blob: 6439ff3d2626032c8b00b496f2aedca5aef83ebc [file] [log] [blame]
/****************************************************************************
**
** Copyright (C) 2016 Jolla Ltd, author: <gunnar.sletta@jollamobile.com>
** Contact: http://www.qt-project.org/legal
**
** This file is part of the Qt Graphical Effects module of the Qt Toolkit.
**
** $QT_BEGIN_LICENSE:LGPL$
** Commercial License Usage
** Licensees holding valid commercial Qt licenses may use this file in
** accordance with the commercial license agreement provided with the
** Software or, alternatively, in accordance with the terms contained in
** a written agreement between you and The Qt Company. For licensing terms
** and conditions see https://www.qt.io/terms-conditions. For further
** information use the contact form at https://www.qt.io/contact-us.
**
** GNU Lesser General Public License Usage
** Alternatively, this file may be used under the terms of the GNU Lesser
** General Public License version 3 as published by the Free Software
** Foundation and appearing in the file LICENSE.LGPL3 included in the
** packaging of this file. Please review the following information to
** ensure the GNU Lesser General Public License version 3 requirements
** will be met: https://www.gnu.org/licenses/lgpl-3.0.html.
**
** GNU General Public License Usage
** Alternatively, this file may be used under the terms of the GNU
** General Public License version 2.0 or (at your option) the GNU General
** Public license version 3 or any later version approved by the KDE Free
** Qt Foundation. The licenses are as published by the Free Software
** Foundation and appearing in the file LICENSE.GPL2 and LICENSE.GPL3
** included in the packaging of this file. Please review the following
** information to ensure the GNU General Public License requirements will
** be met: https://www.gnu.org/licenses/gpl-2.0.html and
** https://www.gnu.org/licenses/gpl-3.0.html.
**
** $QT_END_LICENSE$
**
****************************************************************************/
#include "qgfxshaderbuilder_p.h"
#include <QtCore/QDebug>
#include <QtGui/QOffscreenSurface>
#include <QtGui/QOpenGLContext>
#include <QtGui/QOpenGLFunctions>
#include <qmath.h>
#include <qnumeric.h>
#ifndef GL_MAX_VARYING_COMPONENTS
#define GL_MAX_VARYING_COMPONENTS 0x8B4B
#endif
#ifndef GL_MAX_VARYING_FLOATS
#define GL_MAX_VARYING_FLOATS 0x8B4B
#endif
#ifndef GL_MAX_VARYING_VECTORS
#define GL_MAX_VARYING_VECTORS 0x8DFC
#endif
QGfxShaderBuilder::QGfxShaderBuilder()
: m_coreProfile(false)
{
// The following code makes the assumption that an OpenGL context the GUI
// thread will get the same capabilities as the render thread's OpenGL
// context. Not 100% accurate, but it works...
QOpenGLContext context;
if (!context.create()) {
qDebug() << "failed to acquire GL context to resolve capabilities, using defaults..";
m_maxBlurSamples = 8; // minimum number of varyings in the ES 2.0 spec.
return;
}
QOffscreenSurface surface;
// In very odd cases, we can get incompatible configs here unless we pass the
// GL context's format on to the offscreen format.
surface.setFormat(context.format());
surface.create();
QOpenGLContext *oldContext = QOpenGLContext::currentContext();
QSurface *oldSurface = oldContext ? oldContext->surface() : 0;
if (context.makeCurrent(&surface)) {
QOpenGLFunctions *gl = context.functions();
if (context.isOpenGLES()) {
gl->glGetIntegerv(GL_MAX_VARYING_VECTORS, &m_maxBlurSamples);
} else if (context.format().majorVersion() >= 3) {
int components;
gl->glGetIntegerv(GL_MAX_VARYING_COMPONENTS, &components);
m_maxBlurSamples = components / 2.0;
m_coreProfile = context.format().profile() == QSurfaceFormat::CoreProfile;
} else {
int floats;
gl->glGetIntegerv(GL_MAX_VARYING_FLOATS, &floats);
m_maxBlurSamples = floats / 2.0;
}
if (oldContext && oldSurface)
oldContext->makeCurrent(oldSurface);
else
context.doneCurrent();
} else {
qDebug() << "failed to acquire GL context to resolve capabilities, using defaults..";
m_maxBlurSamples = 8; // minimum number of varyings in the ES 2.0 spec.
}
}
/*
The algorithm works like this..
For every two pixels we want to sample we take one sample between those
two pixels and rely on linear interpoliation to get both values at the
cost of one texture sample. The sample point is calculated based on the
gaussian weights at the two texels.
I've included the table here for future reference:
Requested Effective Actual Actual
Samples Radius/Kernel Samples Radius(*)
-------------------------------------------------
0 0 / 1x1 1 0
1 0 / 1x1 1 0
2 1 / 3x3 2 0
3 1 / 3x3 2 0
4 2 / 5x5 3 1
5 2 / 5x5 3 1
6 3 / 7x7 4 1
7 3 / 7x7 4 1
8 4 / 9x9 5 2
9 4 / 9x9 5 2
10 5 / 11x11 6 2
11 5 / 11x11 6 2
12 6 / 13x13 7 3
13 6 / 13x13 7 3
... ... ... ...
When ActualSamples is an 'odd' nunber, sample center pixel separately:
EffectiveRadius: 4
EffectiveKernel: 9x9
ActualSamples: 5
-4 -3 -2 -1 0 +1 +2 +3 +4
| | | | | | | | | |
\ / \ / | \ / \ /
tL2 tL1 tC tR1 tR2
When ActualSamples is an 'even' number, sample 3 center pixels with two
samples:
EffectiveRadius: 3
EffectiveKernel: 7x7
ActualSamples: 4
-3 -2 -1 0 +1 +2 +3
| | | | | | | |
\ / \ / | \ /
tL1 tL0 tR0 tR2
From this table we have the following formulas:
EffectiveRadius = RequestedSamples / 2;
EffectiveKernel = EffectiveRadius * 2 + 1
ActualSamples = 1 + RequstedSamples / 2;
ActualRadius = RequestedSamples / 4;
(*) ActualRadius excludes the pixel pair sampled in the center
for even 'actual sample' counts
*/
static qreal qgfx_gaussian(qreal x, qreal d)
{
return qExp(- x * x / (2 * d * d));
}
struct QGfxGaussSample
{
QByteArray name;
qreal pos;
qreal weight;
inline void set(const QByteArray &n, qreal p, qreal w) {
name = n;
pos = p;
weight = w;
}
};
static void qgfx_declareBlurVaryings(QByteArray &shader, QGfxGaussSample *s, int samples)
{
for (int i=0; i<samples; ++i) {
shader += "varying highp vec2 ";
shader += s[i].name;
shader += ";\n";
}
}
static void qgfx_declareCoreBlur(QByteArray &shader, const QByteArray& direction, QGfxGaussSample *s, int samples)
{
for (int i=0; i<samples; ++i) {
shader += direction + " vec2 ";
shader += s[i].name;
shader += ";\n";
}
}
static void qgfx_buildGaussSamplePoints(QGfxGaussSample *p, int samples, int radius, qreal deviation)
{
if ((samples % 2) == 1) {
p[radius].set("tC", 0, 1);
for (int i=0; i<radius; ++i) {
qreal p0 = (i + 1) * 2 - 1;
qreal p1 = (i + 1) * 2;
qreal w0 = qgfx_gaussian(p0, deviation);
qreal w1 = qgfx_gaussian(p1, deviation);
qreal w = w0 + w1;
qreal samplePos = (p0 * w0 + p1 * w1) / w;
if (qIsNaN(samplePos)) {
samplePos = 0;
w = 0;
}
p[radius - i - 1].set("tL" + QByteArray::number(i), samplePos, w);
p[radius + i + 1].set("tR" + QByteArray::number(i), -samplePos, w);
}
} else {
{ // tL0
qreal wl = qgfx_gaussian(-1.0, deviation);
qreal wc = qgfx_gaussian(0.0, deviation);
qreal w = wl + wc;
p[radius].set("tL0", -1.0 * wl / w, w);
p[radius+1].set("tR0", 1.0, wl); // reuse wl as gauss(-1)==gauss(1);
}
for (int i=0; i<radius; ++i) {
qreal p0 = (i + 1) * 2;
qreal p1 = (i + 1) * 2 + 1;
qreal w0 = qgfx_gaussian(p0, deviation);
qreal w1 = qgfx_gaussian(p1, deviation);
qreal w = w0 + w1;
qreal samplePos = (p0 * w0 + p1 * w1) / w;
if (qIsNaN(samplePos)) {
samplePos = 0;
w = 0;
}
p[radius - i - 1].set("tL" + QByteArray::number(i+1), samplePos, w);
p[radius + i + 2].set("tR" + QByteArray::number(i+1), -samplePos, w);
}
}
}
QByteArray qgfx_gaussianVertexShader(QGfxGaussSample *p, int samples)
{
QByteArray shader;
shader.reserve(1024);
shader += "attribute highp vec4 qt_Vertex;\n"
"attribute highp vec2 qt_MultiTexCoord0;\n\n"
"uniform highp mat4 qt_Matrix;\n"
"uniform highp float spread;\n"
"uniform highp vec2 dirstep;\n\n";
qgfx_declareBlurVaryings(shader, p, samples);
shader += "\nvoid main() {\n"
" gl_Position = qt_Matrix * qt_Vertex;\n\n";
for (int i=0; i<samples; ++i) {
shader += " ";
shader += p[i].name;
shader += " = qt_MultiTexCoord0";
if (p[i].pos != 0.0) {
shader += " + spread * dirstep * float(";
shader += QByteArray::number(p[i].pos);
shader += ')';
}
shader += ";\n";
}
shader += "}\n";
return shader;
}
QByteArray qgfx_gaussianVertexCoreShader(QGfxGaussSample *p, int samples)
{
QByteArray shader;
shader.reserve(1024);
shader += "#version 150 core\n"
"in vec4 qt_Vertex;\n"
"in vec2 qt_MultiTexCoord0;\n\n"
"uniform mat4 qt_Matrix;\n"
"uniform float spread;\n"
"uniform vec2 dirstep;\n\n";
qgfx_declareCoreBlur(shader, "out", p, samples);
shader += "\nvoid main() {\n"
" gl_Position = qt_Matrix * qt_Vertex;\n\n";
for (int i=0; i<samples; ++i) {
shader += " ";
shader += p[i].name;
shader += " = qt_MultiTexCoord0";
if (p[i].pos != 0.0) {
shader += " + spread * dirstep * float(";
shader += QByteArray::number(p[i].pos);
shader += ')';
}
shader += ";\n";
}
shader += "}\n";
return shader;
}
QByteArray qgfx_gaussianFragmentShader(QGfxGaussSample *p, int samples, bool alphaOnly)
{
QByteArray shader;
shader.reserve(1024);
shader += "uniform lowp sampler2D source;\n"
"uniform lowp float qt_Opacity;\n";
if (alphaOnly) {
shader += "uniform lowp vec4 color;\n"
"uniform lowp float thickness;\n";
}
shader += "\n";
qgfx_declareBlurVaryings(shader, p, samples);
shader += "\nvoid main() {\n"
" gl_FragColor = ";
if (alphaOnly)
shader += "mix(vec4(0), color, clamp((";
else
shader += "(";
qreal sum = 0;
for (int i=0; i<samples; ++i)
sum += p[i].weight;
for (int i=0; i<samples; ++i) {
shader += "\n + float(";
shader += QByteArray::number(p[i].weight / sum);
shader += ") * texture2D(source, ";
shader += p[i].name;
shader += ")";
if (alphaOnly)
shader += ".a";
}
shader += "\n )";
if (alphaOnly)
shader += "/thickness, 0.0, 1.0))";
shader += "* qt_Opacity;\n}";
return shader;
}
QByteArray qgfx_gaussianFragmentCoreShader(QGfxGaussSample *p, int samples, bool alphaOnly)
{
QByteArray shader;
shader.reserve(1024);
shader += "#version 150 core\n"
"uniform sampler2D source;\n"
"uniform float qt_Opacity;\n";
if (alphaOnly) {
shader += "uniform vec4 color;\n"
"uniform float thickness;\n";
}
shader += "out vec4 fragColor;\n";
qgfx_declareCoreBlur(shader, "in", p, samples);
shader += "\nvoid main() {\n"
" fragColor = ";
if (alphaOnly)
shader += "mix(vec4(0), color, clamp((";
else
shader += "(";
qreal sum = 0;
for (int i=0; i<samples; ++i)
sum += p[i].weight;
for (int i=0; i<samples; ++i) {
shader += "\n + float(";
shader += QByteArray::number(p[i].weight / sum);
shader += ") * texture(source, ";
shader += p[i].name;
shader += ")";
if (alphaOnly)
shader += ".a";
}
shader += "\n )";
if (alphaOnly)
shader += "/thickness, 0.0, 1.0))";
shader += "* qt_Opacity;\n}";
return shader;
}
static QByteArray qgfx_fallbackVertexShader()
{
return "attribute highp vec4 qt_Vertex;\n"
"attribute highp vec2 qt_MultiTexCoord0;\n"
"uniform highp mat4 qt_Matrix;\n"
"varying highp vec2 qt_TexCoord0;\n"
"void main() {\n"
" gl_Position = qt_Matrix * qt_Vertex;\n"
" qt_TexCoord0 = qt_MultiTexCoord0;\n"
"}\n";
}
static QByteArray qgfx_fallbackCoreVertexShader()
{
return "#version 150 core\n"
"in vec4 qt_Vertex;\n"
"in vec2 qt_MultiTexCoord0;\n"
"uniform mat4 qt_Matrix;\n"
"out vec2 qt_TexCoord0;\n"
"void main() {\n"
" gl_Position = qt_Matrix * qt_Vertex;\n"
" qt_TexCoord0 = qt_MultiTexCoord0;\n"
"}\n";
}
static QByteArray qgfx_fallbackFragmentShader(int requestedRadius, qreal deviation, bool masked, bool alphaOnly)
{
QByteArray fragShader;
if (masked)
fragShader += "uniform mediump sampler2D mask;\n";
fragShader +=
"uniform highp sampler2D source;\n"
"uniform lowp float qt_Opacity;\n"
"uniform mediump float spread;\n"
"uniform highp vec2 dirstep;\n";
if (alphaOnly) {
fragShader += "uniform lowp vec4 color;\n"
"uniform lowp float thickness;\n";
}
fragShader +=
"\n"
"varying highp vec2 qt_TexCoord0;\n"
"\n"
"void main() {\n";
if (alphaOnly)
fragShader += " mediump float result = 0.0;\n";
else
fragShader += " mediump vec4 result = vec4(0);\n";
fragShader += " highp vec2 pixelStep = dirstep * spread;\n";
if (masked)
fragShader += " pixelStep *= texture2D(mask, qt_TexCoord0).a;\n";
float wSum = 0;
for (int r=-requestedRadius; r<=requestedRadius; ++r) {
float w = qgfx_gaussian(r, deviation);
wSum += w;
fragShader += " result += float(";
fragShader += QByteArray::number(w);
fragShader += ") * texture2D(source, qt_TexCoord0 + pixelStep * float(";
fragShader += QByteArray::number(r);
fragShader += "))";
if (alphaOnly)
fragShader += ".a";
fragShader += ";\n";
}
fragShader += " const mediump float wSum = float(";
fragShader += QByteArray::number(wSum);
fragShader += ");\n"
" gl_FragColor = ";
if (alphaOnly)
fragShader += "mix(vec4(0), color, clamp((result / wSum) / thickness, 0.0, 1.0)) * qt_Opacity;\n";
else
fragShader += "(qt_Opacity / wSum) * result;\n";
fragShader += "}\n";
return fragShader;
}
static QByteArray qgfx_fallbackCoreFragmentShader(int requestedRadius, qreal deviation, bool masked, bool alphaOnly)
{
QByteArray fragShader = "#version 150 core\n";
if (masked)
fragShader += "uniform sampler2D mask;\n";
fragShader +=
"uniform sampler2D source;\n"
"uniform float qt_Opacity;\n"
"uniform float spread;\n"
"uniform vec2 dirstep;\n";
if (alphaOnly) {
fragShader += "uniform vec4 color;\n"
"uniform float thickness;\n";
}
fragShader +=
"out vec4 fragColor;\n"
"in vec2 qt_TexCoord0;\n"
"\n"
"void main() {\n";
if (alphaOnly)
fragShader += " float result = 0.0;\n";
else
fragShader += " vec4 result = vec4(0);\n";
fragShader += " vec2 pixelStep = dirstep * spread;\n";
if (masked)
fragShader += " pixelStep *= texture(mask, qt_TexCoord0).a;\n";
float wSum = 0;
for (int r=-requestedRadius; r<=requestedRadius; ++r) {
float w = qgfx_gaussian(r, deviation);
wSum += w;
fragShader += " result += float(";
fragShader += QByteArray::number(w);
fragShader += ") * texture(source, qt_TexCoord0 + pixelStep * float(";
fragShader += QByteArray::number(r);
fragShader += "))";
if (alphaOnly)
fragShader += ".a";
fragShader += ";\n";
}
fragShader += " const float wSum = float(";
fragShader += QByteArray::number(wSum);
fragShader += ");\n"
" fragColor = ";
if (alphaOnly)
fragShader += "mix(vec4(0), color, clamp((result / wSum) / thickness, 0.0, 1.0)) * qt_Opacity;\n";
else
fragShader += "(qt_Opacity / wSum) * result;\n";
fragShader += "}\n";
return fragShader;
}
QVariantMap QGfxShaderBuilder::gaussianBlur(const QJSValue &parameters)
{
int requestedRadius = qMax(0.0, parameters.property(QStringLiteral("radius")).toNumber());
qreal deviation = parameters.property(QStringLiteral("deviation")).toNumber();
bool masked = parameters.property(QStringLiteral("masked")).toBool();
bool alphaOnly = parameters.property(QStringLiteral("alphaOnly")).toBool();
int requestedSamples = requestedRadius * 2 + 1;
int samples = 1 + requestedSamples / 2;
int radius = requestedSamples / 4;
bool fallback = parameters.property(QStringLiteral("fallback")).toBool();
QVariantMap result;
if (samples > m_maxBlurSamples || masked || fallback) {
if (m_coreProfile) {
result[QStringLiteral("fragmentShader")] = qgfx_fallbackCoreFragmentShader(requestedRadius, deviation, masked, alphaOnly);
result[QStringLiteral("vertexShader")] = qgfx_fallbackCoreVertexShader();
} else {
result[QStringLiteral("fragmentShader")] = qgfx_fallbackFragmentShader(requestedRadius, deviation, masked, alphaOnly);
result[QStringLiteral("vertexShader")] = qgfx_fallbackVertexShader();
}
return result;
}
QVarLengthArray<QGfxGaussSample, 64> p(samples);
qgfx_buildGaussSamplePoints(p.data(), samples, radius, deviation);
if (m_coreProfile) {
result[QStringLiteral("fragmentShader")] = qgfx_gaussianFragmentCoreShader(p.data(), samples, alphaOnly);
result[QStringLiteral("vertexShader")] = qgfx_gaussianVertexCoreShader(p.data(), samples);
} else {
result[QStringLiteral("fragmentShader")] = qgfx_gaussianFragmentShader(p.data(), samples, alphaOnly);
result[QStringLiteral("vertexShader")] = qgfx_gaussianVertexShader(p.data(), samples);
}
return result;
}