blob: 967518600d404db52ad232d87789302899f2ff21 [file] [log] [blame]
/* SPDX-License-Identifier: LGPL-2.1-or-later */
#pragma once
#ifndef SD_BOOT
#include <assert.h>
#endif
#include "type.h"
#define _align_(x) __attribute__((__aligned__(x)))
#define _const_ __attribute__((__const__))
#define _pure_ __attribute__((__pure__))
#define _section_(x) __attribute__((__section__(x)))
#define _used_ __attribute__((__used__))
#define _unused_ __attribute__((__unused__))
#define _cleanup_(x) __attribute__((__cleanup__(x)))
#define XSTRINGIFY(x) #x
#define STRINGIFY(x) XSTRINGIFY(x)
#ifndef __COVERITY__
# define VOID_0 ((void)0)
#else
# define VOID_0 ((void*)0)
#endif
#define ELEMENTSOF(x) \
(__builtin_choose_expr( \
!__builtin_types_compatible_p(typeof(x), typeof(&*(x))), \
sizeof(x)/sizeof((x)[0]), \
VOID_0))
#define XCONCATENATE(x, y) x ## y
#define CONCATENATE(x, y) XCONCATENATE(x, y)
#ifdef SD_BOOT
#define assert(expr) do {} while (false)
#endif
#if defined(static_assert)
#define assert_cc(expr) \
static_assert(expr, #expr)
#else
#define assert_cc(expr) \
struct CONCATENATE(_assert_struct_, __COUNTER__) { \
char x[(expr) ? 0 : -1]; \
}
#endif
#define UNIQ_T(x, uniq) CONCATENATE(__unique_prefix_, CONCATENATE(x, uniq))
#define UNIQ __COUNTER__
/* Note that this works differently from pthread_once(): this macro does
* not synchronize code execution, i.e. code that is run conditionalized
* on this macro will run concurrently to all other code conditionalized
* the same way, there's no ordering or completion enforced. */
#define ONCE __ONCE(UNIQ_T(_once_, UNIQ))
#define __ONCE(o) \
({ \
static bool (o) = false; \
__sync_bool_compare_and_swap(&(o), false, true); \
})
#undef MAX
#define MAX(a, b) __MAX(UNIQ, (a), UNIQ, (b))
#define __MAX(aq, a, bq, b) \
({ \
const typeof(a) UNIQ_T(A, aq) = (a); \
const typeof(b) UNIQ_T(B, bq) = (b); \
UNIQ_T(A, aq) > UNIQ_T(B, bq) ? UNIQ_T(A, aq) : UNIQ_T(B, bq); \
})
/* evaluates to (void) if _A or _B are not constant or of different types */
#define CONST_MAX(_A, _B) \
(__builtin_choose_expr( \
__builtin_constant_p(_A) && \
__builtin_constant_p(_B) && \
__builtin_types_compatible_p(typeof(_A), typeof(_B)), \
((_A) > (_B)) ? (_A) : (_B), \
VOID_0))
/* takes two types and returns the size of the larger one */
#define MAXSIZE(A, B) (sizeof(union _packed_ { typeof(A) a; typeof(B) b; }))
#define MAX3(x, y, z) \
({ \
const typeof(x) _c = MAX(x, y); \
MAX(_c, z); \
})
#define MAX4(x, y, z, a) \
({ \
const typeof(x) _d = MAX3(x, y, z); \
MAX(_d, a); \
})
#undef MIN
#define MIN(a, b) __MIN(UNIQ, (a), UNIQ, (b))
#define __MIN(aq, a, bq, b) \
({ \
const typeof(a) UNIQ_T(A, aq) = (a); \
const typeof(b) UNIQ_T(B, bq) = (b); \
UNIQ_T(A, aq) < UNIQ_T(B, bq) ? UNIQ_T(A, aq) : UNIQ_T(B, bq); \
})
/* evaluates to (void) if _A or _B are not constant or of different types */
#define CONST_MIN(_A, _B) \
(__builtin_choose_expr( \
__builtin_constant_p(_A) && \
__builtin_constant_p(_B) && \
__builtin_types_compatible_p(typeof(_A), typeof(_B)), \
((_A) < (_B)) ? (_A) : (_B), \
VOID_0))
#define MIN3(x, y, z) \
({ \
const typeof(x) _c = MIN(x, y); \
MIN(_c, z); \
})
#define LESS_BY(a, b) __LESS_BY(UNIQ, (a), UNIQ, (b))
#define __LESS_BY(aq, a, bq, b) \
({ \
const typeof(a) UNIQ_T(A, aq) = (a); \
const typeof(b) UNIQ_T(B, bq) = (b); \
UNIQ_T(A, aq) > UNIQ_T(B, bq) ? UNIQ_T(A, aq) - UNIQ_T(B, bq) : 0; \
})
#define CMP(a, b) __CMP(UNIQ, (a), UNIQ, (b))
#define __CMP(aq, a, bq, b) \
({ \
const typeof(a) UNIQ_T(A, aq) = (a); \
const typeof(b) UNIQ_T(B, bq) = (b); \
UNIQ_T(A, aq) < UNIQ_T(B, bq) ? -1 : \
UNIQ_T(A, aq) > UNIQ_T(B, bq) ? 1 : 0; \
})
#undef CLAMP
#define CLAMP(x, low, high) __CLAMP(UNIQ, (x), UNIQ, (low), UNIQ, (high))
#define __CLAMP(xq, x, lowq, low, highq, high) \
({ \
const typeof(x) UNIQ_T(X, xq) = (x); \
const typeof(low) UNIQ_T(LOW, lowq) = (low); \
const typeof(high) UNIQ_T(HIGH, highq) = (high); \
UNIQ_T(X, xq) > UNIQ_T(HIGH, highq) ? \
UNIQ_T(HIGH, highq) : \
UNIQ_T(X, xq) < UNIQ_T(LOW, lowq) ? \
UNIQ_T(LOW, lowq) : \
UNIQ_T(X, xq); \
})
/* [(x + y - 1) / y] suffers from an integer overflow, even though the
* computation should be possible in the given type. Therefore, we use
* [x / y + !!(x % y)]. Note that on "Real CPUs" a division returns both the
* quotient and the remainder, so both should be equally fast. */
#define DIV_ROUND_UP(x, y) __DIV_ROUND_UP(UNIQ, (x), UNIQ, (y))
#define __DIV_ROUND_UP(xq, x, yq, y) \
({ \
const typeof(x) UNIQ_T(X, xq) = (x); \
const typeof(y) UNIQ_T(Y, yq) = (y); \
(UNIQ_T(X, xq) / UNIQ_T(Y, yq) + !!(UNIQ_T(X, xq) % UNIQ_T(Y, yq))); \
})
#define CASE_F(X) case X:
#define CASE_F_1(CASE, X) CASE_F(X)
#define CASE_F_2(CASE, X, ...) CASE(X) CASE_F_1(CASE, __VA_ARGS__)
#define CASE_F_3(CASE, X, ...) CASE(X) CASE_F_2(CASE, __VA_ARGS__)
#define CASE_F_4(CASE, X, ...) CASE(X) CASE_F_3(CASE, __VA_ARGS__)
#define CASE_F_5(CASE, X, ...) CASE(X) CASE_F_4(CASE, __VA_ARGS__)
#define CASE_F_6(CASE, X, ...) CASE(X) CASE_F_5(CASE, __VA_ARGS__)
#define CASE_F_7(CASE, X, ...) CASE(X) CASE_F_6(CASE, __VA_ARGS__)
#define CASE_F_8(CASE, X, ...) CASE(X) CASE_F_7(CASE, __VA_ARGS__)
#define CASE_F_9(CASE, X, ...) CASE(X) CASE_F_8(CASE, __VA_ARGS__)
#define CASE_F_10(CASE, X, ...) CASE(X) CASE_F_9(CASE, __VA_ARGS__)
#define CASE_F_11(CASE, X, ...) CASE(X) CASE_F_10(CASE, __VA_ARGS__)
#define CASE_F_12(CASE, X, ...) CASE(X) CASE_F_11(CASE, __VA_ARGS__)
#define CASE_F_13(CASE, X, ...) CASE(X) CASE_F_12(CASE, __VA_ARGS__)
#define CASE_F_14(CASE, X, ...) CASE(X) CASE_F_13(CASE, __VA_ARGS__)
#define CASE_F_15(CASE, X, ...) CASE(X) CASE_F_14(CASE, __VA_ARGS__)
#define CASE_F_16(CASE, X, ...) CASE(X) CASE_F_15(CASE, __VA_ARGS__)
#define CASE_F_17(CASE, X, ...) CASE(X) CASE_F_16(CASE, __VA_ARGS__)
#define CASE_F_18(CASE, X, ...) CASE(X) CASE_F_17(CASE, __VA_ARGS__)
#define CASE_F_19(CASE, X, ...) CASE(X) CASE_F_18(CASE, __VA_ARGS__)
#define CASE_F_20(CASE, X, ...) CASE(X) CASE_F_19(CASE, __VA_ARGS__)
#define GET_CASE_F(_1,_2,_3,_4,_5,_6,_7,_8,_9,_10,_11,_12,_13,_14,_15,_16,_17,_18,_19,_20,NAME,...) NAME
#define FOR_EACH_MAKE_CASE(...) \
GET_CASE_F(__VA_ARGS__,CASE_F_20,CASE_F_19,CASE_F_18,CASE_F_17,CASE_F_16,CASE_F_15,CASE_F_14,CASE_F_13,CASE_F_12,CASE_F_11, \
CASE_F_10,CASE_F_9,CASE_F_8,CASE_F_7,CASE_F_6,CASE_F_5,CASE_F_4,CASE_F_3,CASE_F_2,CASE_F_1) \
(CASE_F,__VA_ARGS__)
#define IN_SET(x, ...) \
({ \
sd_bool _found = false; \
/* If the build breaks in the line below, you need to extend the case macros. (We use "long double" as \
* type for the array, in the hope that checkers such as ubsan don't complain that the initializers for \
* the array are not representable by the base type. Ideally we'd use typeof(x) as base type, but that \
* doesn't work, as we want to use this on bitfields and gcc refuses typeof() on bitfields.) */ \
static const long double __assert_in_set[] _unused_ = { __VA_ARGS__ }; \
assert_cc(ELEMENTSOF(__assert_in_set) <= 20); \
switch(x) { \
FOR_EACH_MAKE_CASE(__VA_ARGS__) \
_found = true; \
break; \
default: \
break; \
} \
_found; \
})
/* Takes inspiration from Rust's Option::take() method: reads and returns a pointer, but at the same time
* resets it to NULL. See: https://doc.rust-lang.org/std/option/enum.Option.html#method.take */
#define TAKE_PTR(ptr) \
({ \
typeof(ptr) _ptr_ = (ptr); \
(ptr) = NULL; \
_ptr_; \
})