blob: 11f34343ab1012e3cacd70732c6cd714d49fa375 [file] [log] [blame]
/****************************************************************************
**
** Copyright (C) 2016 The Qt Company Ltd.
** Copyright (C) 2016 Intel Corporation.
** Contact: https://www.qt.io/licensing/
**
** This file is part of the test suite of the Qt Toolkit.
**
** $QT_BEGIN_LICENSE:GPL-EXCEPT$
** Commercial License Usage
** Licensees holding valid commercial Qt licenses may use this file in
** accordance with the commercial license agreement provided with the
** Software or, alternatively, in accordance with the terms contained in
** a written agreement between you and The Qt Company. For licensing terms
** and conditions see https://www.qt.io/terms-conditions. For further
** information use the contact form at https://www.qt.io/contact-us.
**
** GNU General Public License Usage
** Alternatively, this file may be used under the terms of the GNU
** General Public License version 3 as published by the Free Software
** Foundation with exceptions as appearing in the file LICENSE.GPL3-EXCEPT
** included in the packaging of this file. Please review the following
** information to ensure the GNU General Public License requirements will
** be met: https://www.gnu.org/licenses/gpl-3.0.html.
**
** $QT_END_LICENSE$
**
****************************************************************************/
#include <QtTest/QtTest>
#include <qatomic.h>
#include <qcoreapplication.h>
#include <qelapsedtimer.h>
#include <qmutex.h>
#include <qthread.h>
#include <qwaitcondition.h>
class tst_QMutex : public QObject
{
Q_OBJECT
public:
enum class TimeUnit {
Nanoseconds,
Microseconds,
Milliseconds,
Seconds,
};
Q_ENUM(TimeUnit);
private slots:
void convertToMilliseconds_data();
void convertToMilliseconds();
void tryLock_non_recursive();
void try_lock_for_non_recursive();
void try_lock_until_non_recursive();
void tryLock_recursive();
void try_lock_for_recursive();
void try_lock_until_recursive();
void lock_unlock_locked_tryLock();
void stressTest();
void tryLockRace();
void tryLockDeadlock();
void tryLockNegative_data();
void tryLockNegative();
void moreStress();
};
static const int iterations = 100;
QAtomicInt lockCount(0);
QMutex normalMutex;
QRecursiveMutex recursiveMutex;
QSemaphore testsTurn;
QSemaphore threadsTurn;
/*
Depending on the OS, tryWaits may return early than expected because of the
resolution of the underlying timer is too coarse. E.g.: on Windows
WaitForSingleObjectEx does *not* use high resolution multimedia timers, and
it's actually very coarse, about 16msec by default.
*/
enum {
#ifdef Q_OS_WIN
systemTimersResolution = 16,
#else
systemTimersResolution = 1,
#endif
waitTime = 100
};
#if __has_include(<chrono>)
static Q_CONSTEXPR std::chrono::milliseconds waitTimeAsDuration(waitTime);
#endif
void tst_QMutex::convertToMilliseconds_data()
{
QTest::addColumn<TimeUnit>("unit");
QTest::addColumn<double>("doubleValue");
QTest::addColumn<qint64>("intValue");
QTest::addColumn<qint64>("expected");
#if !__has_include(<chrono>)
QSKIP("This test requires <chrono>");
#endif
auto add = [](TimeUnit unit, double d, long long i, qint64 expected) {
const QScopedArrayPointer<char> enumName(QTest::toString(unit));
QTest::addRow("%s:%f:%lld", enumName.data(), d, i)
<< unit << d << qint64(i) << expected;
};
auto forAllUnitsAdd = [=](double d, long long i, qint64 expected) {
for (auto unit : {TimeUnit::Nanoseconds, TimeUnit::Microseconds, TimeUnit::Milliseconds, TimeUnit::Seconds})
add(unit, d, i, expected);
};
forAllUnitsAdd(-0.5, -1, 0); // all negative values result in 0
forAllUnitsAdd(0, 0, 0);
add(TimeUnit::Nanoseconds, 1, 1, 1);
add(TimeUnit::Nanoseconds, 1000 * 1000, 1000 * 1000, 1);
add(TimeUnit::Nanoseconds, 1000 * 1000 + 0.5, 1000 * 1000 + 1, 2);
add(TimeUnit::Microseconds, 1, 1, 1);
add(TimeUnit::Microseconds, 1000, 1000, 1);
add(TimeUnit::Microseconds, 1000 + 0.5, 1000 + 1, 2);
add(TimeUnit::Milliseconds, 1, 1, 1);
add(TimeUnit::Milliseconds, 1.5, 2, 2);
add(TimeUnit::Seconds, 0.9991, 1, 1000);
//
// overflowing int results in INT_MAX (equivalent to a spurious wakeup after ~24 days); check it:
//
// spot on:
add(TimeUnit::Nanoseconds, INT_MAX * 1000. * 1000, INT_MAX * Q_INT64_C(1000) * 1000, INT_MAX);
add(TimeUnit::Microseconds, INT_MAX * 1000., INT_MAX * Q_INT64_C(1000), INT_MAX);
add(TimeUnit::Milliseconds, INT_MAX, INT_MAX, INT_MAX);
// minimally above:
add(TimeUnit::Nanoseconds, INT_MAX * 1000. * 1000 + 1, INT_MAX * Q_INT64_C(1000) * 1000 + 1, INT_MAX);
add(TimeUnit::Microseconds, INT_MAX * 1000. + 1, INT_MAX * Q_INT64_C(1000) + 1, INT_MAX);
add(TimeUnit::Milliseconds, INT_MAX + 1., INT_MAX + Q_INT64_C(1), INT_MAX);
add(TimeUnit::Seconds, INT_MAX / 1000. + 1, INT_MAX / 1000 + 1, INT_MAX);
// minimally below:
add(TimeUnit::Nanoseconds, INT_MAX * 1000. * 1000 - 1, INT_MAX * Q_INT64_C(1000) * 1000 - 1, INT_MAX);
add(TimeUnit::Microseconds, INT_MAX * 1000. - 1, INT_MAX * Q_INT64_C(1000) - 1, INT_MAX);
add(TimeUnit::Milliseconds, INT_MAX - 0.1, INT_MAX , INT_MAX);
}
void tst_QMutex::convertToMilliseconds()
{
#if !__has_include(<chrono>)
QSKIP("This test requires <chrono>");
#else
QFETCH(TimeUnit, unit);
QFETCH(double, doubleValue);
QFETCH(qint64, intValue);
QFETCH(qint64, expected);
Q_CONSTEXPR qint64 maxShort = std::numeric_limits<short>::max();
Q_CONSTEXPR qint64 maxInt = std::numeric_limits<int>::max();
Q_CONSTEXPR qint64 maxUInt = std::numeric_limits<uint>::max();
switch (unit) {
#define CASE(Unit, Period) \
case TimeUnit::Unit: \
DO(double, Period, doubleValue); \
if (intValue < maxShort) \
DO(short, Period, short(intValue)); \
if (intValue < maxInt) \
DO(int, Period, int(intValue)); \
DO(qint64, Period, intValue); \
if (intValue >= 0) { \
if (intValue < maxUInt) \
DO(uint, Period, uint(intValue)); \
DO(quint64, Period, quint64(intValue)); \
} \
break
#define DO(Rep, Period, val) \
do { \
const std::chrono::duration<Rep, Period> wait((val)); \
QCOMPARE(QMutex::convertToMilliseconds(wait), expected); \
} while (0)
CASE(Nanoseconds, std::nano);
CASE(Microseconds, std::micro);
CASE(Milliseconds, std::milli);
CASE(Seconds, std::ratio<1>);
#undef DO
#undef CASE
}
#endif
}
void tst_QMutex::tryLock_non_recursive()
{
class Thread : public QThread
{
public:
void run()
{
testsTurn.release();
// TEST 1: thread can't acquire lock
threadsTurn.acquire();
QVERIFY(!normalMutex.tryLock());
testsTurn.release();
// TEST 2: thread can acquire lock
threadsTurn.acquire();
QVERIFY(normalMutex.tryLock());
QVERIFY(lockCount.testAndSetRelaxed(0, 1));
QVERIFY(!normalMutex.tryLock());
QVERIFY(lockCount.testAndSetRelaxed(1, 0));
normalMutex.unlock();
testsTurn.release();
// TEST 3: thread can't acquire lock, timeout = waitTime
threadsTurn.acquire();
QElapsedTimer timer;
timer.start();
QVERIFY(!normalMutex.tryLock(waitTime));
QVERIFY(timer.elapsed() >= waitTime - systemTimersResolution);
testsTurn.release();
// TEST 4: thread can acquire lock, timeout = waitTime
threadsTurn.acquire();
timer.start();
QVERIFY(normalMutex.tryLock(waitTime));
QVERIFY(timer.elapsed() <= waitTime + systemTimersResolution);
QVERIFY(lockCount.testAndSetRelaxed(0, 1));
timer.start();
// it's non-recursive, so the following lock needs to fail
QVERIFY(!normalMutex.tryLock(waitTime));
QVERIFY(timer.elapsed() >= waitTime - systemTimersResolution);
QVERIFY(lockCount.testAndSetRelaxed(1, 0));
normalMutex.unlock();
testsTurn.release();
// TEST 5: thread can't acquire lock, timeout = 0
threadsTurn.acquire();
QVERIFY(!normalMutex.tryLock(0));
testsTurn.release();
// TEST 6: thread can acquire lock, timeout = 0
threadsTurn.acquire();
timer.start();
QVERIFY(normalMutex.tryLock(0));
QVERIFY(timer.elapsed() < waitTime + systemTimersResolution);
QVERIFY(lockCount.testAndSetRelaxed(0, 1));
QVERIFY(!normalMutex.tryLock(0));
QVERIFY(lockCount.testAndSetRelaxed(1, 0));
normalMutex.unlock();
testsTurn.release();
// TEST 7 overflow: thread can acquire lock, timeout = 3000 (QTBUG-24795)
threadsTurn.acquire();
timer.start();
QVERIFY(normalMutex.tryLock(3000));
QVERIFY(timer.elapsed() < 3000 + systemTimersResolution);
normalMutex.unlock();
testsTurn.release();
threadsTurn.acquire();
}
};
Thread thread;
thread.start();
// TEST 1: thread can't acquire lock
testsTurn.acquire();
normalMutex.lock();
QVERIFY(lockCount.testAndSetRelaxed(0, 1));
threadsTurn.release();
// TEST 2: thread can acquire lock
testsTurn.acquire();
QVERIFY(lockCount.testAndSetRelaxed(1, 0));
normalMutex.unlock();
threadsTurn.release();
// TEST 3: thread can't acquire lock, timeout = waitTime
testsTurn.acquire();
normalMutex.lock();
QVERIFY(lockCount.testAndSetRelaxed(0, 1));
threadsTurn.release();
// TEST 4: thread can acquire lock, timeout = waitTime
testsTurn.acquire();
QVERIFY(lockCount.testAndSetRelaxed(1, 0));
normalMutex.unlock();
threadsTurn.release();
// TEST 5: thread can't acquire lock, timeout = 0
testsTurn.acquire();
normalMutex.lock();
QVERIFY(lockCount.testAndSetRelaxed(0, 1));
threadsTurn.release();
// TEST 6: thread can acquire lock, timeout = 0
testsTurn.acquire();
QVERIFY(lockCount.testAndSetRelaxed(1, 0));
normalMutex.unlock();
threadsTurn.release();
// TEST 7: thread can acquire lock, timeout = 3000 (QTBUG-24795)
testsTurn.acquire();
normalMutex.lock();
threadsTurn.release();
QThread::msleep(100);
normalMutex.unlock();
// wait for thread to finish
testsTurn.acquire();
threadsTurn.release();
thread.wait();
}
void tst_QMutex::try_lock_for_non_recursive() {
#if !__has_include(<chrono>)
QSKIP("This test requires <chrono>");
#else
class Thread : public QThread
{
public:
void run()
{
testsTurn.release();
// TEST 1: thread can't acquire lock
threadsTurn.acquire();
QVERIFY(!normalMutex.try_lock());
testsTurn.release();
// TEST 2: thread can acquire lock
threadsTurn.acquire();
QVERIFY(normalMutex.try_lock());
QVERIFY(lockCount.testAndSetRelaxed(0, 1));
QVERIFY(!normalMutex.try_lock());
QVERIFY(lockCount.testAndSetRelaxed(1, 0));
normalMutex.unlock();
testsTurn.release();
// TEST 3: thread can't acquire lock, timeout = waitTime
threadsTurn.acquire();
QElapsedTimer timer;
timer.start();
QVERIFY(!normalMutex.try_lock_for(waitTimeAsDuration));
QVERIFY(timer.elapsed() >= waitTime - systemTimersResolution);
testsTurn.release();
// TEST 4: thread can acquire lock, timeout = waitTime
threadsTurn.acquire();
timer.start();
QVERIFY(normalMutex.try_lock_for(waitTimeAsDuration));
QVERIFY(timer.elapsed() <= waitTime + systemTimersResolution);
QVERIFY(lockCount.testAndSetRelaxed(0, 1));
timer.start();
// it's non-recursive, so the following lock needs to fail
QVERIFY(!normalMutex.try_lock_for(waitTimeAsDuration));
QVERIFY(timer.elapsed() >= waitTime - systemTimersResolution);
QVERIFY(lockCount.testAndSetRelaxed(1, 0));
normalMutex.unlock();
testsTurn.release();
// TEST 5: thread can't acquire lock, timeout = 0
threadsTurn.acquire();
QVERIFY(!normalMutex.try_lock_for(std::chrono::milliseconds::zero()));
testsTurn.release();
// TEST 6: thread can acquire lock, timeout = 0
threadsTurn.acquire();
timer.start();
QVERIFY(normalMutex.try_lock_for(std::chrono::milliseconds::zero()));
QVERIFY(timer.elapsed() < waitTime + systemTimersResolution);
QVERIFY(lockCount.testAndSetRelaxed(0, 1));
QVERIFY(!normalMutex.try_lock_for(std::chrono::milliseconds::zero()));
QVERIFY(lockCount.testAndSetRelaxed(1, 0));
normalMutex.unlock();
testsTurn.release();
// TEST 7 overflow: thread can acquire lock, timeout = 3000 (QTBUG-24795)
threadsTurn.acquire();
timer.start();
QVERIFY(normalMutex.try_lock_for(std::chrono::milliseconds(3000)));
QVERIFY(timer.elapsed() < 3000 + systemTimersResolution);
normalMutex.unlock();
testsTurn.release();
threadsTurn.acquire();
}
};
Thread thread;
thread.start();
// TEST 1: thread can't acquire lock
testsTurn.acquire();
normalMutex.lock();
QVERIFY(lockCount.testAndSetRelaxed(0, 1));
threadsTurn.release();
// TEST 2: thread can acquire lock
testsTurn.acquire();
QVERIFY(lockCount.testAndSetRelaxed(1, 0));
normalMutex.unlock();
threadsTurn.release();
// TEST 3: thread can't acquire lock, timeout = waitTime
testsTurn.acquire();
normalMutex.lock();
QVERIFY(lockCount.testAndSetRelaxed(0, 1));
threadsTurn.release();
// TEST 4: thread can acquire lock, timeout = waitTime
testsTurn.acquire();
QVERIFY(lockCount.testAndSetRelaxed(1, 0));
normalMutex.unlock();
threadsTurn.release();
// TEST 5: thread can't acquire lock, timeout = 0
testsTurn.acquire();
normalMutex.lock();
QVERIFY(lockCount.testAndSetRelaxed(0, 1));
threadsTurn.release();
// TEST 6: thread can acquire lock, timeout = 0
testsTurn.acquire();
QVERIFY(lockCount.testAndSetRelaxed(1, 0));
normalMutex.unlock();
threadsTurn.release();
// TEST 7: thread can acquire lock, timeout = 3000 (QTBUG-24795)
testsTurn.acquire();
normalMutex.lock();
threadsTurn.release();
QThread::msleep(100);
normalMutex.unlock();
// wait for thread to finish
testsTurn.acquire();
threadsTurn.release();
thread.wait();
#endif
}
void tst_QMutex::try_lock_until_non_recursive()
{
#if !__has_include(<chrono>)
QSKIP("This test requires <chrono>");
#else
class Thread : public QThread
{
public:
void run()
{
const std::chrono::milliseconds systemTimersResolutionAsDuration(systemTimersResolution);
testsTurn.release();
// TEST 1: thread can't acquire lock
threadsTurn.acquire();
QVERIFY(!normalMutex.try_lock());
testsTurn.release();
// TEST 2: thread can acquire lock
threadsTurn.acquire();
QVERIFY(normalMutex.try_lock());
QVERIFY(lockCount.testAndSetRelaxed(0, 1));
QVERIFY(!normalMutex.try_lock());
QVERIFY(lockCount.testAndSetRelaxed(1, 0));
normalMutex.unlock();
testsTurn.release();
// TEST 3: thread can't acquire lock, timeout = waitTime
threadsTurn.acquire();
auto endTimePoint = std::chrono::steady_clock::now() + waitTimeAsDuration;
QVERIFY(!normalMutex.try_lock_until(endTimePoint));
QVERIFY(std::chrono::steady_clock::now() >= endTimePoint - systemTimersResolutionAsDuration);
testsTurn.release();
// TEST 4: thread can acquire lock, timeout = waitTime
threadsTurn.acquire();
endTimePoint = std::chrono::steady_clock::now() + waitTimeAsDuration;
QVERIFY(normalMutex.try_lock_until(endTimePoint));
QVERIFY(std::chrono::steady_clock::now() <= endTimePoint + systemTimersResolutionAsDuration);
QVERIFY(lockCount.testAndSetRelaxed(0, 1));
endTimePoint = std::chrono::steady_clock::now() + waitTimeAsDuration;
// it's non-recursive, so the following lock needs to fail
QVERIFY(!normalMutex.try_lock_until(endTimePoint));
QVERIFY(std::chrono::steady_clock::now() >= endTimePoint - systemTimersResolutionAsDuration);
QVERIFY(lockCount.testAndSetRelaxed(1, 0));
normalMutex.unlock();
testsTurn.release();
// TEST 5: thread can't acquire lock, timeout = 0
threadsTurn.acquire();
QVERIFY(!normalMutex.try_lock_until(std::chrono::steady_clock::now()));
testsTurn.release();
// TEST 6: thread can acquire lock, timeout = 0
threadsTurn.acquire();
endTimePoint = std::chrono::steady_clock::now() + waitTimeAsDuration;
QVERIFY(normalMutex.try_lock_until(std::chrono::steady_clock::now()));
QVERIFY(std::chrono::steady_clock::now() < endTimePoint + systemTimersResolutionAsDuration);
QVERIFY(lockCount.testAndSetRelaxed(0, 1));
QVERIFY(!normalMutex.try_lock_until(std::chrono::steady_clock::now()));
QVERIFY(lockCount.testAndSetRelaxed(1, 0));
normalMutex.unlock();
testsTurn.release();
// TEST 7 overflow: thread can acquire lock, timeout = 3000 (QTBUG-24795)
threadsTurn.acquire();
endTimePoint = std::chrono::steady_clock::now() + std::chrono::milliseconds(3000);
QVERIFY(normalMutex.try_lock_until(endTimePoint));
QVERIFY(std::chrono::steady_clock::now() < endTimePoint + systemTimersResolutionAsDuration);
normalMutex.unlock();
testsTurn.release();
threadsTurn.acquire();
}
};
Thread thread;
thread.start();
// TEST 1: thread can't acquire lock
testsTurn.acquire();
normalMutex.lock();
QVERIFY(lockCount.testAndSetRelaxed(0, 1));
threadsTurn.release();
// TEST 2: thread can acquire lock
testsTurn.acquire();
QVERIFY(lockCount.testAndSetRelaxed(1, 0));
normalMutex.unlock();
threadsTurn.release();
// TEST 3: thread can't acquire lock, timeout = waitTime
testsTurn.acquire();
normalMutex.lock();
QVERIFY(lockCount.testAndSetRelaxed(0, 1));
threadsTurn.release();
// TEST 4: thread can acquire lock, timeout = waitTime
testsTurn.acquire();
QVERIFY(lockCount.testAndSetRelaxed(1, 0));
normalMutex.unlock();
threadsTurn.release();
// TEST 5: thread can't acquire lock, timeout = 0
testsTurn.acquire();
normalMutex.lock();
QVERIFY(lockCount.testAndSetRelaxed(0, 1));
threadsTurn.release();
// TEST 6: thread can acquire lock, timeout = 0
testsTurn.acquire();
QVERIFY(lockCount.testAndSetRelaxed(1, 0));
normalMutex.unlock();
threadsTurn.release();
// TEST 7: thread can acquire lock, timeout = 3000 (QTBUG-24795)
testsTurn.acquire();
normalMutex.lock();
threadsTurn.release();
QThread::msleep(100);
normalMutex.unlock();
// wait for thread to finish
testsTurn.acquire();
threadsTurn.release();
thread.wait();
#endif
}
void tst_QMutex::tryLock_recursive()
{
class Thread : public QThread
{
public:
void run()
{
testsTurn.release();
threadsTurn.acquire();
QVERIFY(!recursiveMutex.tryLock());
testsTurn.release();
threadsTurn.acquire();
QVERIFY(recursiveMutex.tryLock());
QVERIFY(lockCount.testAndSetRelaxed(0, 1));
QVERIFY(recursiveMutex.tryLock());
QVERIFY(lockCount.testAndSetRelaxed(1, 2));
QVERIFY(lockCount.testAndSetRelaxed(2, 1));
recursiveMutex.unlock();
QVERIFY(lockCount.testAndSetRelaxed(1, 0));
recursiveMutex.unlock();
testsTurn.release();
threadsTurn.acquire();
QElapsedTimer timer;
timer.start();
QVERIFY(!recursiveMutex.tryLock(waitTime));
QVERIFY(timer.elapsed() >= waitTime - systemTimersResolution);
QVERIFY(!recursiveMutex.tryLock(0));
testsTurn.release();
threadsTurn.acquire();
timer.start();
QVERIFY(recursiveMutex.tryLock(waitTime));
QVERIFY(timer.elapsed() <= waitTime + systemTimersResolution);
QVERIFY(lockCount.testAndSetRelaxed(0, 1));
QVERIFY(recursiveMutex.tryLock(waitTime));
QVERIFY(lockCount.testAndSetRelaxed(1, 2));
QVERIFY(lockCount.testAndSetRelaxed(2, 1));
recursiveMutex.unlock();
QVERIFY(lockCount.testAndSetRelaxed(1, 0));
recursiveMutex.unlock();
testsTurn.release();
threadsTurn.acquire();
QVERIFY(!recursiveMutex.tryLock(0));
QVERIFY(!recursiveMutex.tryLock(0));
testsTurn.release();
threadsTurn.acquire();
timer.start();
QVERIFY(recursiveMutex.tryLock(0));
QVERIFY(timer.elapsed() < waitTime + systemTimersResolution);
QVERIFY(lockCount.testAndSetRelaxed(0, 1));
QVERIFY(recursiveMutex.tryLock(0));
QVERIFY(lockCount.testAndSetRelaxed(1, 2));
QVERIFY(lockCount.testAndSetRelaxed(2, 1));
recursiveMutex.unlock();
QVERIFY(lockCount.testAndSetRelaxed(1, 0));
recursiveMutex.unlock();
testsTurn.release();
threadsTurn.acquire();
}
};
Thread thread;
thread.start();
// thread can't acquire lock
testsTurn.acquire();
recursiveMutex.lock();
QVERIFY(lockCount.testAndSetRelaxed(0, 1));
recursiveMutex.lock();
QVERIFY(lockCount.testAndSetRelaxed(1, 2));
threadsTurn.release();
// thread can acquire lock
testsTurn.acquire();
QVERIFY(lockCount.testAndSetRelaxed(2, 1));
recursiveMutex.unlock();
QVERIFY(lockCount.testAndSetRelaxed(1, 0));
recursiveMutex.unlock();
threadsTurn.release();
// thread can't acquire lock, timeout = waitTime
testsTurn.acquire();
recursiveMutex.lock();
QVERIFY(lockCount.testAndSetRelaxed(0, 1));
recursiveMutex.lock();
QVERIFY(lockCount.testAndSetRelaxed(1, 2));
threadsTurn.release();
// thread can acquire lock, timeout = waitTime
testsTurn.acquire();
QVERIFY(lockCount.testAndSetRelaxed(2, 1));
recursiveMutex.unlock();
QVERIFY(lockCount.testAndSetRelaxed(1, 0));
recursiveMutex.unlock();
threadsTurn.release();
// thread can't acquire lock, timeout = 0
testsTurn.acquire();
recursiveMutex.lock();
QVERIFY(lockCount.testAndSetRelaxed(0, 1));
recursiveMutex.lock();
QVERIFY(lockCount.testAndSetRelaxed(1, 2));
threadsTurn.release();
// thread can acquire lock, timeout = 0
testsTurn.acquire();
QVERIFY(lockCount.testAndSetRelaxed(2, 1));
recursiveMutex.unlock();
QVERIFY(lockCount.testAndSetRelaxed(1, 0));
recursiveMutex.unlock();
threadsTurn.release();
// stop thread
testsTurn.acquire();
threadsTurn.release();
thread.wait();
}
void tst_QMutex::try_lock_for_recursive()
{
#if !__has_include(<chrono>)
QSKIP("This test requires <chrono>");
#else
class Thread : public QThread
{
public:
void run()
{
const std::chrono::milliseconds systemTimersResolutionAsDuration(systemTimersResolution);
testsTurn.release();
threadsTurn.acquire();
QVERIFY(!recursiveMutex.try_lock());
testsTurn.release();
threadsTurn.acquire();
QVERIFY(recursiveMutex.try_lock());
QVERIFY(lockCount.testAndSetRelaxed(0, 1));
QVERIFY(recursiveMutex.try_lock());
QVERIFY(lockCount.testAndSetRelaxed(1, 2));
QVERIFY(lockCount.testAndSetRelaxed(2, 1));
recursiveMutex.unlock();
QVERIFY(lockCount.testAndSetRelaxed(1, 0));
recursiveMutex.unlock();
testsTurn.release();
threadsTurn.acquire();
QElapsedTimer timer;
timer.start();
QVERIFY(!recursiveMutex.try_lock_for(waitTimeAsDuration));
QVERIFY(timer.elapsed() >= waitTime - systemTimersResolution);
QVERIFY(!recursiveMutex.try_lock_for(std::chrono::milliseconds::zero()));
testsTurn.release();
threadsTurn.acquire();
timer.start();
QVERIFY(recursiveMutex.try_lock_for(waitTimeAsDuration));
QVERIFY(timer.elapsed() <= waitTime + systemTimersResolution);
QVERIFY(lockCount.testAndSetRelaxed(0, 1));
QVERIFY(recursiveMutex.try_lock_for(waitTimeAsDuration));
QVERIFY(lockCount.testAndSetRelaxed(1, 2));
QVERIFY(lockCount.testAndSetRelaxed(2, 1));
recursiveMutex.unlock();
QVERIFY(lockCount.testAndSetRelaxed(1, 0));
recursiveMutex.unlock();
testsTurn.release();
threadsTurn.acquire();
QVERIFY(!recursiveMutex.try_lock_for(std::chrono::milliseconds::zero()));
QVERIFY(!recursiveMutex.try_lock_for(std::chrono::milliseconds::zero()));
testsTurn.release();
threadsTurn.acquire();
timer.start();
QVERIFY(recursiveMutex.try_lock_for(std::chrono::milliseconds::zero()));
QVERIFY(timer.elapsed() < waitTime + systemTimersResolution);
QVERIFY(lockCount.testAndSetRelaxed(0, 1));
QVERIFY(recursiveMutex.try_lock_for(std::chrono::milliseconds::zero()));
QVERIFY(lockCount.testAndSetRelaxed(1, 2));
QVERIFY(lockCount.testAndSetRelaxed(2, 1));
recursiveMutex.unlock();
QVERIFY(lockCount.testAndSetRelaxed(1, 0));
recursiveMutex.unlock();
testsTurn.release();
threadsTurn.acquire();
}
};
Thread thread;
thread.start();
// thread can't acquire lock
testsTurn.acquire();
recursiveMutex.lock();
QVERIFY(lockCount.testAndSetRelaxed(0, 1));
recursiveMutex.lock();
QVERIFY(lockCount.testAndSetRelaxed(1, 2));
threadsTurn.release();
// thread can acquire lock
testsTurn.acquire();
QVERIFY(lockCount.testAndSetRelaxed(2, 1));
recursiveMutex.unlock();
QVERIFY(lockCount.testAndSetRelaxed(1, 0));
recursiveMutex.unlock();
threadsTurn.release();
// thread can't acquire lock, timeout = waitTime
testsTurn.acquire();
recursiveMutex.lock();
QVERIFY(lockCount.testAndSetRelaxed(0, 1));
recursiveMutex.lock();
QVERIFY(lockCount.testAndSetRelaxed(1, 2));
threadsTurn.release();
// thread can acquire lock, timeout = waitTime
testsTurn.acquire();
QVERIFY(lockCount.testAndSetRelaxed(2, 1));
recursiveMutex.unlock();
QVERIFY(lockCount.testAndSetRelaxed(1, 0));
recursiveMutex.unlock();
threadsTurn.release();
// thread can't acquire lock, timeout = 0
testsTurn.acquire();
recursiveMutex.lock();
QVERIFY(lockCount.testAndSetRelaxed(0, 1));
recursiveMutex.lock();
QVERIFY(lockCount.testAndSetRelaxed(1, 2));
threadsTurn.release();
// thread can acquire lock, timeout = 0
testsTurn.acquire();
QVERIFY(lockCount.testAndSetRelaxed(2, 1));
recursiveMutex.unlock();
QVERIFY(lockCount.testAndSetRelaxed(1, 0));
recursiveMutex.unlock();
threadsTurn.release();
// stop thread
testsTurn.acquire();
threadsTurn.release();
thread.wait();
#endif
}
void tst_QMutex::try_lock_until_recursive()
{
#if !__has_include(<chrono>)
QSKIP("This test requires <chrono>");
#else
class Thread : public QThread
{
public:
void run()
{
const std::chrono::milliseconds systemTimersResolutionAsDuration(systemTimersResolution);
testsTurn.release();
threadsTurn.acquire();
QVERIFY(!recursiveMutex.try_lock());
testsTurn.release();
threadsTurn.acquire();
QVERIFY(recursiveMutex.try_lock());
QVERIFY(lockCount.testAndSetRelaxed(0, 1));
QVERIFY(recursiveMutex.try_lock());
QVERIFY(lockCount.testAndSetRelaxed(1, 2));
QVERIFY(lockCount.testAndSetRelaxed(2, 1));
recursiveMutex.unlock();
QVERIFY(lockCount.testAndSetRelaxed(1, 0));
recursiveMutex.unlock();
testsTurn.release();
threadsTurn.acquire();
auto endTimePoint = std::chrono::steady_clock::now() + waitTimeAsDuration;
QVERIFY(!recursiveMutex.try_lock_until(endTimePoint));
QVERIFY(std::chrono::steady_clock::now() >= endTimePoint - systemTimersResolutionAsDuration);
QVERIFY(!recursiveMutex.try_lock());
testsTurn.release();
threadsTurn.acquire();
endTimePoint = std::chrono::steady_clock::now() + waitTimeAsDuration;
QVERIFY(recursiveMutex.try_lock_until(endTimePoint));
QVERIFY(std::chrono::steady_clock::now() <= endTimePoint + systemTimersResolutionAsDuration);
QVERIFY(lockCount.testAndSetRelaxed(0, 1));
endTimePoint = std::chrono::steady_clock::now() + waitTimeAsDuration;
QVERIFY(recursiveMutex.try_lock_until(endTimePoint));
QVERIFY(lockCount.testAndSetRelaxed(1, 2));
QVERIFY(lockCount.testAndSetRelaxed(2, 1));
recursiveMutex.unlock();
QVERIFY(lockCount.testAndSetRelaxed(1, 0));
recursiveMutex.unlock();
testsTurn.release();
threadsTurn.acquire();
QVERIFY(!recursiveMutex.try_lock_until(std::chrono::steady_clock::now()));
QVERIFY(!recursiveMutex.try_lock_until(std::chrono::steady_clock::now()));
testsTurn.release();
threadsTurn.acquire();
endTimePoint = std::chrono::steady_clock::now() + waitTimeAsDuration;
QVERIFY(recursiveMutex.try_lock_until(std::chrono::steady_clock::now()));
QVERIFY(std::chrono::steady_clock::now() <= endTimePoint + systemTimersResolutionAsDuration);
QVERIFY(lockCount.testAndSetRelaxed(0, 1));
QVERIFY(recursiveMutex.try_lock_until(std::chrono::steady_clock::now()));
QVERIFY(lockCount.testAndSetRelaxed(1, 2));
QVERIFY(lockCount.testAndSetRelaxed(2, 1));
recursiveMutex.unlock();
QVERIFY(lockCount.testAndSetRelaxed(1, 0));
recursiveMutex.unlock();
testsTurn.release();
threadsTurn.acquire();
}
};
Thread thread;
thread.start();
// thread can't acquire lock
testsTurn.acquire();
recursiveMutex.lock();
QVERIFY(lockCount.testAndSetRelaxed(0, 1));
recursiveMutex.lock();
QVERIFY(lockCount.testAndSetRelaxed(1, 2));
threadsTurn.release();
// thread can acquire lock
testsTurn.acquire();
QVERIFY(lockCount.testAndSetRelaxed(2, 1));
recursiveMutex.unlock();
QVERIFY(lockCount.testAndSetRelaxed(1, 0));
recursiveMutex.unlock();
threadsTurn.release();
// thread can't acquire lock, timeout = waitTime
testsTurn.acquire();
recursiveMutex.lock();
QVERIFY(lockCount.testAndSetRelaxed(0, 1));
recursiveMutex.lock();
QVERIFY(lockCount.testAndSetRelaxed(1, 2));
threadsTurn.release();
// thread can acquire lock, timeout = waitTime
testsTurn.acquire();
QVERIFY(lockCount.testAndSetRelaxed(2, 1));
recursiveMutex.unlock();
QVERIFY(lockCount.testAndSetRelaxed(1, 0));
recursiveMutex.unlock();
threadsTurn.release();
// thread can't acquire lock, timeout = 0
testsTurn.acquire();
recursiveMutex.lock();
QVERIFY(lockCount.testAndSetRelaxed(0, 1));
recursiveMutex.lock();
QVERIFY(lockCount.testAndSetRelaxed(1, 2));
threadsTurn.release();
// thread can acquire lock, timeout = 0
testsTurn.acquire();
QVERIFY(lockCount.testAndSetRelaxed(2, 1));
recursiveMutex.unlock();
QVERIFY(lockCount.testAndSetRelaxed(1, 0));
recursiveMutex.unlock();
threadsTurn.release();
// stop thread
testsTurn.acquire();
threadsTurn.release();
thread.wait();
#endif
}
class mutex_Thread : public QThread
{
public:
QMutex mutex;
QWaitCondition cond;
QMutex &test_mutex;
inline mutex_Thread(QMutex &m) : test_mutex(m) { }
void run()
{
test_mutex.lock();
mutex.lock();
for (int i = 0; i < iterations; ++i) {
cond.wakeOne();
cond.wait(&mutex);
}
mutex.unlock();
test_mutex.unlock();
}
};
class rmutex_Thread : public QThread
{
public:
QMutex mutex;
QWaitCondition cond;
QRecursiveMutex &test_mutex;
inline rmutex_Thread(QRecursiveMutex &m) : test_mutex(m) { }
void run()
{
test_mutex.lock();
test_mutex.lock();
test_mutex.lock();
test_mutex.lock();
mutex.lock();
for (int i = 0; i < iterations; ++i) {
cond.wakeOne();
cond.wait(&mutex);
}
mutex.unlock();
test_mutex.unlock();
test_mutex.unlock();
test_mutex.unlock();
test_mutex.unlock();
}
};
void tst_QMutex::lock_unlock_locked_tryLock()
{
// normal mutex
QMutex mutex;
mutex_Thread thread(mutex);
QRecursiveMutex rmutex;
rmutex_Thread rthread(rmutex);
for (int i = 0; i < iterations; ++i) {
// normal mutex
QVERIFY(mutex.tryLock());
mutex.unlock();
thread.mutex.lock();
thread.start();
for (int j = 0; j < iterations; ++j) {
QVERIFY(thread.cond.wait(&thread.mutex, 10000));
QVERIFY(!mutex.tryLock());
thread.cond.wakeOne();
}
thread.mutex.unlock();
QVERIFY(thread.wait(10000));
QVERIFY(mutex.tryLock());
mutex.unlock();
// recursive mutex
QVERIFY(rmutex.tryLock());
QVERIFY(rmutex.tryLock());
QVERIFY(rmutex.tryLock());
QVERIFY(rmutex.tryLock());
rmutex.unlock();
rmutex.unlock();
rmutex.unlock();
rmutex.unlock();
rthread.mutex.lock();
rthread.start();
for (int k = 0; k < iterations; ++k) {
QVERIFY(rthread.cond.wait(&rthread.mutex, 10000));
QVERIFY(!rmutex.tryLock());
rthread.cond.wakeOne();
}
rthread.mutex.unlock();
QVERIFY(rthread.wait(10000));
QVERIFY(rmutex.tryLock());
QVERIFY(rmutex.tryLock());
QVERIFY(rmutex.tryLock());
QVERIFY(rmutex.tryLock());
rmutex.unlock();
rmutex.unlock();
rmutex.unlock();
rmutex.unlock();
}
}
enum { one_minute = 6 * 1000, //not really one minute, but else it is too long.
threadCount = 10 };
class StressTestThread : public QThread
{
QElapsedTimer t;
public:
static QBasicAtomicInt lockCount;
static QBasicAtomicInt sentinel;
static QMutex mutex;
static int errorCount;
void start()
{
t.start();
QThread::start();
}
void run()
{
while (t.elapsed() < one_minute) {
mutex.lock();
if (sentinel.ref()) ++errorCount;
if (!sentinel.deref()) ++errorCount;
lockCount.ref();
mutex.unlock();
if (mutex.tryLock()) {
if (sentinel.ref()) ++errorCount;
if (!sentinel.deref()) ++errorCount;
lockCount.ref();
mutex.unlock();
}
}
}
};
QMutex StressTestThread::mutex;
QBasicAtomicInt StressTestThread::lockCount = Q_BASIC_ATOMIC_INITIALIZER(0);
QBasicAtomicInt StressTestThread::sentinel = Q_BASIC_ATOMIC_INITIALIZER(-1);
int StressTestThread::errorCount = 0;
void tst_QMutex::stressTest()
{
StressTestThread threads[threadCount];
for (int i = 0; i < threadCount; ++i)
threads[i].start();
QVERIFY(threads[0].wait(one_minute + 10000));
for (int i = 1; i < threadCount; ++i)
QVERIFY(threads[i].wait(10000));
QCOMPARE(StressTestThread::errorCount, 0);
qDebug("locked %d times", int(StressTestThread::lockCount.loadRelaxed()));
}
class TryLockRaceThread : public QThread
{
public:
static QMutex mutex;
void run()
{
QElapsedTimer t;
t.start();
do {
if (mutex.tryLock())
mutex.unlock();
} while (t.elapsed() < one_minute/2);
}
};
QMutex TryLockRaceThread::mutex;
void tst_QMutex::tryLockRace()
{
// mutex not in use, should be able to lock it
QVERIFY(TryLockRaceThread::mutex.tryLock());
TryLockRaceThread::mutex.unlock();
// try to break tryLock
TryLockRaceThread thread[threadCount];
for (int i = 0; i < threadCount; ++i)
thread[i].start();
for (int i = 0; i < threadCount; ++i)
QVERIFY(thread[i].wait());
// mutex not in use, should be able to lock it
QVERIFY(TryLockRaceThread::mutex.tryLock());
TryLockRaceThread::mutex.unlock();
}
// The following is a regression test for QTBUG-16115, where QMutex could
// deadlock after calling tryLock repeatedly.
// Variable that will be protected by the mutex. Volatile so that the
// the optimiser doesn't mess with it based on the increment-then-decrement
// usage pattern.
static volatile int tryLockDeadlockCounter;
// Counter for how many times the protected variable has an incorrect value.
static int tryLockDeadlockFailureCount = 0;
void tst_QMutex::tryLockDeadlock()
{
//Used to deadlock on unix
struct TrylockThread : QThread {
TrylockThread(QMutex &mut) : mut(mut) {}
QMutex &mut;
void run() {
for (int i = 0; i < 100000; ++i) {
if (mut.tryLock(0)) {
if ((++tryLockDeadlockCounter) != 1)
++tryLockDeadlockFailureCount;
if ((--tryLockDeadlockCounter) != 0)
++tryLockDeadlockFailureCount;
mut.unlock();
}
}
}
};
QMutex mut;
TrylockThread t1(mut);
TrylockThread t2(mut);
TrylockThread t3(mut);
t1.start();
t2.start();
t3.start();
for (int i = 0; i < 100000; ++i) {
mut.lock();
if ((++tryLockDeadlockCounter) != 1)
++tryLockDeadlockFailureCount;
if ((--tryLockDeadlockCounter) != 0)
++tryLockDeadlockFailureCount;
mut.unlock();
}
t1.wait();
t2.wait();
t3.wait();
QCOMPARE(tryLockDeadlockFailureCount, 0);
}
void tst_QMutex::tryLockNegative_data()
{
QTest::addColumn<int>("timeout");
QTest::newRow("-1") << -1;
QTest::newRow("-2") << -2;
QTest::newRow("INT_MIN/2") << INT_MIN/2;
QTest::newRow("INT_MIN") << INT_MIN;
}
void tst_QMutex::tryLockNegative()
{
// the documentation says tryLock() with a negative number is the same as lock()
struct TrylockThread : QThread {
TrylockThread(QMutex &mut, int timeout)
: mut(mut), timeout(timeout), tryLockResult(-1)
{}
QMutex &mut;
int timeout;
int tryLockResult;
void run() {
tryLockResult = mut.tryLock(timeout);
mut.unlock();
}
};
QFETCH(int, timeout);
QMutex mutex;
TrylockThread thr(mutex, timeout);
mutex.lock();
thr.start();
// the thread should have stopped in tryLock(), waiting for us to unlock
// the mutex. The following test can be falsely positive due to timing:
// tryLock may still fail but hasn't failed yet. But it certainly cannot be
// a false negative: if wait() returns true, tryLock failed.
QVERIFY(!thr.wait(200));
// after we unlock the mutex, the thread should succeed in locking, then
// unlock and exit. Do this before more tests to avoid deadlocking due to
// ~QThread waiting forever on a thread that won't exit.
mutex.unlock();
QVERIFY(thr.wait());
QCOMPARE(thr.tryLockResult, 1);
}
class MoreStressTestThread : public QThread
{
QElapsedTimer t;
public:
static QAtomicInt lockCount;
static QAtomicInt sentinel[threadCount];
static QMutex mutex[threadCount];
static QAtomicInt errorCount;
void start()
{
t.start();
QThread::start();
}
void run()
{
quint64 i = 0;
while (t.elapsed() < one_minute) {
i++;
uint nb = (i * 9 + lockCount.loadRelaxed() * 13) % threadCount;
QMutexLocker locker(&mutex[nb]);
if (sentinel[nb].loadRelaxed()) errorCount.ref();
if (sentinel[nb].fetchAndAddRelaxed(5)) errorCount.ref();
if (!sentinel[nb].testAndSetRelaxed(5, 0)) errorCount.ref();
if (sentinel[nb].loadRelaxed()) errorCount.ref();
lockCount.ref();
nb = (nb * 17 + i * 5 + lockCount.loadRelaxed() * 3) % threadCount;
if (mutex[nb].tryLock()) {
if (sentinel[nb].loadRelaxed()) errorCount.ref();
if (sentinel[nb].fetchAndAddRelaxed(16)) errorCount.ref();
if (!sentinel[nb].testAndSetRelaxed(16, 0)) errorCount.ref();
if (sentinel[nb].loadRelaxed()) errorCount.ref();
lockCount.ref();
mutex[nb].unlock();
}
nb = (nb * 15 + i * 47 + lockCount.loadRelaxed() * 31) % threadCount;
if (mutex[nb].tryLock(2)) {
if (sentinel[nb].loadRelaxed()) errorCount.ref();
if (sentinel[nb].fetchAndAddRelaxed(53)) errorCount.ref();
if (!sentinel[nb].testAndSetRelaxed(53, 0)) errorCount.ref();
if (sentinel[nb].loadRelaxed()) errorCount.ref();
lockCount.ref();
mutex[nb].unlock();
}
}
}
};
QMutex MoreStressTestThread::mutex[threadCount];
QAtomicInt MoreStressTestThread::lockCount;
QAtomicInt MoreStressTestThread::sentinel[threadCount];
QAtomicInt MoreStressTestThread::errorCount = 0;
void tst_QMutex::moreStress()
{
MoreStressTestThread threads[threadCount];
for (int i = 0; i < threadCount; ++i)
threads[i].start();
QVERIFY(threads[0].wait(one_minute + 10000));
for (int i = 1; i < threadCount; ++i)
QVERIFY(threads[i].wait(10000));
qDebug("locked %d times", MoreStressTestThread::lockCount.loadRelaxed());
QCOMPARE(MoreStressTestThread::errorCount.loadRelaxed(), 0);
}
QTEST_MAIN(tst_QMutex)
#include "tst_qmutex.moc"