blob: b3c8386fd9ee848fb498132c43835c6096629cc3 [file] [log] [blame]
/****************************************************************************
**
** Copyright (C) 2016 The Qt Company Ltd.
** Contact: https://www.qt.io/licensing/
**
** This file is part of the QtQuick module of the Qt Toolkit.
**
** $QT_BEGIN_LICENSE:LGPL$
** Commercial License Usage
** Licensees holding valid commercial Qt licenses may use this file in
** accordance with the commercial license agreement provided with the
** Software or, alternatively, in accordance with the terms contained in
** a written agreement between you and The Qt Company. For licensing terms
** and conditions see https://www.qt.io/terms-conditions. For further
** information use the contact form at https://www.qt.io/contact-us.
**
** GNU Lesser General Public License Usage
** Alternatively, this file may be used under the terms of the GNU Lesser
** General Public License version 3 as published by the Free Software
** Foundation and appearing in the file LICENSE.LGPL3 included in the
** packaging of this file. Please review the following information to
** ensure the GNU Lesser General Public License version 3 requirements
** will be met: https://www.gnu.org/licenses/lgpl-3.0.html.
**
** GNU General Public License Usage
** Alternatively, this file may be used under the terms of the GNU
** General Public License version 2.0 or (at your option) the GNU General
** Public license version 3 or any later version approved by the KDE Free
** Qt Foundation. The licenses are as published by the Free Software
** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3
** included in the packaging of this file. Please review the following
** information to ensure the GNU General Public License requirements will
** be met: https://www.gnu.org/licenses/gpl-2.0.html and
** https://www.gnu.org/licenses/gpl-3.0.html.
**
** $QT_END_LICENSE$
**
****************************************************************************/
#include <private/qquickshadereffect_p.h>
#include <private/qsgcontextplugin_p.h>
#include <private/qquickitem_p.h>
#if QT_CONFIG(opengl)
#include <private/qquickopenglshadereffect_p.h>
#endif
#include <private/qquickgenericshadereffect_p.h>
#if QT_CONFIG(opengl) /* || QT_CONFIG(vulkan) || defined(Q_OS_WIN) || defined(Q_OS_DARWIN) */
#include <private/qsgrhisupport_p.h>
#endif
QT_BEGIN_NAMESPACE
/*!
\qmltype ShaderEffect
\instantiates QQuickShaderEffect
\inqmlmodule QtQuick
\inherits Item
\ingroup qtquick-effects
\brief Applies custom shaders to a rectangle.
The ShaderEffect type applies a custom
\l{vertexShader}{vertex} and \l{fragmentShader}{fragment (pixel)} shader to a
rectangle. It allows you to write effects such as drop shadow, blur,
colorize and page curl directly in QML.
\note Depending on the Qt Quick scenegraph backend in use, the ShaderEffect
type may not be supported (for example, with the software backend), or may
use a different shading language with rules and expectations different from
OpenGL and GLSL.
\section1 OpenGL and GLSL
There are two types of input to the \l vertexShader:
uniform variables and attributes. Some are predefined:
\list
\li uniform mat4 qt_Matrix - combined transformation
matrix, the product of the matrices from the root item to this
ShaderEffect, and an orthogonal projection.
\li uniform float qt_Opacity - combined opacity, the product of the
opacities from the root item to this ShaderEffect.
\li attribute vec4 qt_Vertex - vertex position, the top-left vertex has
position (0, 0), the bottom-right (\l{Item::width}{width},
\l{Item::height}{height}).
\li attribute vec2 qt_MultiTexCoord0 - texture coordinate, the top-left
coordinate is (0, 0), the bottom-right (1, 1). If \l supportsAtlasTextures
is true, coordinates will be based on position in the atlas instead.
\endlist
In addition, any property that can be mapped to an OpenGL Shading Language
(GLSL) type is available as a uniform variable. The following list shows
how properties are mapped to GLSL uniform variables:
\list
\li bool, int, qreal -> bool, int, float - If the type in the shader is not
the same as in QML, the value is converted automatically.
\li QColor -> vec4 - When colors are passed to the shader, they are first
premultiplied. Thus Qt.rgba(0.2, 0.6, 1.0, 0.5) becomes
vec4(0.1, 0.3, 0.5, 0.5) in the shader, for example.
\li QRect, QRectF -> vec4 - Qt.rect(x, y, w, h) becomes vec4(x, y, w, h) in
the shader.
\li QPoint, QPointF, QSize, QSizeF -> vec2
\li QVector3D -> vec3
\li QVector4D -> vec4
\li QTransform -> mat3
\li QMatrix4x4 -> mat4
\li QQuaternion -> vec4, scalar value is \c w.
\li \l Image -> sampler2D - Origin is in the top-left corner, and the
color values are premultiplied. The texture is provided as is,
excluding the Image item's fillMode. To include fillMode, use a
ShaderEffectSource or Image::layer::enabled.
\li \l ShaderEffectSource -> sampler2D - Origin is in the top-left
corner, and the color values are premultiplied.
\endlist
The QML scene graph back-end may choose to allocate textures in texture
atlases. If a texture allocated in an atlas is passed to a ShaderEffect,
it is by default copied from the texture atlas into a stand-alone texture
so that the texture coordinates span from 0 to 1, and you get the expected
wrap modes. However, this will increase the memory usage. To avoid the
texture copy, set \l supportsAtlasTextures for simple shaders using
qt_MultiTexCoord0, or for each "uniform sampler2D <name>" declare a
"uniform vec4 qt_SubRect_<name>" which will be assigned the texture's
normalized source rectangle. For stand-alone textures, the source rectangle
is [0, 1]x[0, 1]. For textures in an atlas, the source rectangle corresponds
to the part of the texture atlas where the texture is stored.
The correct way to calculate the texture coordinate for a texture called
"source" within a texture atlas is
"qt_SubRect_source.xy + qt_SubRect_source.zw * qt_MultiTexCoord0".
The output from the \l fragmentShader should be premultiplied. If
\l blending is enabled, source-over blending is used. However, additive
blending can be achieved by outputting zero in the alpha channel.
\table 70%
\row
\li \image declarative-shadereffectitem.png
\li \qml
import QtQuick 2.0
Rectangle {
width: 200; height: 100
Row {
Image { id: img;
sourceSize { width: 100; height: 100 } source: "qt-logo.png" }
ShaderEffect {
width: 100; height: 100
property variant src: img
vertexShader: "
uniform highp mat4 qt_Matrix;
attribute highp vec4 qt_Vertex;
attribute highp vec2 qt_MultiTexCoord0;
varying highp vec2 coord;
void main() {
coord = qt_MultiTexCoord0;
gl_Position = qt_Matrix * qt_Vertex;
}"
fragmentShader: "
varying highp vec2 coord;
uniform sampler2D src;
uniform lowp float qt_Opacity;
void main() {
lowp vec4 tex = texture2D(src, coord);
gl_FragColor = vec4(vec3(dot(tex.rgb,
vec3(0.344, 0.5, 0.156))),
tex.a) * qt_Opacity;
}"
}
}
}
\endqml
\endtable
\note Scene Graph textures have origin in the top-left corner rather than
bottom-left which is common in OpenGL.
For information about the GLSL version being used, see \l QtQuick::GraphicsInfo.
Starting from Qt 5.8 ShaderEffect also supports reading the GLSL source
code from files. Whenever the fragmentShader or vertexShader property value
is a URL with the \c file or \c qrc schema, it is treated as a file
reference and the source code is read from the specified file.
\section1 Direct3D and HLSL
Direct3D backends provide ShaderEffect support with HLSL. The Direct3D 12
backend requires using at least Shader Model 5.0 both for vertex and pixel
shaders. When necessary, GraphicsInfo.shaderType can be used to decide
at runtime what kind of value to assign to \l fragmentShader or
\l vertexShader.
All concepts described above for OpenGL and GLSL apply to Direct3D and HLSL
as well. There are however a number of notable practical differences, which
are the following:
Instead of uniforms, HLSL shaders are expected to use a single constant
buffer, assigned to register \c b0. The special names \c qt_Matrix,
\c qt_Opacity, and \c qt_SubRect_<name> function the same way as with GLSL.
All other members of the buffer are expected to map to properties in the
ShaderEffect item.
\note The buffer layout must be compatible for both shaders. This means
that application-provided shaders must make sure \c qt_Matrix and
\c qt_Opacity are included in the buffer, starting at offset 0, when custom
code is provided for one type of shader only, leading to ShaderEffect
providing the other shader. This is due to ShaderEffect's built-in shader code
declaring a constant buffer containing \c{float4x4 qt_Matrix; float qt_Opacity;}.
Unlike GLSL's attributes, no names are used for vertex input elements.
Therefore qt_Vertex and qt_MultiTexCoord0 are not relevant. Instead, the
standard Direct3D semantics, \c POSITION and \c TEXCOORD (or \c TEXCOORD0)
are used for identifying the correct input layout.
Unlike GLSL's samplers, texture and sampler objects are separate in HLSL.
Shaders are expected to expect 2D, non-array, non-multisample textures.
Both the texture and sampler binding points are expected to be sequential
and start from 0 (meaning registers \c{t0, t1, ...}, and \c{s0, s1, ...},
respectively). Unlike with OpenGL, samplers are not mapped to Qt Quick item
properties and therefore the name of the sampler is not relevant. Instead,
it is the textures that map to properties referencing \l Image or
\l ShaderEffectSource items.
Unlike OpenGL, backends for modern APIs will typically prefer offline
compilation and shipping pre-compiled bytecode with applications instead of
inlined shader source strings. In this case the string properties for
vertex and fragment shaders are treated as URLs referring to local files or
files shipped via the Qt resource system.
To check at runtime what is supported, use the
GraphicsInfo.shaderSourceType and GraphicsInfo.shaderCompilationType
properties. Note that these are bitmasks, because some backends may support
multiple approaches.
In case of Direct3D 12, all combinations are supported. If the vertexShader
and fragmentShader properties form a valid URL with the \c file or \c qrc
schema, the bytecode or HLSL source code is read from the specified file.
The type of the file contents is detected automatically. Otherwise, the
string is treated as HLSL source code and is compiled at runtime, assuming
Shader Model 5.0 and an entry point of \c{"main"}. This allows dynamically
constructing shader strings. However, whenever the shader source code is
static, it is strongly recommended to pre-compile to bytecode using the
\c fxc tool and refer to these files from QML. This will be a lot more
efficient at runtime and allows catching syntax errors in the shaders at
compile time.
Unlike OpenGL, the Direct3D backend is able to perform runtime shader
compilation on dedicated threads. This is managed transparently to the
applications, and means that ShaderEffect items that contain HLSL source
strings do not block the rendering or other parts of the application until
the bytecode is ready.
Using files with bytecode is more flexible also when it comes to the entry
point name (it can be anything, not limited to \c main) and the shader
model (it can be something newer than 5.0, for instance 5.1).
\table 70%
\row
\li \qml
import QtQuick 2.0
Rectangle {
width: 200; height: 100
Row {
Image { id: img;
sourceSize { width: 100; height: 100 } source: "qt-logo.png" }
ShaderEffect {
width: 100; height: 100
property variant src: img
fragmentShader: "qrc:/effect_ps.cso"
}
}
}
\endqml
\row
\li where \c effect_ps.cso is the compiled bytecode for the following HLSL shader:
\code
cbuffer ConstantBuffer : register(b0)
{
float4x4 qt_Matrix;
float qt_Opacity;
};
Texture2D src : register(t0);
SamplerState srcSampler : register(s0);
float4 ExamplePixelShader(float4 position : SV_POSITION, float2 coord : TEXCOORD0) : SV_TARGET
{
float4 tex = src.Sample(srcSampler, coord);
float3 col = dot(tex.rgb, float3(0.344, 0.5, 0.156));
return float4(col, tex.a) * qt_Opacity;
}
\endcode
\endtable
The above is equivalent to the OpenGL example presented earlier. The vertex
shader is provided implicitly by ShaderEffect. Note that the output of the
pixel shader is using premultiplied alpha and that \c qt_Matrix is present
in the constant buffer at offset 0, even though the pixel shader does not
use the value.
If desired, the HLSL source code can be placed directly into the QML
source, similarly to how its done with GLSL. The only difference in this
case is the entry point name, which must be \c main when using inline
source strings.
Alternatively, we could also have referred to a file containing the source
of the effect instead of the compiled bytecode version.
Some effects will want to provide a vertex shader as well. Below is a
similar effect with both the vertex and fragment shader provided by the
application. This time the colorization factor is provided by the QML item
instead of hardcoding it in the shader. This can allow, among others,
animating the value using QML's and Qt Quick's standard facilities.
\table 70%
\row
\li \qml
import QtQuick 2.0
Rectangle {
width: 200; height: 100
Row {
Image { id: img;
sourceSize { width: 100; height: 100 } source: "qt-logo.png" }
ShaderEffect {
width: 100; height: 100
property variant src: img
property variant color: Qt.vector3d(0.344, 0.5, 0.156)
vertexShader: "qrc:/effect_vs.cso"
fragmentShader: "qrc:/effect_ps.cso"
}
}
}
\endqml
\row
\li where \c effect_vs.cso and \c effect_ps.cso are the compiled bytecode
for \c ExampleVertexShader and \c ExamplePixelShader. The source code is
presented as one snippet here, the shaders can however be placed in
separate source files as well.
\code
cbuffer ConstantBuffer : register(b0)
{
float4x4 qt_Matrix;
float qt_Opacity;
float3 color;
};
Texture2D src : register(t0);
SamplerState srcSampler : register(s0);
struct PSInput
{
float4 position : SV_POSITION;
float2 coord : TEXCOORD0;
};
PSInput ExampleVertexShader(float4 position : POSITION, float2 coord : TEXCOORD0)
{
PSInput result;
result.position = mul(qt_Matrix, position);
result.coord = coord;
return result;
}
float4 ExamplePixelShader(PSInput input) : SV_TARGET
{
float4 tex = src.Sample(srcSampler, coord);
float3 col = dot(tex.rgb, color);
return float4(col, tex.a) * qt_Opacity;
}
\endcode
\endtable
\note With OpenGL the \c y coordinate runs from bottom to top whereas with
Direct 3D it goes top to bottom. For shader effect sources Qt Quick hides
the difference by treating QtQuick::ShaderEffectSource::textureMirroring as
appropriate, meaning texture coordinates in HLSL version of the shaders
will not need any adjustments compared to the equivalent GLSL code.
\section1 Cross-platform, Cross-API ShaderEffect Items
Some applications will want to be functional with multiple accelerated
graphics backends. This has consequences for ShaderEffect items because the
supported shading languages may vary from backend to backend.
There are two approaches to handle this: either write conditional property
values based on GraphicsInfo.shaderType, or use file selectors. In practice
the latter is strongly recommended as it leads to more concise and cleaner
application code. The only case it is not suitable is when the source
strings are constructed dynamically.
\table 70%
\row
\li \qml
import QtQuick 2.8 // for GraphicsInfo
Rectangle {
width: 200; height: 100
Row {
Image { id: img;
sourceSize { width: 100; height: 100 } source: "qt-logo.png" }
ShaderEffect {
width: 100; height: 100
property variant src: img
property variant color: Qt.vector3d(0.344, 0.5, 0.156)
fragmentShader: GraphicsInfo.shaderType === GraphicsInfo.GLSL ?
"varying highp vec2 coord;
uniform sampler2D src;
uniform lowp float qt_Opacity;
void main() {
lowp vec4 tex = texture2D(src, coord);
gl_FragColor = vec4(vec3(dot(tex.rgb,
vec3(0.344, 0.5, 0.156))),
tex.a) * qt_Opacity;"
: GraphicsInfo.shaderType === GraphicsInfo.HLSL ?
"cbuffer ConstantBuffer : register(b0)
{
float4x4 qt_Matrix;
float qt_Opacity;
};
Texture2D src : register(t0);
SamplerState srcSampler : register(s0);
float4 ExamplePixelShader(float4 position : SV_POSITION, float2 coord : TEXCOORD0) : SV_TARGET
{
float4 tex = src.Sample(srcSampler, coord);
float3 col = dot(tex.rgb, float3(0.344, 0.5, 0.156));
return float4(col, tex.a) * qt_Opacity;
}"
: ""
}
}
}
\endqml
\row
\li This is the first approach based on GraphicsInfo. Note that the value
reported by GraphicsInfo is not up-to-date until the ShaderEffect item gets
associated with a QQuickWindow. Before that, the reported value is
GraphicsInfo.UnknownShadingLanguage. The alternative is to place the GLSL
source code and the compiled D3D bytecode into the files
\c{shaders/effect.frag} and \c{shaders/+hlsl/effect.frag}, include them in
the Qt resource system, and let the ShaderEffect's internal QFileSelector
do its job. The selector-less version is the GLSL source, while the \c hlsl
selector is used when running on the D3D12 backend. The file under
\c{+hlsl} can then contain either HLSL source code or compiled bytecode
from the \c fxc tool. Additionally, when using a version 3.2 or newer core
profile context with OpenGL, GLSL sources with a core profile compatible
syntax can be placed under \c{+glslcore}.
\qml
import QtQuick 2.8 // for GraphicsInfo
Rectangle {
width: 200; height: 100
Row {
Image { id: img;
sourceSize { width: 100; height: 100 } source: "qt-logo.png" }
ShaderEffect {
width: 100; height: 100
property variant src: img
property variant color: Qt.vector3d(0.344, 0.5, 0.156)
fragmentShader: "qrc:shaders/effect.frag" // selects the correct variant automatically
}
}
}
\endqml
\endtable
\section1 ShaderEffect and Item Layers
The ShaderEffect type can be combined with \l {Item Layers} {layered items}.
\table
\row
\li \b {Layer with effect disabled} \inlineimage qml-shadereffect-nolayereffect.png
\li \b {Layer with effect enabled} \inlineimage qml-shadereffect-layereffect.png
\row
\li \snippet qml/layerwitheffect.qml 1
\endtable
It is also possible to combine multiple layered items:
\table
\row
\li \inlineimage qml-shadereffect-opacitymask.png
\row
\li \snippet qml/opacitymask.qml 1
\endtable
\section1 Other Notes
By default, the ShaderEffect consists of four vertices, one for each
corner. For non-linear vertex transformations, like page curl, you can
specify a fine grid of vertices by specifying a \l mesh resolution.
The \l {Qt Graphical Effects} module contains several ready-made effects
for using with Qt Quick applications.
\sa {Item Layers}
*/
class QQuickShaderEffectPrivate : public QQuickItemPrivate
{
Q_DECLARE_PUBLIC(QQuickShaderEffect)
public:
void updatePolish() override;
};
QSGContextFactoryInterface::Flags qsg_backend_flags();
QQuickShaderEffect::QQuickShaderEffect(QQuickItem *parent)
: QQuickItem(*new QQuickShaderEffectPrivate, parent),
#if QT_CONFIG(opengl)
m_glImpl(nullptr),
#endif
m_impl(nullptr)
{
setFlag(QQuickItem::ItemHasContents);
#if QT_CONFIG(opengl) /* || QT_CONFIG(vulkan) || defined(Q_OS_WIN) || defined(Q_OS_DARWIN) */
if (QSGRhiSupport::instance()->isRhiEnabled()) {
m_impl = new QQuickGenericShaderEffect(this, this);
} else
#endif
{
#if QT_CONFIG(opengl)
if (!qsg_backend_flags().testFlag(QSGContextFactoryInterface::SupportsShaderEffectNode))
m_glImpl = new QQuickOpenGLShaderEffect(this, this);
if (!m_glImpl)
#endif
m_impl = new QQuickGenericShaderEffect(this, this);
}
}
QQuickShaderEffect::~QQuickShaderEffect()
{
// Delete the implementations now, while they still have have
// valid references back to us.
#if QT_CONFIG(opengl)
auto *glImpl = m_glImpl;
m_glImpl = nullptr;
delete glImpl;
#endif
auto *impl = m_impl;
m_impl = nullptr;
delete impl;
}
/*!
\qmlproperty string QtQuick::ShaderEffect::fragmentShader
This property holds the fragment (pixel) shader's source code or a
reference to the pre-compiled bytecode. Some APIs, like OpenGL, always
support runtime compilation and therefore the traditional Qt Quick way of
inlining shader source strings is functional. Qt Quick backends for other
APIs may however limit support to pre-compiled bytecode like SPIR-V or D3D
shader bytecode. There the string is simply a filename, which may be a file
in the filesystem or bundled with the executable via Qt's resource system.
With GLSL the default shader expects the texture coordinate to be passed
from the vertex shader as \c{varying highp vec2 qt_TexCoord0}, and it
samples from a sampler2D named \c source. With HLSL the texture is named
\c source, while the vertex shader is expected to provide
\c{float2 coord : TEXCOORD0} in its output in addition to
\c{float4 position : SV_POSITION} (names can differ since linking is done
based on the semantics).
\sa vertexShader, GraphicsInfo
*/
QByteArray QQuickShaderEffect::fragmentShader() const
{
#if QT_CONFIG(opengl)
if (m_glImpl)
return m_glImpl->fragmentShader();
#endif
return m_impl->fragmentShader();
}
void QQuickShaderEffect::setFragmentShader(const QByteArray &code)
{
#if QT_CONFIG(opengl)
if (m_glImpl) {
m_glImpl->setFragmentShader(code);
return;
}
#endif
m_impl->setFragmentShader(code);
}
/*!
\qmlproperty string QtQuick::ShaderEffect::vertexShader
This property holds the vertex shader's source code or a reference to the
pre-compiled bytecode. Some APIs, like OpenGL, always support runtime
compilation and therefore the traditional Qt Quick way of inlining shader
source strings is functional. Qt Quick backends for other APIs may however
limit support to pre-compiled bytecode like SPIR-V or D3D shader bytecode.
There the string is simply a filename, which may be a file in the
filesystem or bundled with the executable via Qt's resource system.
With GLSL the default shader passes the texture coordinate along to the
fragment shader as \c{varying highp vec2 qt_TexCoord0}. With HLSL it is
enough to use the standard \c TEXCOORD0 semantic, for example
\c{float2 coord : TEXCOORD0}.
\sa fragmentShader, GraphicsInfo
*/
QByteArray QQuickShaderEffect::vertexShader() const
{
#if QT_CONFIG(opengl)
if (m_glImpl)
return m_glImpl->vertexShader();
#endif
return m_impl->vertexShader();
}
void QQuickShaderEffect::setVertexShader(const QByteArray &code)
{
#if QT_CONFIG(opengl)
if (m_glImpl) {
m_glImpl->setVertexShader(code);
return;
}
#endif
m_impl->setVertexShader(code);
}
/*!
\qmlproperty bool QtQuick::ShaderEffect::blending
If this property is true, the output from the \l fragmentShader is blended
with the background using source-over blend mode. If false, the background
is disregarded. Blending decreases the performance, so you should set this
property to false when blending is not needed. The default value is true.
*/
bool QQuickShaderEffect::blending() const
{
#if QT_CONFIG(opengl)
if (m_glImpl)
return m_glImpl->blending();
#endif
return m_impl->blending();
}
void QQuickShaderEffect::setBlending(bool enable)
{
#if QT_CONFIG(opengl)
if (m_glImpl) {
m_glImpl->setBlending(enable);
return;
}
#endif
m_impl->setBlending(enable);
}
/*!
\qmlproperty variant QtQuick::ShaderEffect::mesh
This property defines the mesh used to draw the ShaderEffect. It can hold
any \l GridMesh object.
If a size value is assigned to this property, the ShaderEffect implicitly
uses a \l GridMesh with the value as
\l{GridMesh::resolution}{mesh resolution}. By default, this property is
the size 1x1.
\sa GridMesh
*/
QVariant QQuickShaderEffect::mesh() const
{
#if QT_CONFIG(opengl)
if (m_glImpl)
return m_glImpl->mesh();
#endif
return m_impl->mesh();
}
void QQuickShaderEffect::setMesh(const QVariant &mesh)
{
#if QT_CONFIG(opengl)
if (m_glImpl) {
m_glImpl->setMesh(mesh);
return;
}
#endif
m_impl->setMesh(mesh);
}
/*!
\qmlproperty enumeration QtQuick::ShaderEffect::cullMode
This property defines which sides of the item should be visible.
\list
\li ShaderEffect.NoCulling - Both sides are visible
\li ShaderEffect.BackFaceCulling - only front side is visible
\li ShaderEffect.FrontFaceCulling - only back side is visible
\endlist
The default is NoCulling.
*/
QQuickShaderEffect::CullMode QQuickShaderEffect::cullMode() const
{
#if QT_CONFIG(opengl)
if (m_glImpl)
return m_glImpl->cullMode();
#endif
return m_impl->cullMode();
}
void QQuickShaderEffect::setCullMode(CullMode face)
{
#if QT_CONFIG(opengl)
if (m_glImpl) {
m_glImpl->setCullMode(face);
return;
}
#endif
return m_impl->setCullMode(face);
}
/*!
\qmlproperty bool QtQuick::ShaderEffect::supportsAtlasTextures
Set this property true to confirm that your shader code doesn't rely on
qt_MultiTexCoord0 ranging from (0,0) to (1,1) relative to the mesh.
In this case the range of qt_MultiTexCoord0 will rather be based on the position
of the texture within the atlas. This property currently has no effect if there
is less, or more, than one sampler uniform used as input to your shader.
This differs from providing qt_SubRect_<name> uniforms in that the latter allows
drawing one or more textures from the atlas in a single ShaderEffect item, while
supportsAtlasTextures allows multiple instances of a ShaderEffect component using
a different source image from the atlas to be batched in a single draw.
Both prevent a texture from being copied out of the atlas when referenced by a ShaderEffect.
The default value is false.
\since 5.4
\since QtQuick 2.4
*/
bool QQuickShaderEffect::supportsAtlasTextures() const
{
#if QT_CONFIG(opengl)
if (m_glImpl)
return m_glImpl->supportsAtlasTextures();
#endif
return m_impl->supportsAtlasTextures();
}
void QQuickShaderEffect::setSupportsAtlasTextures(bool supports)
{
#if QT_CONFIG(opengl)
if (m_glImpl) {
m_glImpl->setSupportsAtlasTextures(supports);
return;
}
#endif
m_impl->setSupportsAtlasTextures(supports);
}
/*!
\qmlproperty enumeration QtQuick::ShaderEffect::status
This property tells the current status of the OpenGL shader program.
\list
\li ShaderEffect.Compiled - the shader program was successfully compiled and linked.
\li ShaderEffect.Uncompiled - the shader program has not yet been compiled.
\li ShaderEffect.Error - the shader program failed to compile or link.
\endlist
When setting the fragment or vertex shader source code, the status will
become Uncompiled. The first time the ShaderEffect is rendered with new
shader source code, the shaders are compiled and linked, and the status is
updated to Compiled or Error.
When runtime compilation is not in use and the shader properties refer to
files with bytecode, the status is always Compiled. The contents of the
shader is not examined (apart from basic reflection to discover vertex
input elements and constant buffer data) until later in the rendering
pipeline so potential errors (like layout or root signature mismatches)
will only be detected at a later point.
\sa log
*/
/*!
\qmlproperty string QtQuick::ShaderEffect::log
This property holds a log of warnings and errors from the latest attempt at
compiling and linking the OpenGL shader program. It is updated at the same
time \l status is set to Compiled or Error.
\sa status
*/
QString QQuickShaderEffect::log() const
{
#if QT_CONFIG(opengl)
if (m_glImpl)
return m_glImpl->log();
#endif
return m_impl->log();
}
QQuickShaderEffect::Status QQuickShaderEffect::status() const
{
#if QT_CONFIG(opengl)
if (m_glImpl)
return m_glImpl->status();
#endif
return m_impl->status();
}
bool QQuickShaderEffect::event(QEvent *e)
{
#if QT_CONFIG(opengl)
if (m_glImpl) {
m_glImpl->handleEvent(e);
return QQuickItem::event(e);
}
#endif
if (m_impl)
m_impl->handleEvent(e);
return QQuickItem::event(e);
}
void QQuickShaderEffect::geometryChanged(const QRectF &newGeometry, const QRectF &oldGeometry)
{
#if QT_CONFIG(opengl)
if (m_glImpl) {
m_glImpl->handleGeometryChanged(newGeometry, oldGeometry);
QQuickItem::geometryChanged(newGeometry, oldGeometry);
return;
}
#endif
m_impl->handleGeometryChanged(newGeometry, oldGeometry);
QQuickItem::geometryChanged(newGeometry, oldGeometry);
}
QSGNode *QQuickShaderEffect::updatePaintNode(QSGNode *oldNode, UpdatePaintNodeData *updatePaintNodeData)
{
#if QT_CONFIG(opengl)
if (m_glImpl)
return m_glImpl->handleUpdatePaintNode(oldNode, updatePaintNodeData);
#endif
return m_impl->handleUpdatePaintNode(oldNode, updatePaintNodeData);
}
void QQuickShaderEffect::componentComplete()
{
#if QT_CONFIG(opengl)
if (m_glImpl) {
m_glImpl->maybeUpdateShaders();
QQuickItem::componentComplete();
return;
}
#endif
m_impl->maybeUpdateShaders();
QQuickItem::componentComplete();
}
void QQuickShaderEffect::itemChange(ItemChange change, const ItemChangeData &value)
{
#if QT_CONFIG(opengl)
if (m_glImpl) {
m_glImpl->handleItemChange(change, value);
QQuickItem::itemChange(change, value);
return;
}
#endif
m_impl->handleItemChange(change, value);
QQuickItem::itemChange(change, value);
}
bool QQuickShaderEffect::isComponentComplete() const
{
return QQuickItem::isComponentComplete();
}
QString QQuickShaderEffect::parseLog() // for OpenGL-based autotests
{
#if QT_CONFIG(opengl)
if (m_glImpl)
return m_glImpl->parseLog();
#endif
return m_impl->parseLog();
}
void QQuickShaderEffectPrivate::updatePolish()
{
Q_Q(QQuickShaderEffect);
if (!qmlEngine(q))
return;
#if QT_CONFIG(opengl)
if (q->m_glImpl) {
q->m_glImpl->maybeUpdateShaders();
return;
}
#endif
q->m_impl->maybeUpdateShaders();
}
#if QT_CONFIG(opengl)
bool QQuickShaderEffect::isOpenGLShaderEffect() const
{
return m_glImpl != nullptr;
}
#endif
QT_END_NAMESPACE
#include "moc_qquickshadereffect_p.cpp"