blob: eab06d4d4ce650bf145336166c6e283d6c863c74 [file] [log] [blame]
/****************************************************************************
**
** Copyright (C) 2016 The Qt Company Ltd.
** Contact: https://www.qt.io/licensing/
**
** This file is part of the QtGui module of the Qt Toolkit.
**
** $QT_BEGIN_LICENSE:LGPL$
** Commercial License Usage
** Licensees holding valid commercial Qt licenses may use this file in
** accordance with the commercial license agreement provided with the
** Software or, alternatively, in accordance with the terms contained in
** a written agreement between you and The Qt Company. For licensing terms
** and conditions see https://www.qt.io/terms-conditions. For further
** information use the contact form at https://www.qt.io/contact-us.
**
** GNU Lesser General Public License Usage
** Alternatively, this file may be used under the terms of the GNU Lesser
** General Public License version 3 as published by the Free Software
** Foundation and appearing in the file LICENSE.LGPL3 included in the
** packaging of this file. Please review the following information to
** ensure the GNU Lesser General Public License version 3 requirements
** will be met: https://www.gnu.org/licenses/lgpl-3.0.html.
**
** GNU General Public License Usage
** Alternatively, this file may be used under the terms of the GNU
** General Public License version 2.0 or (at your option) the GNU General
** Public license version 3 or any later version approved by the KDE Free
** Qt Foundation. The licenses are as published by the Free Software
** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3
** included in the packaging of this file. Please review the following
** information to ensure the GNU General Public License requirements will
** be met: https://www.gnu.org/licenses/gpl-2.0.html and
** https://www.gnu.org/licenses/gpl-3.0.html.
**
** $QT_END_LICENSE$
**
****************************************************************************/
#include "qtriangulator_p.h"
#include <QtGui/qevent.h>
#include <QtGui/qpainter.h>
#include <QtGui/qpainterpath.h>
#include <QtGui/private/qbezier_p.h>
#include <QtGui/private/qdatabuffer_p.h>
#include <QtCore/qbitarray.h>
#include <QtCore/qvarlengtharray.h>
#include <QtCore/qqueue.h>
#include <QtCore/qglobal.h>
#include <QtCore/qpoint.h>
#include <QtCore/qalgorithms.h>
#include <private/qrbtree_p.h>
QT_BEGIN_NAMESPACE
//#define Q_TRIANGULATOR_DEBUG
#define Q_FIXED_POINT_SCALE 32
template<typename T>
struct QVertexSet
{
inline QVertexSet() { }
inline QVertexSet(const QVertexSet<T> &other) : vertices(other.vertices), indices(other.indices) { }
QVertexSet<T> &operator = (const QVertexSet<T> &other) {vertices = other.vertices; indices = other.indices; return *this;}
// The vertices of a triangle are given by: (x[i[n]], y[i[n]]), (x[j[n]], y[j[n]]), (x[k[n]], y[k[n]]), n = 0, 1, ...
QVector<qreal> vertices; // [x[0], y[0], x[1], y[1], x[2], ...]
QVector<T> indices; // [i[0], j[0], k[0], i[1], j[1], k[1], i[2], ...]
};
//============================================================================//
// QFraction //
//============================================================================//
// Fraction must be in the range [0, 1)
struct QFraction
{
// Comparison operators must not be called on invalid fractions.
inline bool operator < (const QFraction &other) const;
inline bool operator == (const QFraction &other) const;
inline bool operator != (const QFraction &other) const {return !(*this == other);}
inline bool operator > (const QFraction &other) const {return other < *this;}
inline bool operator >= (const QFraction &other) const {return !(*this < other);}
inline bool operator <= (const QFraction &other) const {return !(*this > other);}
inline bool isValid() const {return denominator != 0;}
// numerator and denominator must not have common denominators.
quint64 numerator, denominator;
};
static inline quint64 gcd(quint64 x, quint64 y)
{
while (y != 0) {
quint64 z = y;
y = x % y;
x = z;
}
return x;
}
static inline int compare(quint64 a, quint64 b)
{
return (a > b) - (a < b);
}
// Compare a/b with c/d.
// Return negative if less, 0 if equal, positive if greater.
// a < b, c < d
static int qCompareFractions(quint64 a, quint64 b, quint64 c, quint64 d)
{
const quint64 LIMIT = Q_UINT64_C(0x100000000);
for (;;) {
// If the products 'ad' and 'bc' fit into 64 bits, they can be directly compared.
if (b < LIMIT && d < LIMIT)
return compare(a * d, b * c);
if (a == 0 || c == 0)
return compare(a, c);
// a/b < c/d <=> d/c < b/a
quint64 b_div_a = b / a;
quint64 d_div_c = d / c;
if (b_div_a != d_div_c)
return compare(d_div_c, b_div_a);
// floor(d/c) == floor(b/a)
// frac(d/c) < frac(b/a) ?
// frac(x/y) = (x%y)/y
d -= d_div_c * c; //d %= c;
b -= b_div_a * a; //b %= a;
qSwap(a, d);
qSwap(b, c);
}
}
// Fraction must be in the range [0, 1)
// Assume input is valid.
static QFraction qFraction(quint64 n, quint64 d) {
QFraction result;
if (n == 0) {
result.numerator = 0;
result.denominator = 1;
} else {
quint64 g = gcd(n, d);
result.numerator = n / g;
result.denominator = d / g;
}
return result;
}
inline bool QFraction::operator < (const QFraction &other) const
{
return qCompareFractions(numerator, denominator, other.numerator, other.denominator) < 0;
}
inline bool QFraction::operator == (const QFraction &other) const
{
return numerator == other.numerator && denominator == other.denominator;
}
//============================================================================//
// QPodPoint //
//============================================================================//
struct QPodPoint
{
inline bool operator < (const QPodPoint &other) const
{
if (y != other.y)
return y < other.y;
return x < other.x;
}
inline bool operator > (const QPodPoint &other) const {return other < *this;}
inline bool operator <= (const QPodPoint &other) const {return !(*this > other);}
inline bool operator >= (const QPodPoint &other) const {return !(*this < other);}
inline bool operator == (const QPodPoint &other) const {return x == other.x && y == other.y;}
inline bool operator != (const QPodPoint &other) const {return x != other.x || y != other.y;}
inline QPodPoint &operator += (const QPodPoint &other) {x += other.x; y += other.y; return *this;}
inline QPodPoint &operator -= (const QPodPoint &other) {x -= other.x; y -= other.y; return *this;}
inline QPodPoint operator + (const QPodPoint &other) const {QPodPoint result = {x + other.x, y + other.y}; return result;}
inline QPodPoint operator - (const QPodPoint &other) const {QPodPoint result = {x - other.x, y - other.y}; return result;}
int x;
int y;
};
static inline qint64 qCross(const QPodPoint &u, const QPodPoint &v)
{
return qint64(u.x) * qint64(v.y) - qint64(u.y) * qint64(v.x);
}
#ifdef Q_TRIANGULATOR_DEBUG
static inline qint64 qDot(const QPodPoint &u, const QPodPoint &v)
{
return qint64(u.x) * qint64(v.x) + qint64(u.y) * qint64(v.y);
}
#endif
// Return positive value if 'p' is to the right of the line 'v1'->'v2', negative if left of the
// line and zero if exactly on the line.
// The returned value is the z-component of the qCross product between 'v2-v1' and 'p-v1',
// which is twice the signed area of the triangle 'p'->'v1'->'v2' (positive for CW order).
static inline qint64 qPointDistanceFromLine(const QPodPoint &p, const QPodPoint &v1, const QPodPoint &v2)
{
return qCross(v2 - v1, p - v1);
}
static inline bool qPointIsLeftOfLine(const QPodPoint &p, const QPodPoint &v1, const QPodPoint &v2)
{
return QT_PREPEND_NAMESPACE(qPointDistanceFromLine)(p, v1, v2) < 0;
}
//============================================================================//
// QIntersectionPoint //
//============================================================================//
struct QIntersectionPoint
{
inline bool isValid() const {return xOffset.isValid() && yOffset.isValid();}
QPodPoint round() const;
inline bool isAccurate() const {return xOffset.numerator == 0 && yOffset.numerator == 0;}
bool operator < (const QIntersectionPoint &other) const;
bool operator == (const QIntersectionPoint &other) const;
inline bool operator != (const QIntersectionPoint &other) const {return !(*this == other);}
inline bool operator > (const QIntersectionPoint &other) const {return other < *this;}
inline bool operator >= (const QIntersectionPoint &other) const {return !(*this < other);}
inline bool operator <= (const QIntersectionPoint &other) const {return !(*this > other);}
bool isOnLine(const QPodPoint &u, const QPodPoint &v) const;
QPodPoint upperLeft;
QFraction xOffset;
QFraction yOffset;
};
static inline QIntersectionPoint qIntersectionPoint(const QPodPoint &point)
{
// upperLeft = point, xOffset = 0/1, yOffset = 0/1.
QIntersectionPoint p = {{point.x, point.y}, {0, 1}, {0, 1}};
return p;
}
static QIntersectionPoint qIntersectionPoint(const QPodPoint &u1, const QPodPoint &u2, const QPodPoint &v1, const QPodPoint &v2)
{
QIntersectionPoint result = {{0, 0}, {0, 0}, {0, 0}};
QPodPoint u = u2 - u1;
QPodPoint v = v2 - v1;
qint64 d1 = qCross(u, v1 - u1);
qint64 d2 = qCross(u, v2 - u1);
qint64 det = d2 - d1;
qint64 d3 = qCross(v, u1 - v1);
qint64 d4 = d3 - det; //qCross(v, u2 - v1);
// Check that the math is correct.
Q_ASSERT(d4 == qCross(v, u2 - v1));
// The intersection point can be expressed as:
// v1 - v * d1/det
// v2 - v * d2/det
// u1 + u * d3/det
// u2 + u * d4/det
// I'm only interested in lines that are crossing, so ignore parallel lines even if they overlap.
if (det == 0)
return result;
if (det < 0) {
det = -det;
d1 = -d1;
d2 = -d2;
d3 = -d3;
d4 = -d4;
}
// I'm only interested in lines intersecting at their interior, not at their end points.
// The lines intersect at their interior if and only if 'd1 < 0', 'd2 > 0', 'd3 < 0' and 'd4 > 0'.
if (d1 >= 0 || d2 <= 0 || d3 <= 0 || d4 >= 0)
return result;
// Calculate the intersection point as follows:
// v1 - v * d1/det | v1 <= v2 (component-wise)
// v2 - v * d2/det | v2 < v1 (component-wise)
// Assuming 21 bits per vector component.
// TODO: Make code path for 31 bits per vector component.
if (v.x >= 0) {
result.upperLeft.x = v1.x + (-v.x * d1) / det;
result.xOffset = qFraction(quint64(-v.x * d1) % quint64(det), quint64(det));
} else {
result.upperLeft.x = v2.x + (-v.x * d2) / det;
result.xOffset = qFraction(quint64(-v.x * d2) % quint64(det), quint64(det));
}
if (v.y >= 0) {
result.upperLeft.y = v1.y + (-v.y * d1) / det;
result.yOffset = qFraction(quint64(-v.y * d1) % quint64(det), quint64(det));
} else {
result.upperLeft.y = v2.y + (-v.y * d2) / det;
result.yOffset = qFraction(quint64(-v.y * d2) % quint64(det), quint64(det));
}
Q_ASSERT(result.xOffset.isValid());
Q_ASSERT(result.yOffset.isValid());
return result;
}
QPodPoint QIntersectionPoint::round() const
{
QPodPoint result = upperLeft;
if (2 * xOffset.numerator >= xOffset.denominator)
++result.x;
if (2 * yOffset.numerator >= yOffset.denominator)
++result.y;
return result;
}
bool QIntersectionPoint::operator < (const QIntersectionPoint &other) const
{
if (upperLeft.y != other.upperLeft.y)
return upperLeft.y < other.upperLeft.y;
if (yOffset != other.yOffset)
return yOffset < other.yOffset;
if (upperLeft.x != other.upperLeft.x)
return upperLeft.x < other.upperLeft.x;
return xOffset < other.xOffset;
}
bool QIntersectionPoint::operator == (const QIntersectionPoint &other) const
{
return upperLeft == other.upperLeft && xOffset == other.xOffset && yOffset == other.yOffset;
}
// Returns \c true if this point is on the infinite line passing through 'u' and 'v'.
bool QIntersectionPoint::isOnLine(const QPodPoint &u, const QPodPoint &v) const
{
// TODO: Make code path for coordinates with more than 21 bits.
const QPodPoint p = upperLeft - u;
const QPodPoint q = v - u;
bool isHorizontal = p.y == 0 && yOffset.numerator == 0;
bool isVertical = p.x == 0 && xOffset.numerator == 0;
if (isHorizontal && isVertical)
return true;
if (isHorizontal)
return q.y == 0;
if (q.y == 0)
return false;
if (isVertical)
return q.x == 0;
if (q.x == 0)
return false;
// At this point, 'p+offset' and 'q' cannot lie on the x or y axis.
if (((q.x < 0) == (q.y < 0)) != ((p.x < 0) == (p.y < 0)))
return false; // 'p + offset' and 'q' pass through different quadrants.
// Move all coordinates into the first quadrant.
quint64 nx, ny;
if (p.x < 0)
nx = quint64(-p.x) * xOffset.denominator - xOffset.numerator;
else
nx = quint64(p.x) * xOffset.denominator + xOffset.numerator;
if (p.y < 0)
ny = quint64(-p.y) * yOffset.denominator - yOffset.numerator;
else
ny = quint64(p.y) * yOffset.denominator + yOffset.numerator;
return qFraction(quint64(qAbs(q.x)) * xOffset.denominator, quint64(qAbs(q.y)) * yOffset.denominator) == qFraction(nx, ny);
}
//============================================================================//
// QMaxHeap //
//============================================================================//
template <class T>
class QMaxHeap
{
public:
QMaxHeap() : m_data(0) {}
inline int size() const {return m_data.size();}
inline bool empty() const {return m_data.isEmpty();}
inline bool isEmpty() const {return m_data.isEmpty();}
void push(const T &x);
T pop();
inline const T &top() const {return m_data.first();}
private:
static inline int parent(int i) {return (i - 1) / 2;}
static inline int left(int i) {return 2 * i + 1;}
static inline int right(int i) {return 2 * i + 2;}
QDataBuffer<T> m_data;
};
template <class T>
void QMaxHeap<T>::push(const T &x)
{
int current = m_data.size();
int parent = QMaxHeap::parent(current);
m_data.add(x);
while (current != 0 && m_data.at(parent) < x) {
m_data.at(current) = m_data.at(parent);
current = parent;
parent = QMaxHeap::parent(current);
}
m_data.at(current) = x;
}
template <class T>
T QMaxHeap<T>::pop()
{
T result = m_data.first();
T back = m_data.last();
m_data.pop_back();
if (!m_data.isEmpty()) {
int current = 0;
for (;;) {
int left = QMaxHeap::left(current);
int right = QMaxHeap::right(current);
if (left >= m_data.size())
break;
int greater = left;
if (right < m_data.size() && m_data.at(left) < m_data.at(right))
greater = right;
if (m_data.at(greater) < back)
break;
m_data.at(current) = m_data.at(greater);
current = greater;
}
m_data.at(current) = back;
}
return result;
}
//============================================================================//
// QInt64Hash //
//============================================================================//
// Copied from qhash.cpp
static const uchar prime_deltas[] = {
0, 0, 1, 3, 1, 5, 3, 3, 1, 9, 7, 5, 3, 17, 27, 3,
1, 29, 3, 21, 7, 17, 15, 9, 43, 35, 15, 0, 0, 0, 0, 0
};
// Copied from qhash.cpp
static inline int primeForNumBits(int numBits)
{
return (1 << numBits) + prime_deltas[numBits];
}
static inline int primeForCount(int count)
{
int low = 0;
int high = 32;
for (int i = 0; i < 5; ++i) {
int mid = (high + low) / 2;
if (uint(count) >= (1u << mid))
low = mid;
else
high = mid;
}
return primeForNumBits(high);
}
// Hash set of quint64s. Elements cannot be removed without clearing the
// entire set. A value of -1 is used to mark unused entries.
class QInt64Set
{
public:
inline QInt64Set(int capacity = 64);
inline ~QInt64Set() {delete[] m_array;}
inline bool isValid() const {return m_array;}
void insert(quint64 key);
bool contains(quint64 key) const;
inline void clear();
private:
bool rehash(int capacity);
static const quint64 UNUSED;
quint64 *m_array;
int m_capacity;
int m_count;
};
const quint64 QInt64Set::UNUSED = quint64(-1);
inline QInt64Set::QInt64Set(int capacity)
{
m_capacity = primeForCount(capacity);
m_array = new quint64[m_capacity];
clear();
}
bool QInt64Set::rehash(int capacity)
{
quint64 *oldArray = m_array;
int oldCapacity = m_capacity;
m_capacity = capacity;
m_array = new quint64[m_capacity];
clear();
for (int i = 0; i < oldCapacity; ++i) {
if (oldArray[i] != UNUSED)
insert(oldArray[i]);
}
delete[] oldArray;
return true;
}
void QInt64Set::insert(quint64 key)
{
if (m_count > 3 * m_capacity / 4)
rehash(primeForCount(2 * m_capacity));
int index = int(key % m_capacity);
for (int i = 0; i < m_capacity; ++i) {
index += i;
if (index >= m_capacity)
index -= m_capacity;
if (m_array[index] == key)
return;
if (m_array[index] == UNUSED) {
++m_count;
m_array[index] = key;
return;
}
}
Q_ASSERT_X(0, "QInt64Hash<T>::insert", "Hash set full.");
}
bool QInt64Set::contains(quint64 key) const
{
int index = int(key % m_capacity);
for (int i = 0; i < m_capacity; ++i) {
index += i;
if (index >= m_capacity)
index -= m_capacity;
if (m_array[index] == key)
return true;
if (m_array[index] == UNUSED)
return false;
}
return false;
}
inline void QInt64Set::clear()
{
for (int i = 0; i < m_capacity; ++i)
m_array[i] = UNUSED;
m_count = 0;
}
//============================================================================//
// QTriangulator //
//============================================================================//
template<typename T>
class QTriangulator
{
public:
typedef QVarLengthArray<int, 6> ShortArray;
//================================//
// QTriangulator::ComplexToSimple //
//================================//
friend class ComplexToSimple;
class ComplexToSimple
{
public:
inline ComplexToSimple(QTriangulator<T> *parent) : m_parent(parent),
m_edges(0), m_events(0), m_splits(0) { }
void decompose();
private:
struct Edge
{
inline int &upper() {return pointingUp ? to : from;}
inline int &lower() {return pointingUp ? from : to;}
inline int upper() const {return pointingUp ? to : from;}
inline int lower() const {return pointingUp ? from : to;}
QRBTree<int>::Node *node;
int from, to; // vertex
int next, previous; // edge
int winding;
bool mayIntersect;
bool pointingUp, originallyPointingUp;
};
struct Intersection
{
bool operator < (const Intersection &other) const {return other.intersectionPoint < intersectionPoint;}
QIntersectionPoint intersectionPoint;
int vertex;
int leftEdge;
int rightEdge;
};
struct Split
{
int vertex;
int edge;
bool accurate;
};
struct Event
{
enum Type {Upper, Lower};
inline bool operator < (const Event &other) const;
QPodPoint point;
Type type;
int edge;
};
#ifdef Q_TRIANGULATOR_DEBUG
friend class DebugDialog;
friend class QTriangulator;
class DebugDialog : public QDialog
{
public:
DebugDialog(ComplexToSimple *parent, int currentVertex);
protected:
void paintEvent(QPaintEvent *);
void wheelEvent(QWheelEvent *);
void mouseMoveEvent(QMouseEvent *);
void mousePressEvent(QMouseEvent *);
private:
ComplexToSimple *m_parent;
QRectF m_window;
QPoint m_lastMousePos;
int m_vertex;
};
#endif
void initEdges();
bool calculateIntersection(int left, int right);
bool edgeIsLeftOfEdge(int leftEdgeIndex, int rightEdgeIndex) const;
QRBTree<int>::Node *searchEdgeLeftOf(int edgeIndex) const;
QRBTree<int>::Node *searchEdgeLeftOf(int edgeIndex, QRBTree<int>::Node *after) const;
QPair<QRBTree<int>::Node *, QRBTree<int>::Node *> bounds(const QPodPoint &point) const;
QPair<QRBTree<int>::Node *, QRBTree<int>::Node *> outerBounds(const QPodPoint &point) const;
void splitEdgeListRange(QRBTree<int>::Node *leftmost, QRBTree<int>::Node *rightmost, int vertex, const QIntersectionPoint &intersectionPoint);
void reorderEdgeListRange(QRBTree<int>::Node *leftmost, QRBTree<int>::Node *rightmost);
void sortEdgeList(const QPodPoint eventPoint);
void fillPriorityQueue();
void calculateIntersections();
int splitEdge(int splitIndex);
bool splitEdgesAtIntersections();
void insertEdgeIntoVectorIfWanted(ShortArray &orderedEdges, int i);
void removeUnwantedEdgesAndConnect();
void removeUnusedPoints();
QTriangulator *m_parent;
QDataBuffer<Edge> m_edges;
QRBTree<int> m_edgeList;
QDataBuffer<Event> m_events;
QDataBuffer<Split> m_splits;
QMaxHeap<Intersection> m_topIntersection;
QInt64Set m_processedEdgePairs;
int m_initialPointCount;
};
#ifdef Q_TRIANGULATOR_DEBUG
friend class ComplexToSimple::DebugDialog;
#endif
//=================================//
// QTriangulator::SimpleToMonotone //
//=================================//
friend class SimpleToMonotone;
class SimpleToMonotone
{
public:
inline SimpleToMonotone(QTriangulator<T> *parent) : m_parent(parent), m_edges(0), m_upperVertex(0) { }
void decompose();
private:
enum VertexType {MergeVertex, EndVertex, RegularVertex, StartVertex, SplitVertex};
struct Edge
{
QRBTree<int>::Node *node;
int helper, twin, next, previous;
T from, to;
VertexType type;
bool pointingUp;
int upper() const {return (pointingUp ? to : from);}
int lower() const {return (pointingUp ? from : to);}
};
friend class CompareVertices;
class CompareVertices
{
public:
CompareVertices(SimpleToMonotone *parent) : m_parent(parent) { }
bool operator () (int i, int j) const;
private:
SimpleToMonotone *m_parent;
};
void setupDataStructures();
void removeZeroLengthEdges();
void fillPriorityQueue();
bool edgeIsLeftOfEdge(int leftEdgeIndex, int rightEdgeIndex) const;
// Returns the rightmost edge not to the right of the given edge.
QRBTree<int>::Node *searchEdgeLeftOfEdge(int edgeIndex) const;
// Returns the rightmost edge left of the given point.
QRBTree<int>::Node *searchEdgeLeftOfPoint(int pointIndex) const;
void classifyVertex(int i);
void classifyVertices();
bool pointIsInSector(const QPodPoint &p, const QPodPoint &v1, const QPodPoint &v2, const QPodPoint &v3);
bool pointIsInSector(int vertex, int sector);
int findSector(int edge, int vertex);
void createDiagonal(int lower, int upper);
void monotoneDecomposition();
QTriangulator *m_parent;
QRBTree<int> m_edgeList;
QDataBuffer<Edge> m_edges;
QDataBuffer<int> m_upperVertex;
bool m_clockwiseOrder;
};
//====================================//
// QTriangulator::MonotoneToTriangles //
//====================================//
friend class MonotoneToTriangles;
class MonotoneToTriangles
{
public:
inline MonotoneToTriangles(QTriangulator<T> *parent) : m_parent(parent) { }
void decompose();
private:
inline T indices(int index) const {return m_parent->m_indices.at(index + m_first);}
inline int next(int index) const {return (index + 1) % m_length;}
inline int previous(int index) const {return (index + m_length - 1) % m_length;}
inline bool less(int i, int j) const {return m_parent->m_vertices.at((qint32)indices(i)) < m_parent->m_vertices.at(indices(j));}
inline bool leftOfEdge(int i, int j, int k) const
{
return qPointIsLeftOfLine(m_parent->m_vertices.at((qint32)indices(i)),
m_parent->m_vertices.at((qint32)indices(j)), m_parent->m_vertices.at((qint32)indices(k)));
}
QTriangulator<T> *m_parent;
int m_first;
int m_length;
};
inline QTriangulator() : m_vertices(0) { }
// Call this only once.
void initialize(const qreal *polygon, int count, uint hint, const QTransform &matrix);
// Call this only once.
void initialize(const QVectorPath &path, const QTransform &matrix, qreal lod);
// Call this only once.
void initialize(const QPainterPath &path, const QTransform &matrix, qreal lod);
// Call either triangulate() or polyline() only once.
QVertexSet<T> triangulate();
QVertexSet<T> polyline();
private:
QDataBuffer<QPodPoint> m_vertices;
QVector<T> m_indices;
uint m_hint;
};
//============================================================================//
// QTriangulator //
//============================================================================//
template <typename T>
QVertexSet<T> QTriangulator<T>::triangulate()
{
for (int i = 0; i < m_vertices.size(); ++i) {
Q_ASSERT(qAbs(m_vertices.at(i).x) < (1 << 21));
Q_ASSERT(qAbs(m_vertices.at(i).y) < (1 << 21));
}
if (!(m_hint & (QVectorPath::OddEvenFill | QVectorPath::WindingFill)))
m_hint |= QVectorPath::OddEvenFill;
if (m_hint & QVectorPath::NonConvexShapeMask) {
ComplexToSimple c2s(this);
c2s.decompose();
SimpleToMonotone s2m(this);
s2m.decompose();
}
MonotoneToTriangles m2t(this);
m2t.decompose();
QVertexSet<T> result;
result.indices = m_indices;
result.vertices.resize(2 * m_vertices.size());
for (int i = 0; i < m_vertices.size(); ++i) {
result.vertices[2 * i + 0] = qreal(m_vertices.at(i).x) / Q_FIXED_POINT_SCALE;
result.vertices[2 * i + 1] = qreal(m_vertices.at(i).y) / Q_FIXED_POINT_SCALE;
}
return result;
}
template <typename T>
QVertexSet<T> QTriangulator<T>::polyline()
{
for (int i = 0; i < m_vertices.size(); ++i) {
Q_ASSERT(qAbs(m_vertices.at(i).x) < (1 << 21));
Q_ASSERT(qAbs(m_vertices.at(i).y) < (1 << 21));
}
if (!(m_hint & (QVectorPath::OddEvenFill | QVectorPath::WindingFill)))
m_hint |= QVectorPath::OddEvenFill;
if (m_hint & QVectorPath::NonConvexShapeMask) {
ComplexToSimple c2s(this);
c2s.decompose();
}
QVertexSet<T> result;
result.indices = m_indices;
result.vertices.resize(2 * m_vertices.size());
for (int i = 0; i < m_vertices.size(); ++i) {
result.vertices[2 * i + 0] = qreal(m_vertices.at(i).x) / Q_FIXED_POINT_SCALE;
result.vertices[2 * i + 1] = qreal(m_vertices.at(i).y) / Q_FIXED_POINT_SCALE;
}
return result;
}
template <typename T>
void QTriangulator<T>::initialize(const qreal *polygon, int count, uint hint, const QTransform &matrix)
{
m_hint = hint;
m_vertices.resize(count);
m_indices.resize(count + 1);
for (int i = 0; i < count; ++i) {
qreal x, y;
matrix.map(polygon[2 * i + 0], polygon[2 * i + 1], &x, &y);
m_vertices.at(i).x = qRound(x * Q_FIXED_POINT_SCALE);
m_vertices.at(i).y = qRound(y * Q_FIXED_POINT_SCALE);
m_indices[i] = i;
}
m_indices[count] = T(-1); //Q_TRIANGULATE_END_OF_POLYGON
}
template <typename T>
void QTriangulator<T>::initialize(const QVectorPath &path, const QTransform &matrix, qreal lod)
{
m_hint = path.hints();
// Curved paths will be converted to complex polygons.
m_hint &= ~QVectorPath::CurvedShapeMask;
const qreal *p = path.points();
const QPainterPath::ElementType *e = path.elements();
if (e) {
for (int i = 0; i < path.elementCount(); ++i, ++e, p += 2) {
switch (*e) {
case QPainterPath::MoveToElement:
if (!m_indices.isEmpty())
m_indices.push_back(T(-1)); // Q_TRIANGULATE_END_OF_POLYGON
Q_FALLTHROUGH();
case QPainterPath::LineToElement:
m_indices.push_back(T(m_vertices.size()));
m_vertices.resize(m_vertices.size() + 1);
qreal x, y;
matrix.map(p[0], p[1], &x, &y);
m_vertices.last().x = qRound(x * Q_FIXED_POINT_SCALE);
m_vertices.last().y = qRound(y * Q_FIXED_POINT_SCALE);
break;
case QPainterPath::CurveToElement:
{
qreal pts[8];
for (int i = 0; i < 4; ++i)
matrix.map(p[2 * i - 2], p[2 * i - 1], &pts[2 * i + 0], &pts[2 * i + 1]);
for (int i = 0; i < 8; ++i)
pts[i] *= lod;
QBezier bezier = QBezier::fromPoints(QPointF(pts[0], pts[1]), QPointF(pts[2], pts[3]), QPointF(pts[4], pts[5]), QPointF(pts[6], pts[7]));
QPolygonF poly = bezier.toPolygon();
// Skip first point, it already exists in 'm_vertices'.
for (int j = 1; j < poly.size(); ++j) {
m_indices.push_back(T(m_vertices.size()));
m_vertices.resize(m_vertices.size() + 1);
m_vertices.last().x = qRound(poly.at(j).x() * Q_FIXED_POINT_SCALE / lod);
m_vertices.last().y = qRound(poly.at(j).y() * Q_FIXED_POINT_SCALE / lod);
}
}
i += 2;
e += 2;
p += 4;
break;
default:
Q_ASSERT_X(0, "QTriangulator::triangulate", "Unexpected element type.");
break;
}
}
} else {
for (int i = 0; i < path.elementCount(); ++i, p += 2) {
m_indices.push_back(T(m_vertices.size()));
m_vertices.resize(m_vertices.size() + 1);
qreal x, y;
matrix.map(p[0], p[1], &x, &y);
m_vertices.last().x = qRound(x * Q_FIXED_POINT_SCALE);
m_vertices.last().y = qRound(y * Q_FIXED_POINT_SCALE);
}
}
m_indices.push_back(T(-1)); // Q_TRIANGULATE_END_OF_POLYGON
}
template <typename T>
void QTriangulator<T>::initialize(const QPainterPath &path, const QTransform &matrix, qreal lod)
{
initialize(qtVectorPathForPath(path), matrix, lod);
}
//============================================================================//
// QTriangulator::ComplexToSimple //
//============================================================================//
template <typename T>
void QTriangulator<T>::ComplexToSimple::decompose()
{
m_initialPointCount = m_parent->m_vertices.size();
initEdges();
do {
calculateIntersections();
} while (splitEdgesAtIntersections());
removeUnwantedEdgesAndConnect();
removeUnusedPoints();
m_parent->m_indices.clear();
QBitArray processed(m_edges.size(), false);
for (int first = 0; first < m_edges.size(); ++first) {
// If already processed, or if unused path, skip.
if (processed.at(first) || m_edges.at(first).next == -1)
continue;
int i = first;
do {
Q_ASSERT(!processed.at(i));
Q_ASSERT(m_edges.at(m_edges.at(i).next).previous == i);
m_parent->m_indices.push_back(m_edges.at(i).from);
processed.setBit(i);
i = m_edges.at(i).next; // CCW order
} while (i != first);
m_parent->m_indices.push_back(T(-1)); // Q_TRIANGULATE_END_OF_POLYGON
}
}
template <typename T>
void QTriangulator<T>::ComplexToSimple::initEdges()
{
// Initialize edge structure.
// 'next' and 'previous' are not being initialized at this point.
int first = 0;
for (int i = 0; i < m_parent->m_indices.size(); ++i) {
if (m_parent->m_indices.at(i) == T(-1)) { // Q_TRIANGULATE_END_OF_POLYGON
if (m_edges.size() != first)
m_edges.last().to = m_edges.at(first).from;
first = m_edges.size();
} else {
Q_ASSERT(i + 1 < m_parent->m_indices.size());
// {node, from, to, next, previous, winding, mayIntersect, pointingUp, originallyPointingUp}
Edge edge = {nullptr, int(m_parent->m_indices.at(i)), int(m_parent->m_indices.at(i + 1)), -1, -1, 0, true, false, false};
m_edges.add(edge);
}
}
if (first != m_edges.size())
m_edges.last().to = m_edges.at(first).from;
for (int i = 0; i < m_edges.size(); ++i) {
m_edges.at(i).originallyPointingUp = m_edges.at(i).pointingUp =
m_parent->m_vertices.at(m_edges.at(i).to) < m_parent->m_vertices.at(m_edges.at(i).from);
}
}
// Return true if new intersection was found
template <typename T>
bool QTriangulator<T>::ComplexToSimple::calculateIntersection(int left, int right)
{
const Edge &e1 = m_edges.at(left);
const Edge &e2 = m_edges.at(right);
const QPodPoint &u1 = m_parent->m_vertices.at((qint32)e1.from);
const QPodPoint &u2 = m_parent->m_vertices.at((qint32)e1.to);
const QPodPoint &v1 = m_parent->m_vertices.at((qint32)e2.from);
const QPodPoint &v2 = m_parent->m_vertices.at((qint32)e2.to);
if (qMax(u1.x, u2.x) <= qMin(v1.x, v2.x))
return false;
quint64 key = (left > right ? (quint64(right) << 32) | quint64(left) : (quint64(left) << 32) | quint64(right));
if (m_processedEdgePairs.contains(key))
return false;
m_processedEdgePairs.insert(key);
Intersection intersection;
intersection.leftEdge = left;
intersection.rightEdge = right;
intersection.intersectionPoint = QT_PREPEND_NAMESPACE(qIntersectionPoint)(u1, u2, v1, v2);
if (!intersection.intersectionPoint.isValid())
return false;
Q_ASSERT(intersection.intersectionPoint.isOnLine(u1, u2));
Q_ASSERT(intersection.intersectionPoint.isOnLine(v1, v2));
intersection.vertex = m_parent->m_vertices.size();
m_topIntersection.push(intersection);
m_parent->m_vertices.add(intersection.intersectionPoint.round());
return true;
}
template <typename T>
bool QTriangulator<T>::ComplexToSimple::edgeIsLeftOfEdge(int leftEdgeIndex, int rightEdgeIndex) const
{
const Edge &leftEdge = m_edges.at(leftEdgeIndex);
const Edge &rightEdge = m_edges.at(rightEdgeIndex);
const QPodPoint &u = m_parent->m_vertices.at(rightEdge.upper());
const QPodPoint &l = m_parent->m_vertices.at(rightEdge.lower());
const QPodPoint &upper = m_parent->m_vertices.at(leftEdge.upper());
if (upper.x < qMin(l.x, u.x))
return true;
if (upper.x > qMax(l.x, u.x))
return false;
qint64 d = QT_PREPEND_NAMESPACE(qPointDistanceFromLine)(upper, l, u);
// d < 0: left, d > 0: right, d == 0: on top
if (d == 0)
d = QT_PREPEND_NAMESPACE(qPointDistanceFromLine)(m_parent->m_vertices.at(leftEdge.lower()), l, u);
return d < 0;
}
template <typename T>
QRBTree<int>::Node *QTriangulator<T>::ComplexToSimple::searchEdgeLeftOf(int edgeIndex) const
{
QRBTree<int>::Node *current = m_edgeList.root;
QRBTree<int>::Node *result = nullptr;
while (current) {
if (edgeIsLeftOfEdge(edgeIndex, current->data)) {
current = current->left;
} else {
result = current;
current = current->right;
}
}
return result;
}
template <typename T>
QRBTree<int>::Node *QTriangulator<T>::ComplexToSimple::searchEdgeLeftOf(int edgeIndex, QRBTree<int>::Node *after) const
{
if (!m_edgeList.root)
return after;
QRBTree<int>::Node *result = after;
QRBTree<int>::Node *current = (after ? m_edgeList.next(after) : m_edgeList.front(m_edgeList.root));
while (current) {
if (edgeIsLeftOfEdge(edgeIndex, current->data))
return result;
result = current;
current = m_edgeList.next(current);
}
return result;
}
template <typename T>
QPair<QRBTree<int>::Node *, QRBTree<int>::Node *> QTriangulator<T>::ComplexToSimple::bounds(const QPodPoint &point) const
{
QRBTree<int>::Node *current = m_edgeList.root;
QPair<QRBTree<int>::Node *, QRBTree<int>::Node *> result(0, 0);
while (current) {
const QPodPoint &v1 = m_parent->m_vertices.at(m_edges.at(current->data).lower());
const QPodPoint &v2 = m_parent->m_vertices.at(m_edges.at(current->data).upper());
qint64 d = QT_PREPEND_NAMESPACE(qPointDistanceFromLine)(point, v1, v2);
if (d == 0) {
result.first = result.second = current;
break;
}
current = (d < 0 ? current->left : current->right);
}
if (current == nullptr)
return result;
current = result.first->left;
while (current) {
const QPodPoint &v1 = m_parent->m_vertices.at(m_edges.at(current->data).lower());
const QPodPoint &v2 = m_parent->m_vertices.at(m_edges.at(current->data).upper());
qint64 d = QT_PREPEND_NAMESPACE(qPointDistanceFromLine)(point, v1, v2);
Q_ASSERT(d >= 0);
if (d == 0) {
result.first = current;
current = current->left;
} else {
current = current->right;
}
}
current = result.second->right;
while (current) {
const QPodPoint &v1 = m_parent->m_vertices.at(m_edges.at(current->data).lower());
const QPodPoint &v2 = m_parent->m_vertices.at(m_edges.at(current->data).upper());
qint64 d = QT_PREPEND_NAMESPACE(qPointDistanceFromLine)(point, v1, v2);
Q_ASSERT(d <= 0);
if (d == 0) {
result.second = current;
current = current->right;
} else {
current = current->left;
}
}
return result;
}
template <typename T>
QPair<QRBTree<int>::Node *, QRBTree<int>::Node *> QTriangulator<T>::ComplexToSimple::outerBounds(const QPodPoint &point) const
{
QRBTree<int>::Node *current = m_edgeList.root;
QPair<QRBTree<int>::Node *, QRBTree<int>::Node *> result(0, 0);
while (current) {
const QPodPoint &v1 = m_parent->m_vertices.at(m_edges.at(current->data).lower());
const QPodPoint &v2 = m_parent->m_vertices.at(m_edges.at(current->data).upper());
qint64 d = QT_PREPEND_NAMESPACE(qPointDistanceFromLine)(point, v1, v2);
if (d == 0)
break;
if (d < 0) {
result.second = current;
current = current->left;
} else {
result.first = current;
current = current->right;
}
}
if (!current)
return result;
QRBTree<int>::Node *mid = current;
current = mid->left;
while (current) {
const QPodPoint &v1 = m_parent->m_vertices.at(m_edges.at(current->data).lower());
const QPodPoint &v2 = m_parent->m_vertices.at(m_edges.at(current->data).upper());
qint64 d = QT_PREPEND_NAMESPACE(qPointDistanceFromLine)(point, v1, v2);
Q_ASSERT(d >= 0);
if (d == 0) {
current = current->left;
} else {
result.first = current;
current = current->right;
}
}
current = mid->right;
while (current) {
const QPodPoint &v1 = m_parent->m_vertices.at(m_edges.at(current->data).lower());
const QPodPoint &v2 = m_parent->m_vertices.at(m_edges.at(current->data).upper());
qint64 d = QT_PREPEND_NAMESPACE(qPointDistanceFromLine)(point, v1, v2);
Q_ASSERT(d <= 0);
if (d == 0) {
current = current->right;
} else {
result.second = current;
current = current->left;
}
}
return result;
}
template <typename T>
void QTriangulator<T>::ComplexToSimple::splitEdgeListRange(QRBTree<int>::Node *leftmost, QRBTree<int>::Node *rightmost, int vertex, const QIntersectionPoint &intersectionPoint)
{
Q_ASSERT(leftmost && rightmost);
// Split.
for (;;) {
const QPodPoint &u = m_parent->m_vertices.at(m_edges.at(leftmost->data).from);
const QPodPoint &v = m_parent->m_vertices.at(m_edges.at(leftmost->data).to);
Q_ASSERT(intersectionPoint.isOnLine(u, v));
const Split split = {vertex, leftmost->data, intersectionPoint.isAccurate()};
if (intersectionPoint.xOffset.numerator != 0 || intersectionPoint.yOffset.numerator != 0 || (intersectionPoint.upperLeft != u && intersectionPoint.upperLeft != v))
m_splits.add(split);
if (leftmost == rightmost)
break;
leftmost = m_edgeList.next(leftmost);
}
}
template <typename T>
void QTriangulator<T>::ComplexToSimple::reorderEdgeListRange(QRBTree<int>::Node *leftmost, QRBTree<int>::Node *rightmost)
{
Q_ASSERT(leftmost && rightmost);
QRBTree<int>::Node *storeLeftmost = leftmost;
QRBTree<int>::Node *storeRightmost = rightmost;
// Reorder.
while (leftmost != rightmost) {
Edge &left = m_edges.at(leftmost->data);
Edge &right = m_edges.at(rightmost->data);
qSwap(left.node, right.node);
qSwap(leftmost->data, rightmost->data);
leftmost = m_edgeList.next(leftmost);
if (leftmost == rightmost)
break;
rightmost = m_edgeList.previous(rightmost);
}
rightmost = m_edgeList.next(storeRightmost);
leftmost = m_edgeList.previous(storeLeftmost);
if (leftmost)
calculateIntersection(leftmost->data, storeLeftmost->data);
if (rightmost)
calculateIntersection(storeRightmost->data, rightmost->data);
}
template <typename T>
void QTriangulator<T>::ComplexToSimple::sortEdgeList(const QPodPoint eventPoint)
{
QIntersectionPoint eventPoint2 = QT_PREPEND_NAMESPACE(qIntersectionPoint)(eventPoint);
while (!m_topIntersection.isEmpty() && m_topIntersection.top().intersectionPoint < eventPoint2) {
Intersection intersection = m_topIntersection.pop();
QIntersectionPoint currentIntersectionPoint = intersection.intersectionPoint;
int currentVertex = intersection.vertex;
QRBTree<int>::Node *leftmost = m_edges.at(intersection.leftEdge).node;
QRBTree<int>::Node *rightmost = m_edges.at(intersection.rightEdge).node;
for (;;) {
QRBTree<int>::Node *previous = m_edgeList.previous(leftmost);
if (!previous)
break;
const Edge &edge = m_edges.at(previous->data);
const QPodPoint &u = m_parent->m_vertices.at((qint32)edge.from);
const QPodPoint &v = m_parent->m_vertices.at((qint32)edge.to);
if (!currentIntersectionPoint.isOnLine(u, v)) {
Q_ASSERT(!currentIntersectionPoint.isAccurate() || qCross(currentIntersectionPoint.upperLeft - u, v - u) != 0);
break;
}
leftmost = previous;
}
for (;;) {
QRBTree<int>::Node *next = m_edgeList.next(rightmost);
if (!next)
break;
const Edge &edge = m_edges.at(next->data);
const QPodPoint &u = m_parent->m_vertices.at((qint32)edge.from);
const QPodPoint &v = m_parent->m_vertices.at((qint32)edge.to);
if (!currentIntersectionPoint.isOnLine(u, v)) {
Q_ASSERT(!currentIntersectionPoint.isAccurate() || qCross(currentIntersectionPoint.upperLeft - u, v - u) != 0);
break;
}
rightmost = next;
}
Q_ASSERT(leftmost && rightmost);
splitEdgeListRange(leftmost, rightmost, currentVertex, currentIntersectionPoint);
reorderEdgeListRange(leftmost, rightmost);
while (!m_topIntersection.isEmpty() && m_topIntersection.top().intersectionPoint <= currentIntersectionPoint)
m_topIntersection.pop();
#ifdef Q_TRIANGULATOR_DEBUG
DebugDialog dialog(this, intersection.vertex);
dialog.exec();
#endif
}
}
template <typename T>
void QTriangulator<T>::ComplexToSimple::fillPriorityQueue()
{
m_events.reset();
m_events.reserve(m_edges.size() * 2);
for (int i = 0; i < m_edges.size(); ++i) {
Q_ASSERT(m_edges.at(i).previous == -1 && m_edges.at(i).next == -1);
Q_ASSERT(m_edges.at(i).node == nullptr);
Q_ASSERT(m_edges.at(i).pointingUp == m_edges.at(i).originallyPointingUp);
Q_ASSERT(m_edges.at(i).pointingUp == (m_parent->m_vertices.at(m_edges.at(i).to) < m_parent->m_vertices.at(m_edges.at(i).from)));
// Ignore zero-length edges.
if (m_parent->m_vertices.at(m_edges.at(i).to) != m_parent->m_vertices.at(m_edges.at(i).from)) {
QPodPoint upper = m_parent->m_vertices.at(m_edges.at(i).upper());
QPodPoint lower = m_parent->m_vertices.at(m_edges.at(i).lower());
Event upperEvent = {{upper.x, upper.y}, Event::Upper, i};
Event lowerEvent = {{lower.x, lower.y}, Event::Lower, i};
m_events.add(upperEvent);
m_events.add(lowerEvent);
}
}
std::sort(m_events.data(), m_events.data() + m_events.size());
}
template <typename T>
void QTriangulator<T>::ComplexToSimple::calculateIntersections()
{
fillPriorityQueue();
Q_ASSERT(m_topIntersection.empty());
Q_ASSERT(m_edgeList.root == nullptr);
// Find all intersection points.
while (!m_events.isEmpty()) {
Event event = m_events.last();
sortEdgeList(event.point);
// Find all edges in the edge list that contain the current vertex and mark them to be split later.
QPair<QRBTree<int>::Node *, QRBTree<int>::Node *> range = bounds(event.point);
QRBTree<int>::Node *leftNode = range.first ? m_edgeList.previous(range.first) : nullptr;
int vertex = (event.type == Event::Upper ? m_edges.at(event.edge).upper() : m_edges.at(event.edge).lower());
QIntersectionPoint eventPoint = QT_PREPEND_NAMESPACE(qIntersectionPoint)(event.point);
if (range.first != 0) {
splitEdgeListRange(range.first, range.second, vertex, eventPoint);
reorderEdgeListRange(range.first, range.second);
}
// Handle the edges with start or end point in the current vertex.
while (!m_events.isEmpty() && m_events.last().point == event.point) {
event = m_events.last();
m_events.pop_back();
int i = event.edge;
if (m_edges.at(i).node) {
// Remove edge from edge list.
Q_ASSERT(event.type == Event::Lower);
QRBTree<int>::Node *left = m_edgeList.previous(m_edges.at(i).node);
QRBTree<int>::Node *right = m_edgeList.next(m_edges.at(i).node);
m_edgeList.deleteNode(m_edges.at(i).node);
if (!left || !right)
continue;
calculateIntersection(left->data, right->data);
} else {
// Insert edge into edge list.
Q_ASSERT(event.type == Event::Upper);
QRBTree<int>::Node *left = searchEdgeLeftOf(i, leftNode);
m_edgeList.attachAfter(left, m_edges.at(i).node = m_edgeList.newNode());
m_edges.at(i).node->data = i;
QRBTree<int>::Node *right = m_edgeList.next(m_edges.at(i).node);
if (left)
calculateIntersection(left->data, i);
if (right)
calculateIntersection(i, right->data);
}
}
while (!m_topIntersection.isEmpty() && m_topIntersection.top().intersectionPoint <= eventPoint)
m_topIntersection.pop();
#ifdef Q_TRIANGULATOR_DEBUG
DebugDialog dialog(this, vertex);
dialog.exec();
#endif
}
m_processedEdgePairs.clear();
}
// Split an edge into two pieces at the given point.
// The upper piece is pushed to the end of the 'm_edges' vector.
// The lower piece replaces the old edge.
// Return the edge whose 'from' is 'pointIndex'.
template <typename T>
int QTriangulator<T>::ComplexToSimple::splitEdge(int splitIndex)
{
const Split &split = m_splits.at(splitIndex);
Edge &lowerEdge = m_edges.at(split.edge);
Q_ASSERT(lowerEdge.node == nullptr);
Q_ASSERT(lowerEdge.previous == -1 && lowerEdge.next == -1);
if (lowerEdge.from == split.vertex)
return split.edge;
if (lowerEdge.to == split.vertex)
return lowerEdge.next;
// Check that angle >= 90 degrees.
//Q_ASSERT(qDot(m_points.at(m_edges.at(edgeIndex).from) - m_points.at(pointIndex),
// m_points.at(m_edges.at(edgeIndex).to) - m_points.at(pointIndex)) <= 0);
Edge upperEdge = lowerEdge;
upperEdge.mayIntersect |= !split.accurate; // The edge may have been split before at an inaccurate split point.
lowerEdge.mayIntersect = !split.accurate;
if (lowerEdge.pointingUp) {
lowerEdge.to = upperEdge.from = split.vertex;
m_edges.add(upperEdge);
return m_edges.size() - 1;
} else {
lowerEdge.from = upperEdge.to = split.vertex;
m_edges.add(upperEdge);
return split.edge;
}
}
template <typename T>
bool QTriangulator<T>::ComplexToSimple::splitEdgesAtIntersections()
{
for (int i = 0; i < m_edges.size(); ++i)
m_edges.at(i).mayIntersect = false;
bool checkForNewIntersections = false;
for (int i = 0; i < m_splits.size(); ++i) {
splitEdge(i);
checkForNewIntersections |= !m_splits.at(i).accurate;
}
for (int i = 0; i < m_edges.size(); ++i) {
m_edges.at(i).originallyPointingUp = m_edges.at(i).pointingUp =
m_parent->m_vertices.at(m_edges.at(i).to) < m_parent->m_vertices.at(m_edges.at(i).from);
}
m_splits.reset();
return checkForNewIntersections;
}
template <typename T>
void QTriangulator<T>::ComplexToSimple::insertEdgeIntoVectorIfWanted(ShortArray &orderedEdges, int i)
{
// Edges with zero length should not reach this part.
Q_ASSERT(m_parent->m_vertices.at(m_edges.at(i).from) != m_parent->m_vertices.at(m_edges.at(i).to));
// Skip edges with unwanted winding number.
int windingNumber = m_edges.at(i).winding;
if (m_edges.at(i).originallyPointingUp)
++windingNumber;
// Make sure exactly one fill rule is specified.
Q_ASSERT(((m_parent->m_hint & QVectorPath::WindingFill) != 0) != ((m_parent->m_hint & QVectorPath::OddEvenFill) != 0));
if ((m_parent->m_hint & QVectorPath::WindingFill) && windingNumber != 0 && windingNumber != 1)
return;
// Skip cancelling edges.
if (!orderedEdges.isEmpty()) {
int j = orderedEdges[orderedEdges.size() - 1];
// If the last edge is already connected in one end, it should not be cancelled.
if (m_edges.at(j).next == -1 && m_edges.at(j).previous == -1
&& (m_parent->m_vertices.at(m_edges.at(i).from) == m_parent->m_vertices.at(m_edges.at(j).to))
&& (m_parent->m_vertices.at(m_edges.at(i).to) == m_parent->m_vertices.at(m_edges.at(j).from))) {
orderedEdges.removeLast();
return;
}
}
orderedEdges.append(i);
}
template <typename T>
void QTriangulator<T>::ComplexToSimple::removeUnwantedEdgesAndConnect()
{
Q_ASSERT(m_edgeList.root == nullptr);
// Initialize priority queue.
fillPriorityQueue();
ShortArray orderedEdges;
while (!m_events.isEmpty()) {
Event event = m_events.last();
int edgeIndex = event.edge;
// Check that all the edges in the list crosses the current scanline
//if (m_edgeList.root) {
// for (QRBTree<int>::Node *node = m_edgeList.front(m_edgeList.root); node; node = m_edgeList.next(node)) {
// Q_ASSERT(event.point <= m_points.at(m_edges.at(node->data).lower()));
// }
//}
orderedEdges.clear();
QPair<QRBTree<int>::Node *, QRBTree<int>::Node *> b = outerBounds(event.point);
if (m_edgeList.root) {
QRBTree<int>::Node *current = (b.first ? m_edgeList.next(b.first) : m_edgeList.front(m_edgeList.root));
// Process edges that are going to be removed from the edge list at the current event point.
while (current != b.second) {
Q_ASSERT(current);
Q_ASSERT(m_edges.at(current->data).node == current);
Q_ASSERT(QT_PREPEND_NAMESPACE(qIntersectionPoint)(event.point).isOnLine(m_parent->m_vertices.at(m_edges.at(current->data).from), m_parent->m_vertices.at(m_edges.at(current->data).to)));
Q_ASSERT(m_parent->m_vertices.at(m_edges.at(current->data).from) == event.point || m_parent->m_vertices.at(m_edges.at(current->data).to) == event.point);
insertEdgeIntoVectorIfWanted(orderedEdges, current->data);
current = m_edgeList.next(current);
}
}
// Remove edges above the event point, insert edges below the event point.
do {
event = m_events.last();
m_events.pop_back();
edgeIndex = event.edge;
// Edges with zero length should not reach this part.
Q_ASSERT(m_parent->m_vertices.at(m_edges.at(edgeIndex).from) != m_parent->m_vertices.at(m_edges.at(edgeIndex).to));
if (m_edges.at(edgeIndex).node) {
Q_ASSERT(event.type == Event::Lower);
Q_ASSERT(event.point == m_parent->m_vertices.at(m_edges.at(event.edge).lower()));
m_edgeList.deleteNode(m_edges.at(edgeIndex).node);
} else {
Q_ASSERT(event.type == Event::Upper);
Q_ASSERT(event.point == m_parent->m_vertices.at(m_edges.at(event.edge).upper()));
QRBTree<int>::Node *left = searchEdgeLeftOf(edgeIndex, b.first);
m_edgeList.attachAfter(left, m_edges.at(edgeIndex).node = m_edgeList.newNode());
m_edges.at(edgeIndex).node->data = edgeIndex;
}
} while (!m_events.isEmpty() && m_events.last().point == event.point);
if (m_edgeList.root) {
QRBTree<int>::Node *current = (b.first ? m_edgeList.next(b.first) : m_edgeList.front(m_edgeList.root));
// Calculate winding number and turn counter-clockwise.
int currentWindingNumber = (b.first ? m_edges.at(b.first->data).winding : 0);
while (current != b.second) {
Q_ASSERT(current);
//Q_ASSERT(b.second == 0 || m_edgeList.order(current, b.second) < 0);
int i = current->data;
Q_ASSERT(m_edges.at(i).node == current);
// Winding number.
int ccwWindingNumber = m_edges.at(i).winding = currentWindingNumber;
if (m_edges.at(i).originallyPointingUp) {
--m_edges.at(i).winding;
} else {
++m_edges.at(i).winding;
++ccwWindingNumber;
}
currentWindingNumber = m_edges.at(i).winding;
// Turn counter-clockwise.
if ((ccwWindingNumber & 1) == 0) {
Q_ASSERT(m_edges.at(i).previous == -1 && m_edges.at(i).next == -1);
qSwap(m_edges.at(i).from, m_edges.at(i).to);
m_edges.at(i).pointingUp = !m_edges.at(i).pointingUp;
}
current = m_edgeList.next(current);
}
// Process edges that were inserted into the edge list at the current event point.
current = (b.second ? m_edgeList.previous(b.second) : m_edgeList.back(m_edgeList.root));
while (current != b.first) {
Q_ASSERT(current);
Q_ASSERT(m_edges.at(current->data).node == current);
insertEdgeIntoVectorIfWanted(orderedEdges, current->data);
current = m_edgeList.previous(current);
}
}
if (orderedEdges.isEmpty())
continue;
Q_ASSERT((orderedEdges.size() & 1) == 0);
// Connect edges.
// First make sure the first edge point towards the current point.
int i;
if (m_parent->m_vertices.at(m_edges.at(orderedEdges[0]).from) == event.point) {
i = 1;
int copy = orderedEdges[0]; // Make copy in case the append() will cause a reallocation.
orderedEdges.append(copy);
} else {
Q_ASSERT(m_parent->m_vertices.at(m_edges.at(orderedEdges[0]).to) == event.point);
i = 0;
}
// Remove references to duplicate points. First find the point with lowest index.
int pointIndex = INT_MAX;
for (int j = i; j < orderedEdges.size(); j += 2) {
Q_ASSERT(j + 1 < orderedEdges.size());
Q_ASSERT(m_parent->m_vertices.at(m_edges.at(orderedEdges[j]).to) == event.point);
Q_ASSERT(m_parent->m_vertices.at(m_edges.at(orderedEdges[j + 1]).from) == event.point);
if (m_edges.at(orderedEdges[j]).to < pointIndex)
pointIndex = m_edges.at(orderedEdges[j]).to;
if (m_edges.at(orderedEdges[j + 1]).from < pointIndex)
pointIndex = m_edges.at(orderedEdges[j + 1]).from;
}
for (; i < orderedEdges.size(); i += 2) {
// Remove references to duplicate points by making all edges reference one common point.
m_edges.at(orderedEdges[i]).to = m_edges.at(orderedEdges[i + 1]).from = pointIndex;
Q_ASSERT(m_edges.at(orderedEdges[i]).pointingUp || m_edges.at(orderedEdges[i]).previous != -1);
Q_ASSERT(!m_edges.at(orderedEdges[i + 1]).pointingUp || m_edges.at(orderedEdges[i + 1]).next != -1);
m_edges.at(orderedEdges[i]).next = orderedEdges[i + 1];
m_edges.at(orderedEdges[i + 1]).previous = orderedEdges[i];
}
} // end while
}
template <typename T>
void QTriangulator<T>::ComplexToSimple::removeUnusedPoints() {
QBitArray used(m_parent->m_vertices.size(), false);
for (int i = 0; i < m_edges.size(); ++i) {
Q_ASSERT((m_edges.at(i).previous == -1) == (m_edges.at(i).next == -1));
if (m_edges.at(i).next != -1)
used.setBit(m_edges.at(i).from);
}
QDataBuffer<quint32> newMapping(m_parent->m_vertices.size());
newMapping.resize(m_parent->m_vertices.size());
int count = 0;
for (int i = 0; i < m_parent->m_vertices.size(); ++i) {
if (used.at(i)) {
m_parent->m_vertices.at(count) = m_parent->m_vertices.at(i);
newMapping.at(i) = count;
++count;
}
}
m_parent->m_vertices.resize(count);
for (int i = 0; i < m_edges.size(); ++i) {
m_edges.at(i).from = newMapping.at(m_edges.at(i).from);
m_edges.at(i).to = newMapping.at(m_edges.at(i).to);
}
}
template <typename T>
inline bool QTriangulator<T>::ComplexToSimple::Event::operator < (const Event &other) const
{
if (point == other.point)
return type < other.type; // 'Lower' has higher priority than 'Upper'.
return other.point < point;
}
//============================================================================//
// QTriangulator::ComplexToSimple::DebugDialog //
//============================================================================//
#ifdef Q_TRIANGULATOR_DEBUG
template <typename T>
QTriangulator<T>::ComplexToSimple::DebugDialog::DebugDialog(ComplexToSimple *parent, int currentVertex)
: m_parent(parent), m_vertex(currentVertex)
{
QDataBuffer<QPodPoint> &vertices = m_parent->m_parent->m_vertices;
if (vertices.isEmpty())
return;
int minX, maxX, minY, maxY;
minX = maxX = vertices.at(0).x;
minY = maxY = vertices.at(0).y;
for (int i = 1; i < vertices.size(); ++i) {
minX = qMin(minX, vertices.at(i).x);
maxX = qMax(maxX, vertices.at(i).x);
minY = qMin(minY, vertices.at(i).y);
maxY = qMax(maxY, vertices.at(i).y);
}
int w = maxX - minX;
int h = maxY - minY;
qreal border = qMin(w, h) / 10.0;
m_window = QRectF(minX - border, minY - border, (maxX - minX + 2 * border), (maxY - minY + 2 * border));
}
template <typename T>
void QTriangulator<T>::ComplexToSimple::DebugDialog::paintEvent(QPaintEvent *)
{
QPainter p(this);
p.setRenderHint(QPainter::Antialiasing, true);
p.fillRect(rect(), Qt::black);
QDataBuffer<QPodPoint> &vertices = m_parent->m_parent->m_vertices;
if (vertices.isEmpty())
return;
qreal halfPointSize = qMin(m_window.width(), m_window.height()) / 300.0;
p.setWindow(m_window.toRect());
p.setPen(Qt::white);
QDataBuffer<Edge> &edges = m_parent->m_edges;
for (int i = 0; i < edges.size(); ++i) {
QPodPoint u = vertices.at(edges.at(i).from);
QPodPoint v = vertices.at(edges.at(i).to);
p.drawLine(u.x, u.y, v.x, v.y);
}
for (int i = 0; i < vertices.size(); ++i) {
QPodPoint q = vertices.at(i);
p.fillRect(QRectF(q.x - halfPointSize, q.y - halfPointSize, 2 * halfPointSize, 2 * halfPointSize), Qt::red);
}
Qt::GlobalColor colors[6] = {Qt::red, Qt::green, Qt::blue, Qt::cyan, Qt::magenta, Qt::yellow};
p.setOpacity(0.5);
int count = 0;
if (m_parent->m_edgeList.root) {
QRBTree<int>::Node *current = m_parent->m_edgeList.front(m_parent->m_edgeList.root);
while (current) {
p.setPen(colors[count++ % 6]);
QPodPoint u = vertices.at(edges.at(current->data).from);
QPodPoint v = vertices.at(edges.at(current->data).to);
p.drawLine(u.x, u.y, v.x, v.y);
current = m_parent->m_edgeList.next(current);
}
}
p.setOpacity(1.0);
QPodPoint q = vertices.at(m_vertex);
p.fillRect(QRectF(q.x - halfPointSize, q.y - halfPointSize, 2 * halfPointSize, 2 * halfPointSize), Qt::green);
p.setPen(Qt::gray);
QDataBuffer<Split> &splits = m_parent->m_splits;
for (int i = 0; i < splits.size(); ++i) {
QPodPoint q = vertices.at(splits.at(i).vertex);
QPodPoint u = vertices.at(edges.at(splits.at(i).edge).from) - q;
QPodPoint v = vertices.at(edges.at(splits.at(i).edge).to) - q;
qreal uLen = qSqrt(qDot(u, u));
qreal vLen = qSqrt(qDot(v, v));
if (uLen) {
u.x *= 2 * halfPointSize / uLen;
u.y *= 2 * halfPointSize / uLen;
}
if (vLen) {
v.x *= 2 * halfPointSize / vLen;
v.y *= 2 * halfPointSize / vLen;
}
u += q;
v += q;
p.drawLine(u.x, u.y, v.x, v.y);
}
}
template <typename T>
void QTriangulator<T>::ComplexToSimple::DebugDialog::wheelEvent(QWheelEvent *event)
{
qreal scale = qExp(-0.001 * event->delta());
QPointF center = m_window.center();
QPointF delta = scale * (m_window.bottomRight() - center);
m_window = QRectF(center - delta, center + delta);
event->accept();
update();
}
template <typename T>
void QTriangulator<T>::ComplexToSimple::DebugDialog::mouseMoveEvent(QMouseEvent *event)
{
if (event->buttons() & Qt::LeftButton) {
QPointF delta = event->pos() - m_lastMousePos;
delta.setX(delta.x() * m_window.width() / width());
delta.setY(delta.y() * m_window.height() / height());
m_window.translate(-delta.x(), -delta.y());
m_lastMousePos = event->pos();
event->accept();
update();
}
}
template <typename T>
void QTriangulator<T>::ComplexToSimple::DebugDialog::mousePressEvent(QMouseEvent *event)
{
if (event->button() == Qt::LeftButton)
m_lastMousePos = event->pos();
event->accept();
}
#endif
//============================================================================//
// QTriangulator::SimpleToMonotone //
//============================================================================//
template <typename T>
void QTriangulator<T>::SimpleToMonotone::decompose()
{
setupDataStructures();
removeZeroLengthEdges();
monotoneDecomposition();
m_parent->m_indices.clear();
QBitArray processed(m_edges.size(), false);
for (int first = 0; first < m_edges.size(); ++first) {
if (processed.at(first))
continue;
int i = first;
do {
Q_ASSERT(!processed.at(i));
Q_ASSERT(m_edges.at(m_edges.at(i).next).previous == i);
m_parent->m_indices.push_back(m_edges.at(i).from);
processed.setBit(i);
i = m_edges.at(i).next;
} while (i != first);
if (m_parent->m_indices.size() > 0 && m_parent->m_indices.back() != T(-1)) // Q_TRIANGULATE_END_OF_POLYGON
m_parent->m_indices.push_back(T(-1)); // Q_TRIANGULATE_END_OF_POLYGON
}
}
template <typename T>
void QTriangulator<T>::SimpleToMonotone::setupDataStructures()
{
int i = 0;
Edge e;
e.node = nullptr;
e.twin = -1;
while (i + 3 <= m_parent->m_indices.size()) {
int start = m_edges.size();
do {
e.from = m_parent->m_indices.at(i);
e.type = RegularVertex;
e.next = m_edges.size() + 1;
e.previous = m_edges.size() - 1;
m_edges.add(e);
++i;
Q_ASSERT(i < m_parent->m_indices.size());
} while (m_parent->m_indices.at(i) != T(-1)); // Q_TRIANGULATE_END_OF_POLYGON
m_edges.last().next = start;
m_edges.at(start).previous = m_edges.size() - 1;
++i; // Skip Q_TRIANGULATE_END_OF_POLYGON.
}
for (i = 0; i < m_edges.size(); ++i) {
m_edges.at(i).to = m_edges.at(m_edges.at(i).next).from;
m_edges.at(i).pointingUp = m_parent->m_vertices.at(m_edges.at(i).to) < m_parent->m_vertices.at(m_edges.at(i).from);
m_edges.at(i).helper = -1; // Not initialized here.
}
}
template <typename T>
void QTriangulator<T>::SimpleToMonotone::removeZeroLengthEdges()
{
for (int i = 0; i < m_edges.size(); ++i) {
if (m_parent->m_vertices.at(m_edges.at(i).from) == m_parent->m_vertices.at(m_edges.at(i).to)) {
m_edges.at(m_edges.at(i).previous).next = m_edges.at(i).next;
m_edges.at(m_edges.at(i).next).previous = m_edges.at(i).previous;
m_edges.at(m_edges.at(i).next).from = m_edges.at(i).from;
m_edges.at(i).next = -1; // Mark as removed.
}
}
QDataBuffer<int> newMapping(m_edges.size());
newMapping.resize(m_edges.size());
int count = 0;
for (int i = 0; i < m_edges.size(); ++i) {
if (m_edges.at(i).next != -1) {
m_edges.at(count) = m_edges.at(i);
newMapping.at(i) = count;
++count;
}
}
m_edges.resize(count);
for (int i = 0; i < m_edges.size(); ++i) {
m_edges.at(i).next = newMapping.at(m_edges.at(i).next);
m_edges.at(i).previous = newMapping.at(m_edges.at(i).previous);
}
}
template <typename T>
void QTriangulator<T>::SimpleToMonotone::fillPriorityQueue()
{
m_upperVertex.reset();
m_upperVertex.reserve(m_edges.size());
for (int i = 0; i < m_edges.size(); ++i)
m_upperVertex.add(i);
CompareVertices cmp(this);
std::sort(m_upperVertex.data(), m_upperVertex.data() + m_upperVertex.size(), cmp);
//for (int i = 1; i < m_upperVertex.size(); ++i) {
// Q_ASSERT(!cmp(m_upperVertex.at(i), m_upperVertex.at(i - 1)));
//}
}
template <typename T>
bool QTriangulator<T>::SimpleToMonotone::edgeIsLeftOfEdge(int leftEdgeIndex, int rightEdgeIndex) const
{
const Edge &leftEdge = m_edges.at(leftEdgeIndex);
const Edge &rightEdge = m_edges.at(rightEdgeIndex);
const QPodPoint &u = m_parent->m_vertices.at(rightEdge.upper());
const QPodPoint &l = m_parent->m_vertices.at(rightEdge.lower());
qint64 d = QT_PREPEND_NAMESPACE(qPointDistanceFromLine)(m_parent->m_vertices.at(leftEdge.upper()), l, u);
// d < 0: left, d > 0: right, d == 0: on top
if (d == 0)
d = QT_PREPEND_NAMESPACE(qPointDistanceFromLine)(m_parent->m_vertices.at(leftEdge.lower()), l, u);
return d < 0;
}
// Returns the rightmost edge not to the right of the given edge.
template <typename T>
QRBTree<int>::Node *QTriangulator<T>::SimpleToMonotone::searchEdgeLeftOfEdge(int edgeIndex) const
{
QRBTree<int>::Node *current = m_edgeList.root;
QRBTree<int>::Node *result = nullptr;
while (current) {
if (edgeIsLeftOfEdge(edgeIndex, current->data)) {
current = current->left;
} else {
result = current;
current = current->right;
}
}
return result;
}
// Returns the rightmost edge left of the given point.
template <typename T>
QRBTree<int>::Node *QTriangulator<T>::SimpleToMonotone::searchEdgeLeftOfPoint(int pointIndex) const
{
QRBTree<int>::Node *current = m_edgeList.root;
QRBTree<int>::Node *result = nullptr;
while (current) {
const QPodPoint &p1 = m_parent->m_vertices.at(m_edges.at(current->data).lower());
const QPodPoint &p2 = m_parent->m_vertices.at(m_edges.at(current->data).upper());
qint64 d = QT_PREPEND_NAMESPACE(qPointDistanceFromLine)(m_parent->m_vertices.at(pointIndex), p1, p2);
if (d <= 0) {
current = current->left;
} else {
result = current;
current = current->right;
}
}
return result;
}
template <typename T>
void QTriangulator<T>::SimpleToMonotone::classifyVertex(int i)
{
Edge &e2 = m_edges.at(i);
const Edge &e1 = m_edges.at(e2.previous);
bool startOrSplit = (e1.pointingUp && !e2.pointingUp);
bool endOrMerge = (!e1.pointingUp && e2.pointingUp);
const QPodPoint &p1 = m_parent->m_vertices.at(e1.from);
const QPodPoint &p2 = m_parent->m_vertices.at(e2.from);
const QPodPoint &p3 = m_parent->m_vertices.at(e2.to);
qint64 d = QT_PREPEND_NAMESPACE(qPointDistanceFromLine)(p1, p2, p3);
Q_ASSERT(d != 0 || (!startOrSplit && !endOrMerge));
e2.type = RegularVertex;
if (m_clockwiseOrder) {
if (startOrSplit)
e2.type = (d < 0 ? SplitVertex : StartVertex);
else if (endOrMerge)
e2.type = (d < 0 ? MergeVertex : EndVertex);
} else {
if (startOrSplit)
e2.type = (d > 0 ? SplitVertex : StartVertex);
else if (endOrMerge)
e2.type = (d > 0 ? MergeVertex : EndVertex);
}
}
template <typename T>
void QTriangulator<T>::SimpleToMonotone::classifyVertices()
{
for (int i = 0; i < m_edges.size(); ++i)
classifyVertex(i);
}
template <typename T>
bool QTriangulator<T>::SimpleToMonotone::pointIsInSector(const QPodPoint &p, const QPodPoint &v1, const QPodPoint &v2, const QPodPoint &v3)
{
bool leftOfPreviousEdge = !qPointIsLeftOfLine(p, v2, v1);
bool leftOfNextEdge = !qPointIsLeftOfLine(p, v3, v2);
if (qPointIsLeftOfLine(v1, v2, v3))
return leftOfPreviousEdge && leftOfNextEdge;
else
return leftOfPreviousEdge || leftOfNextEdge;
}
template <typename T>
bool QTriangulator<T>::SimpleToMonotone::pointIsInSector(int vertex, int sector)
{
const QPodPoint &center = m_parent->m_vertices.at(m_edges.at(sector).from);
// Handle degenerate edges.
while (m_parent->m_vertices.at(m_edges.at(vertex).from) == center)
vertex = m_edges.at(vertex).next;
int next = m_edges.at(sector).next;
while (m_parent->m_vertices.at(m_edges.at(next).from) == center)
next = m_edges.at(next).next;
int previous = m_edges.at(sector).previous;
while (m_parent->m_vertices.at(m_edges.at(previous).from) == center)
previous = m_edges.at(previous).previous;
const QPodPoint &p = m_parent->m_vertices.at(m_edges.at(vertex).from);
const QPodPoint &v1 = m_parent->m_vertices.at(m_edges.at(previous).from);
const QPodPoint &v3 = m_parent->m_vertices.at(m_edges.at(next).from);
if (m_clockwiseOrder)
return pointIsInSector(p, v3, center, v1);
else
return pointIsInSector(p, v1, center, v3);
}
template <typename T>
int QTriangulator<T>::SimpleToMonotone::findSector(int edge, int vertex)
{
while (!pointIsInSector(vertex, edge)) {
edge = m_edges.at(m_edges.at(edge).previous).twin;
Q_ASSERT(edge != -1);
}
return edge;
}
template <typename T>
void QTriangulator<T>::SimpleToMonotone::createDiagonal(int lower, int upper)
{
lower = findSector(lower, upper);
upper = findSector(upper, lower);
int prevLower = m_edges.at(lower).previous;
int prevUpper = m_edges.at(upper).previous;
Edge e = {};
e.twin = m_edges.size() + 1;
e.next = upper;
e.previous = prevLower;
e.from = m_edges.at(lower).from;
e.to = m_edges.at(upper).from;
m_edges.at(upper).previous = m_edges.at(prevLower).next = int(m_edges.size());
m_edges.add(e);
e.twin = m_edges.size() - 1;
e.next = lower;
e.previous = prevUpper;
e.from = m_edges.at(upper).from;
e.to = m_edges.at(lower).from;
m_edges.at(lower).previous = m_edges.at(prevUpper).next = int(m_edges.size());
m_edges.add(e);
}
template <typename T>
void QTriangulator<T>::SimpleToMonotone::monotoneDecomposition()
{
if (m_edges.isEmpty())
return;
Q_ASSERT(!m_edgeList.root);
QDataBuffer<QPair<int, int> > diagonals(m_upperVertex.size());
int i = 0;
for (int index = 1; index < m_edges.size(); ++index) {
if (m_parent->m_vertices.at(m_edges.at(index).from) < m_parent->m_vertices.at(m_edges.at(i).from))
i = index;
}
Q_ASSERT(i < m_edges.size());
int j = m_edges.at(i).previous;
Q_ASSERT(j < m_edges.size());
m_clockwiseOrder = qPointIsLeftOfLine(m_parent->m_vertices.at((quint32)m_edges.at(i).from),
m_parent->m_vertices.at((quint32)m_edges.at(j).from), m_parent->m_vertices.at((quint32)m_edges.at(i).to));
classifyVertices();
fillPriorityQueue();
// debug: set helpers explicitly (shouldn't be necessary)
//for (int i = 0; i < m_edges.size(); ++i)
// m_edges.at(i).helper = m_edges.at(i).upper();
while (!m_upperVertex.isEmpty()) {
i = m_upperVertex.last();
Q_ASSERT(i < m_edges.size());
m_upperVertex.pop_back();
j = m_edges.at(i).previous;
Q_ASSERT(j < m_edges.size());
QRBTree<int>::Node *leftEdgeNode = nullptr;
switch (m_edges.at(i).type) {
case RegularVertex:
// If polygon interior is to the right of the vertex...
if (m_edges.at(i).pointingUp == m_clockwiseOrder) {
if (m_edges.at(i).node) {
Q_ASSERT(!m_edges.at(j).node);
if (m_edges.at(m_edges.at(i).helper).type == MergeVertex)
diagonals.add(QPair<int, int>(i, m_edges.at(i).helper));
m_edges.at(j).node = m_edges.at(i).node;
m_edges.at(i).node = nullptr;
m_edges.at(j).node->data = j;
m_edges.at(j).helper = i;
} else if (m_edges.at(j).node) {
Q_ASSERT(!m_edges.at(i).node);
if (m_edges.at(m_edges.at(j).helper).type == MergeVertex)
diagonals.add(QPair<int, int>(i, m_edges.at(j).helper));
m_edges.at(i).node = m_edges.at(j).node;
m_edges.at(j).node = nullptr;
m_edges.at(i).node->data = i;
m_edges.at(i).helper = i;
} else {
qWarning("Inconsistent polygon. (#1)");
}
} else {
leftEdgeNode = searchEdgeLeftOfPoint(m_edges.at(i).from);
if (leftEdgeNode) {
if (m_edges.at(m_edges.at(leftEdgeNode->data).helper).type == MergeVertex)
diagonals.add(QPair<int, int>(i, m_edges.at(leftEdgeNode->data).helper));
m_edges.at(leftEdgeNode->data).helper = i;
} else {
qWarning("Inconsistent polygon. (#2)");
}
}
break;
case SplitVertex:
leftEdgeNode = searchEdgeLeftOfPoint(m_edges.at(i).from);
if (leftEdgeNode) {
diagonals.add(QPair<int, int>(i, m_edges.at(leftEdgeNode->data).helper));
m_edges.at(leftEdgeNode->data).helper = i;
} else {
qWarning("Inconsistent polygon. (#3)");
}
Q_FALLTHROUGH();
case StartVertex:
if (m_clockwiseOrder) {
leftEdgeNode = searchEdgeLeftOfEdge(j);
QRBTree<int>::Node *node = m_edgeList.newNode();
node->data = j;
m_edges.at(j).node = node;
m_edges.at(j).helper = i;
m_edgeList.attachAfter(leftEdgeNode, node);
Q_ASSERT(m_edgeList.validate());
} else {
leftEdgeNode = searchEdgeLeftOfEdge(i);
QRBTree<int>::Node *node = m_edgeList.newNode();
node->data = i;
m_edges.at(i).node = node;
m_edges.at(i).helper = i;
m_edgeList.attachAfter(leftEdgeNode, node);
Q_ASSERT(m_edgeList.validate());
}
break;
case MergeVertex:
leftEdgeNode = searchEdgeLeftOfPoint(m_edges.at(i).from);
if (leftEdgeNode) {
if (m_edges.at(m_edges.at(leftEdgeNode->data).helper).type == MergeVertex)
diagonals.add(QPair<int, int>(i, m_edges.at(leftEdgeNode->data).helper));
m_edges.at(leftEdgeNode->data).helper = i;
} else {
qWarning("Inconsistent polygon. (#4)");
}
Q_FALLTHROUGH();
case EndVertex:
if (m_clockwiseOrder) {
if (m_edges.at(m_edges.at(i).helper).type == MergeVertex)
diagonals.add(QPair<int, int>(i, m_edges.at(i).helper));
if (m_edges.at(i).node) {
m_edgeList.deleteNode(m_edges.at(i).node);
Q_ASSERT(m_edgeList.validate());
} else {
qWarning("Inconsistent polygon. (#5)");
}
} else {
if (m_edges.at(m_edges.at(j).helper).type == MergeVertex)
diagonals.add(QPair<int, int>(i, m_edges.at(j).helper));
if (m_edges.at(j).node) {
m_edgeList.deleteNode(m_edges.at(j).node);
Q_ASSERT(m_edgeList.validate());
} else {
qWarning("Inconsistent polygon. (#6)");
}
}
break;
}
}
for (int i = 0; i < diagonals.size(); ++i)
createDiagonal(diagonals.at(i).first, diagonals.at(i).second);
}
template <typename T>
bool QTriangulator<T>::SimpleToMonotone::CompareVertices::operator () (int i, int j) const
{
if (m_parent->m_edges.at(i).from == m_parent->m_edges.at(j).from)
return m_parent->m_edges.at(i).type > m_parent->m_edges.at(j).type;
return m_parent->m_parent->m_vertices.at(m_parent->m_edges.at(i).from) >
m_parent->m_parent->m_vertices.at(m_parent->m_edges.at(j).from);
}
//============================================================================//
// QTriangulator::MonotoneToTriangles //
//============================================================================//
template <typename T>
void QTriangulator<T>::MonotoneToTriangles::decompose()
{
QVector<T> result;
QDataBuffer<int> stack(m_parent->m_indices.size());
m_first = 0;
// Require at least three more indices.
while (m_first + 3 <= m_parent->m_indices.size()) {
m_length = 0;
while (m_parent->m_indices.at(m_first + m_length) != T(-1)) { // Q_TRIANGULATE_END_OF_POLYGON
++m_length;
Q_ASSERT(m_first + m_length < m_parent->m_indices.size());
}
if (m_length < 3) {
m_first += m_length + 1;
continue;
}
int minimum = 0;
while (less(next(minimum), minimum))
minimum = next(minimum);
while (less(previous(minimum), minimum))
minimum = previous(minimum);
stack.reset();
stack.add(minimum);
int left = previous(minimum);
int right = next(minimum);
bool stackIsOnLeftSide;
bool clockwiseOrder = leftOfEdge(minimum, left, right);
if (less(left, right)) {
stack.add(left);
left = previous(left);
stackIsOnLeftSide = true;
} else {
stack.add(right);
right = next(right);
stackIsOnLeftSide = false;
}
for (int count = 0; count + 2 < m_length; ++count)
{
Q_ASSERT(stack.size() >= 2);
if (less(left, right)) {
if (stackIsOnLeftSide == false) {
for (int i = 0; i + 1 < stack.size(); ++i) {
result.push_back(indices(stack.at(i + 1)));
result.push_back(indices(left));
result.push_back(indices(stack.at(i)));
}
stack.first() = stack.last();
stack.resize(1);
} else {
while (stack.size() >= 2 && (clockwiseOrder ^ !leftOfEdge(left, stack.at(stack.size() - 2), stack.last()))) {
result.push_back(indices(stack.at(stack.size() - 2)));
result.push_back(indices(left));
result.push_back(indices(stack.last()));
stack.pop_back();
}
}
stack.add(left);
left = previous(left);
stackIsOnLeftSide = true;
} else {
if (stackIsOnLeftSide == true) {
for (int i = 0; i + 1 < stack.size(); ++i) {
result.push_back(indices(stack.at(i)));
result.push_back(indices(right));
result.push_back(indices(stack.at(i + 1)));
}
stack.first() = stack.last();
stack.resize(1);
} else {
while (stack.size() >= 2 && (clockwiseOrder ^ !leftOfEdge(right, stack.last(), stack.at(stack.size() - 2)))) {
result.push_back(indices(stack.last()));
result.push_back(indices(right));
result.push_back(indices(stack.at(stack.size() - 2)));
stack.pop_back();
}
}
stack.add(right);
right = next(right);
stackIsOnLeftSide = false;
}
}
m_first += m_length + 1;
}
m_parent->m_indices = result;
}
//============================================================================//
// qTriangulate //
//============================================================================//
Q_GUI_EXPORT QTriangleSet qTriangulate(const qreal *polygon,
int count, uint hint, const QTransform &matrix,
bool allowUintIndices)
{
QTriangleSet triangleSet;
if (allowUintIndices) {
QTriangulator<quint32> triangulator;
triangulator.initialize(polygon, count, hint, matrix);
QVertexSet<quint32> vertexSet = triangulator.triangulate();
triangleSet.vertices = vertexSet.vertices;
triangleSet.indices.setDataUint(vertexSet.indices);
} else {
QTriangulator<quint16> triangulator;
triangulator.initialize(polygon, count, hint, matrix);
QVertexSet<quint16> vertexSet = triangulator.triangulate();
triangleSet.vertices = vertexSet.vertices;
triangleSet.indices.setDataUshort(vertexSet.indices);
}
return triangleSet;
}
Q_GUI_EXPORT QTriangleSet qTriangulate(const QVectorPath &path,
const QTransform &matrix, qreal lod, bool allowUintIndices)
{
QTriangleSet triangleSet;
// For now systems that support 32-bit index values will always get 32-bit
// index values. This is not necessary ideal since 16-bit would be enough in
// many cases. TODO revisit this at a later point.
if (allowUintIndices) {
QTriangulator<quint32> triangulator;
triangulator.initialize(path, matrix, lod);
QVertexSet<quint32> vertexSet = triangulator.triangulate();
triangleSet.vertices = vertexSet.vertices;
triangleSet.indices.setDataUint(vertexSet.indices);
} else {
QTriangulator<quint16> triangulator;
triangulator.initialize(path, matrix, lod);
QVertexSet<quint16> vertexSet = triangulator.triangulate();
triangleSet.vertices = vertexSet.vertices;
triangleSet.indices.setDataUshort(vertexSet.indices);
}
return triangleSet;
}
QTriangleSet qTriangulate(const QPainterPath &path,
const QTransform &matrix, qreal lod, bool allowUintIndices)
{
QTriangleSet triangleSet;
if (allowUintIndices) {
QTriangulator<quint32> triangulator;
triangulator.initialize(path, matrix, lod);
QVertexSet<quint32> vertexSet = triangulator.triangulate();
triangleSet.vertices = vertexSet.vertices;
triangleSet.indices.setDataUint(vertexSet.indices);
} else {
QTriangulator<quint16> triangulator;
triangulator.initialize(path, matrix, lod);
QVertexSet<quint16> vertexSet = triangulator.triangulate();
triangleSet.vertices = vertexSet.vertices;
triangleSet.indices.setDataUshort(vertexSet.indices);
}
return triangleSet;
}
QPolylineSet qPolyline(const QVectorPath &path,
const QTransform &matrix, qreal lod, bool allowUintIndices)
{
QPolylineSet polyLineSet;
if (allowUintIndices) {
QTriangulator<quint32> triangulator;
triangulator.initialize(path, matrix, lod);
QVertexSet<quint32> vertexSet = triangulator.polyline();
polyLineSet.vertices = vertexSet.vertices;
polyLineSet.indices.setDataUint(vertexSet.indices);
} else {
QTriangulator<quint16> triangulator;
triangulator.initialize(path, matrix, lod);
QVertexSet<quint16> vertexSet = triangulator.polyline();
polyLineSet.vertices = vertexSet.vertices;
polyLineSet.indices.setDataUshort(vertexSet.indices);
}
return polyLineSet;
}
QPolylineSet qPolyline(const QPainterPath &path,
const QTransform &matrix, qreal lod, bool allowUintIndices)
{
QPolylineSet polyLineSet;
if (allowUintIndices) {
QTriangulator<quint32> triangulator;
triangulator.initialize(path, matrix, lod);
QVertexSet<quint32> vertexSet = triangulator.polyline();
polyLineSet.vertices = vertexSet.vertices;
polyLineSet.indices.setDataUint(vertexSet.indices);
} else {
QTriangulator<quint16> triangulator;
triangulator.initialize(path, matrix, lod);
QVertexSet<quint16> vertexSet = triangulator.polyline();
polyLineSet.vertices = vertexSet.vertices;
polyLineSet.indices.setDataUshort(vertexSet.indices);
}
return polyLineSet;
}
QT_END_NAMESPACE