16*>(rasterBuffer->scanLine(y)) + x;
const int destStride = rasterBuffer->stride<quint32>();
const __m128i c128 = _mm_set1_epi16(c);
QT_WARNING_DISABLE_MSVC(4309) // truncation of constant value
const __m128i maskmask = _mm_set_epi16(0x0101, 0x0202, 0x0404, 0x0808,
0x1010, 0x2020, 0x4040, 0x8080);
const __m128i maskadd = _mm_set_epi16(0x7f7f, 0x7e7e, 0x7c7c, 0x7878,
0x7070, 0x6060, 0x4040, 0x0000);
while (height--) {
for (int x = 0; x < width; x += 8) {
const quint8 s = src[x >> 3];
if (!s)
continue;
__m128i mask = _mm_set1_epi8(s);
mask = _mm_and_si128(mask, maskmask);
mask = _mm_add_epi8(mask, maskadd);
_mm_maskmoveu_si128(c128, mask, (char*)(dest + x));
}
dest += destStride;
src += stride;
}
}
class QSimdSse2
{
public:
typedef __m128i Int32x4;
typedef __m128 Float32x4;
union Vect_buffer_i { Int32x4 v; int i[4]; };
union Vect_buffer_f { Float32x4 v; float f[4]; };
static inline Float32x4 Q_DECL_VECTORCALL v_dup(float x) { return _mm_set1_ps(x); }
static inline Float32x4 Q_DECL_VECTORCALL v_dup(double x) { return _mm_set1_ps(x); }
static inline Int32x4 Q_DECL_VECTORCALL v_dup(int x) { return _mm_set1_epi32(x); }
static inline Int32x4 Q_DECL_VECTORCALL v_dup(uint x) { return _mm_set1_epi32(x); }
static inline Float32x4 Q_DECL_VECTORCALL v_add(Float32x4 a, Float32x4 b) { return _mm_add_ps(a, b); }
static inline Int32x4 Q_DECL_VECTORCALL v_add(Int32x4 a, Int32x4 b) { return _mm_add_epi32(a, b); }
static inline Float32x4 Q_DECL_VECTORCALL v_max(Float32x4 a, Float32x4 b) { return _mm_max_ps(a, b); }
static inline Float32x4 Q_DECL_VECTORCALL v_min(Float32x4 a, Float32x4 b) { return _mm_min_ps(a, b); }
static inline Int32x4 Q_DECL_VECTORCALL v_min_16(Int32x4 a, Int32x4 b) { return _mm_min_epi16(a, b); }
static inline Int32x4 Q_DECL_VECTORCALL v_and(Int32x4 a, Int32x4 b) { return _mm_and_si128(a, b); }
static inline Float32x4 Q_DECL_VECTORCALL v_sub(Float32x4 a, Float32x4 b) { return _mm_sub_ps(a, b); }
static inline Int32x4 Q_DECL_VECTORCALL v_sub(Int32x4 a, Int32x4 b) { return _mm_sub_epi32(a, b); }
static inline Float32x4 Q_DECL_VECTORCALL v_mul(Float32x4 a, Float32x4 b) { return _mm_mul_ps(a, b); }
static inline Float32x4 Q_DECL_VECTORCALL v_sqrt(Float32x4 x) { return _mm_sqrt_ps(x); }
static inline Int32x4 Q_DECL_VECTORCALL v_toInt(Float32x4 x) { return _mm_cvttps_epi32(x); }
static inline Int32x4 Q_DECL_VECTORCALL v_greaterOrEqual(Float32x4 a, Float32x4 b) { return _mm_castps_si128(_mm_cmpgt_ps(a, b)); }
};
const uint * QT_FASTCALL qt_fetch_radial_gradient_sse2(uint *buffer, const Operator *op, const QSpanData *data,
int y, int x, int length)
{
return qt_fetch_radial_gradient_template<QRadialFetchSimd<QSimdSse2>,uint>(buffer, op, data, y, x, length);
}
void qt_scale_image_argb32_on_argb32_sse2(uchar *destPixels, int dbpl,
const uchar *srcPixels, int sbpl, int srch,
const QRectF &targetRect,
const QRectF &sourceRect,
const QRect &clip,
int const_alpha)
{
if (const_alpha != 256) {
// from qblendfunctions.cpp
extern void qt_scale_image_argb32_on_argb32(uchar *destPixels, int dbpl,
const uchar *srcPixels, int sbpl, int srch,
const QRectF &targetRect,
const QRectF &sourceRect,
const QRect &clip,
int const_alpha);
return qt_scale_image_argb32_on_argb32(destPixels, dbpl, srcPixels, sbpl, srch, targetRect, sourceRect, clip, const_alpha);
}
qreal sx = targetRect.width() / (qreal) sourceRect.width();
qreal sy = targetRect.height() / (qreal) sourceRect.height();
int ix = 0x00010000 / sx;
int iy = 0x00010000 / sy;
int cx1 = clip.x();
int cx2 = clip.x() + clip.width();
int cy1 = clip.top();
int cy2 = clip.y() + clip.height();
int tx1 = qRound(targetRect.left());
int tx2 = qRound(targetRect.right());
int ty1 = qRound(targetRect.top());
int ty2 = qRound(targetRect.bottom());
if (tx2 < tx1)
qSwap(tx2, tx1);
if (ty2 < ty1)
qSwap(ty2, ty1);
if (tx1 < cx1)
tx1 = cx1;
if (tx2 >= cx2)
tx2 = cx2;
if (tx1 >= tx2)
return;
if (ty1 < cy1)
ty1 = cy1;
if (ty2 >= cy2)
ty2 = cy2;
if (ty1 >= ty2)
return;
int h = ty2 - ty1;
int w = tx2 - tx1;
quint32 basex;
quint32 srcy;
if (sx < 0) {
int dstx = qFloor((tx1 + qreal(0.5) - targetRect.right()) * ix) + 1;
basex = quint32(sourceRect.right() * 65536) + dstx;
} else {
int dstx = qCeil((tx1 + qreal(0.5) - targetRect.left()) * ix) - 1;
basex = quint32(sourceRect.left() * 65536) + dstx;
}
if (sy < 0) {
int dsty = qFloor((ty1 + qreal(0.5) - targetRect.bottom()) * iy) + 1;
srcy = quint32(sourceRect.bottom() * 65536) + dsty;
} else {
int dsty = qCeil((ty1 + qreal(0.5) - targetRect.top()) * iy) - 1;
srcy = quint32(sourceRect.top() * 65536) + dsty;
}
quint32 *dst = ((quint32 *) (destPixels + ty1 * dbpl)) + tx1;
const __m128i nullVector = _mm_set1_epi32(0);
const __m128i half = _mm_set1_epi16(0x80);
const __m128i one = _mm_set1_epi16(0xff);
const __m128i colorMask = _mm_set1_epi32(0x00ff00ff);
const __m128i alphaMask = _mm_set1_epi32(0xff000000);
const __m128i ixVector = _mm_set1_epi32(4*ix);
// this bounds check here is required as floating point rounding above might in some cases lead to
// w/h values that are one pixel too large, falling outside of the valid image area.
const int ystart = srcy >> 16;
if (ystart >= srch && iy < 0) {
srcy += iy;
--h;
}
const int xstart = basex >> 16;
if (xstart >= (int)(sbpl/sizeof(quint32)) && ix < 0) {
basex += ix;
--w;
}
int yend = (srcy + iy * (h - 1)) >> 16;
if (yend < 0 || yend >= srch)
--h;
int xend = (basex + ix * (w - 1)) >> 16;
if (xend < 0 || xend >= (int)(sbpl/sizeof(quint32)))
--w;
while (h--) {
const uint *src = (const quint32 *) (srcPixels + (srcy >> 16) * sbpl);
int srcx = basex;
int x = 0;
ALIGNMENT_PROLOGUE_16BYTES(dst, x, w) {
uint s = src[srcx >> 16];
dst[x] = s + BYTE_MUL(dst[x], qAlpha(~s));
srcx += ix;
}
__m128i srcxVector = _mm_set_epi32(srcx, srcx + ix, srcx + ix + ix, srcx + ix + ix + ix);
for (; x<w - 3; x += 4) {
union Vect_buffer { __m128i vect; quint32 i[4]; };
Vect_buffer addr;
addr.vect = _mm_srli_epi32(srcxVector, 16);
srcxVector = _mm_add_epi32(srcxVector, ixVector);
const __m128i srcVector = _mm_set_epi32(src[addr.i[0]], src[addr.i[1]], src[addr.i[2]], src[addr.i[3]]);
BLEND_SOURCE_OVER_ARGB32_SSE2_helper(dst, srcVector, nullVector, half, one, colorMask, alphaMask);
}
SIMD_EPILOGUE(x, w, 3) {
uint s = src[(basex + x*ix) >> 16];
dst[x] = s + BYTE_MUL(dst[x], qAlpha(~s));
}
dst = (quint32 *)(((uchar *) dst) + dbpl);
srcy += iy;
}
}
QT_END_NAMESPACE
#endif // QT_COMPILER_SUPPORTS_SSE2