| /* SPDX-License-Identifier: LGPL-2.1-or-later */ |
| #pragma once |
| |
| #ifndef SD_BOOT |
| #include <assert.h> |
| #endif |
| |
| #include "type.h" |
| |
| #define _align_(x) __attribute__((__aligned__(x))) |
| #define _const_ __attribute__((__const__)) |
| #define _pure_ __attribute__((__pure__)) |
| #define _section_(x) __attribute__((__section__(x))) |
| #define _used_ __attribute__((__used__)) |
| #define _unused_ __attribute__((__unused__)) |
| #define _cleanup_(x) __attribute__((__cleanup__(x))) |
| |
| #define XSTRINGIFY(x) #x |
| #define STRINGIFY(x) XSTRINGIFY(x) |
| |
| #ifndef __COVERITY__ |
| # define VOID_0 ((void)0) |
| #else |
| # define VOID_0 ((void*)0) |
| #endif |
| |
| #define ELEMENTSOF(x) \ |
| (__builtin_choose_expr( \ |
| !__builtin_types_compatible_p(typeof(x), typeof(&*(x))), \ |
| sizeof(x)/sizeof((x)[0]), \ |
| VOID_0)) |
| |
| #define XCONCATENATE(x, y) x ## y |
| #define CONCATENATE(x, y) XCONCATENATE(x, y) |
| |
| #ifdef SD_BOOT |
| #define assert(expr) do {} while (false) |
| #endif |
| |
| #if defined(static_assert) |
| #define assert_cc(expr) \ |
| static_assert(expr, #expr) |
| #else |
| #define assert_cc(expr) \ |
| struct CONCATENATE(_assert_struct_, __COUNTER__) { \ |
| char x[(expr) ? 0 : -1]; \ |
| } |
| #endif |
| |
| #define UNIQ_T(x, uniq) CONCATENATE(__unique_prefix_, CONCATENATE(x, uniq)) |
| #define UNIQ __COUNTER__ |
| |
| /* Note that this works differently from pthread_once(): this macro does |
| * not synchronize code execution, i.e. code that is run conditionalized |
| * on this macro will run concurrently to all other code conditionalized |
| * the same way, there's no ordering or completion enforced. */ |
| #define ONCE __ONCE(UNIQ_T(_once_, UNIQ)) |
| #define __ONCE(o) \ |
| ({ \ |
| static bool (o) = false; \ |
| __sync_bool_compare_and_swap(&(o), false, true); \ |
| }) |
| |
| #undef MAX |
| #define MAX(a, b) __MAX(UNIQ, (a), UNIQ, (b)) |
| #define __MAX(aq, a, bq, b) \ |
| ({ \ |
| const typeof(a) UNIQ_T(A, aq) = (a); \ |
| const typeof(b) UNIQ_T(B, bq) = (b); \ |
| UNIQ_T(A, aq) > UNIQ_T(B, bq) ? UNIQ_T(A, aq) : UNIQ_T(B, bq); \ |
| }) |
| |
| /* evaluates to (void) if _A or _B are not constant or of different types */ |
| #define CONST_MAX(_A, _B) \ |
| (__builtin_choose_expr( \ |
| __builtin_constant_p(_A) && \ |
| __builtin_constant_p(_B) && \ |
| __builtin_types_compatible_p(typeof(_A), typeof(_B)), \ |
| ((_A) > (_B)) ? (_A) : (_B), \ |
| VOID_0)) |
| |
| /* takes two types and returns the size of the larger one */ |
| #define MAXSIZE(A, B) (sizeof(union _packed_ { typeof(A) a; typeof(B) b; })) |
| |
| #define MAX3(x, y, z) \ |
| ({ \ |
| const typeof(x) _c = MAX(x, y); \ |
| MAX(_c, z); \ |
| }) |
| |
| #define MAX4(x, y, z, a) \ |
| ({ \ |
| const typeof(x) _d = MAX3(x, y, z); \ |
| MAX(_d, a); \ |
| }) |
| |
| #undef MIN |
| #define MIN(a, b) __MIN(UNIQ, (a), UNIQ, (b)) |
| #define __MIN(aq, a, bq, b) \ |
| ({ \ |
| const typeof(a) UNIQ_T(A, aq) = (a); \ |
| const typeof(b) UNIQ_T(B, bq) = (b); \ |
| UNIQ_T(A, aq) < UNIQ_T(B, bq) ? UNIQ_T(A, aq) : UNIQ_T(B, bq); \ |
| }) |
| |
| /* evaluates to (void) if _A or _B are not constant or of different types */ |
| #define CONST_MIN(_A, _B) \ |
| (__builtin_choose_expr( \ |
| __builtin_constant_p(_A) && \ |
| __builtin_constant_p(_B) && \ |
| __builtin_types_compatible_p(typeof(_A), typeof(_B)), \ |
| ((_A) < (_B)) ? (_A) : (_B), \ |
| VOID_0)) |
| |
| #define MIN3(x, y, z) \ |
| ({ \ |
| const typeof(x) _c = MIN(x, y); \ |
| MIN(_c, z); \ |
| }) |
| |
| #define LESS_BY(a, b) __LESS_BY(UNIQ, (a), UNIQ, (b)) |
| #define __LESS_BY(aq, a, bq, b) \ |
| ({ \ |
| const typeof(a) UNIQ_T(A, aq) = (a); \ |
| const typeof(b) UNIQ_T(B, bq) = (b); \ |
| UNIQ_T(A, aq) > UNIQ_T(B, bq) ? UNIQ_T(A, aq) - UNIQ_T(B, bq) : 0; \ |
| }) |
| |
| #define CMP(a, b) __CMP(UNIQ, (a), UNIQ, (b)) |
| #define __CMP(aq, a, bq, b) \ |
| ({ \ |
| const typeof(a) UNIQ_T(A, aq) = (a); \ |
| const typeof(b) UNIQ_T(B, bq) = (b); \ |
| UNIQ_T(A, aq) < UNIQ_T(B, bq) ? -1 : \ |
| UNIQ_T(A, aq) > UNIQ_T(B, bq) ? 1 : 0; \ |
| }) |
| |
| #undef CLAMP |
| #define CLAMP(x, low, high) __CLAMP(UNIQ, (x), UNIQ, (low), UNIQ, (high)) |
| #define __CLAMP(xq, x, lowq, low, highq, high) \ |
| ({ \ |
| const typeof(x) UNIQ_T(X, xq) = (x); \ |
| const typeof(low) UNIQ_T(LOW, lowq) = (low); \ |
| const typeof(high) UNIQ_T(HIGH, highq) = (high); \ |
| UNIQ_T(X, xq) > UNIQ_T(HIGH, highq) ? \ |
| UNIQ_T(HIGH, highq) : \ |
| UNIQ_T(X, xq) < UNIQ_T(LOW, lowq) ? \ |
| UNIQ_T(LOW, lowq) : \ |
| UNIQ_T(X, xq); \ |
| }) |
| |
| /* [(x + y - 1) / y] suffers from an integer overflow, even though the |
| * computation should be possible in the given type. Therefore, we use |
| * [x / y + !!(x % y)]. Note that on "Real CPUs" a division returns both the |
| * quotient and the remainder, so both should be equally fast. */ |
| #define DIV_ROUND_UP(x, y) __DIV_ROUND_UP(UNIQ, (x), UNIQ, (y)) |
| #define __DIV_ROUND_UP(xq, x, yq, y) \ |
| ({ \ |
| const typeof(x) UNIQ_T(X, xq) = (x); \ |
| const typeof(y) UNIQ_T(Y, yq) = (y); \ |
| (UNIQ_T(X, xq) / UNIQ_T(Y, yq) + !!(UNIQ_T(X, xq) % UNIQ_T(Y, yq))); \ |
| }) |
| |
| #define CASE_F(X) case X: |
| #define CASE_F_1(CASE, X) CASE_F(X) |
| #define CASE_F_2(CASE, X, ...) CASE(X) CASE_F_1(CASE, __VA_ARGS__) |
| #define CASE_F_3(CASE, X, ...) CASE(X) CASE_F_2(CASE, __VA_ARGS__) |
| #define CASE_F_4(CASE, X, ...) CASE(X) CASE_F_3(CASE, __VA_ARGS__) |
| #define CASE_F_5(CASE, X, ...) CASE(X) CASE_F_4(CASE, __VA_ARGS__) |
| #define CASE_F_6(CASE, X, ...) CASE(X) CASE_F_5(CASE, __VA_ARGS__) |
| #define CASE_F_7(CASE, X, ...) CASE(X) CASE_F_6(CASE, __VA_ARGS__) |
| #define CASE_F_8(CASE, X, ...) CASE(X) CASE_F_7(CASE, __VA_ARGS__) |
| #define CASE_F_9(CASE, X, ...) CASE(X) CASE_F_8(CASE, __VA_ARGS__) |
| #define CASE_F_10(CASE, X, ...) CASE(X) CASE_F_9(CASE, __VA_ARGS__) |
| #define CASE_F_11(CASE, X, ...) CASE(X) CASE_F_10(CASE, __VA_ARGS__) |
| #define CASE_F_12(CASE, X, ...) CASE(X) CASE_F_11(CASE, __VA_ARGS__) |
| #define CASE_F_13(CASE, X, ...) CASE(X) CASE_F_12(CASE, __VA_ARGS__) |
| #define CASE_F_14(CASE, X, ...) CASE(X) CASE_F_13(CASE, __VA_ARGS__) |
| #define CASE_F_15(CASE, X, ...) CASE(X) CASE_F_14(CASE, __VA_ARGS__) |
| #define CASE_F_16(CASE, X, ...) CASE(X) CASE_F_15(CASE, __VA_ARGS__) |
| #define CASE_F_17(CASE, X, ...) CASE(X) CASE_F_16(CASE, __VA_ARGS__) |
| #define CASE_F_18(CASE, X, ...) CASE(X) CASE_F_17(CASE, __VA_ARGS__) |
| #define CASE_F_19(CASE, X, ...) CASE(X) CASE_F_18(CASE, __VA_ARGS__) |
| #define CASE_F_20(CASE, X, ...) CASE(X) CASE_F_19(CASE, __VA_ARGS__) |
| |
| #define GET_CASE_F(_1,_2,_3,_4,_5,_6,_7,_8,_9,_10,_11,_12,_13,_14,_15,_16,_17,_18,_19,_20,NAME,...) NAME |
| #define FOR_EACH_MAKE_CASE(...) \ |
| GET_CASE_F(__VA_ARGS__,CASE_F_20,CASE_F_19,CASE_F_18,CASE_F_17,CASE_F_16,CASE_F_15,CASE_F_14,CASE_F_13,CASE_F_12,CASE_F_11, \ |
| CASE_F_10,CASE_F_9,CASE_F_8,CASE_F_7,CASE_F_6,CASE_F_5,CASE_F_4,CASE_F_3,CASE_F_2,CASE_F_1) \ |
| (CASE_F,__VA_ARGS__) |
| |
| #define IN_SET(x, ...) \ |
| ({ \ |
| sd_bool _found = false; \ |
| /* If the build breaks in the line below, you need to extend the case macros. (We use "long double" as \ |
| * type for the array, in the hope that checkers such as ubsan don't complain that the initializers for \ |
| * the array are not representable by the base type. Ideally we'd use typeof(x) as base type, but that \ |
| * doesn't work, as we want to use this on bitfields and gcc refuses typeof() on bitfields.) */ \ |
| static const long double __assert_in_set[] _unused_ = { __VA_ARGS__ }; \ |
| assert_cc(ELEMENTSOF(__assert_in_set) <= 20); \ |
| switch(x) { \ |
| FOR_EACH_MAKE_CASE(__VA_ARGS__) \ |
| _found = true; \ |
| break; \ |
| default: \ |
| break; \ |
| } \ |
| _found; \ |
| }) |
| |
| /* Takes inspiration from Rust's Option::take() method: reads and returns a pointer, but at the same time |
| * resets it to NULL. See: https://doc.rust-lang.org/std/option/enum.Option.html#method.take */ |
| #define TAKE_PTR(ptr) \ |
| ({ \ |
| typeof(ptr) _ptr_ = (ptr); \ |
| (ptr) = NULL; \ |
| _ptr_; \ |
| }) |