blob: 246e2d9db7cf6811a60ddf4f89b8e85dc4d324e8 [file] [log] [blame]
/* SPDX-License-Identifier: LGPL-2.1-or-later */
#include <fcntl.h>
#include <netinet/in.h>
#include <poll.h>
#include <sys/ioctl.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include "af-list.h"
#include "alloc-util.h"
#include "bus-polkit.h"
#include "dirent-util.h"
#include "dns-domain.h"
#include "fd-util.h"
#include "fileio.h"
#include "hostname-util.h"
#include "idn-util.h"
#include "io-util.h"
#include "missing_network.h"
#include "missing_socket.h"
#include "netlink-util.h"
#include "ordered-set.h"
#include "parse-util.h"
#include "random-util.h"
#include "resolved-bus.h"
#include "resolved-conf.h"
#include "resolved-dns-stub.h"
#include "resolved-dnssd.h"
#include "resolved-etc-hosts.h"
#include "resolved-llmnr.h"
#include "resolved-manager.h"
#include "resolved-mdns.h"
#include "resolved-resolv-conf.h"
#include "resolved-util.h"
#include "resolved-varlink.h"
#include "socket-util.h"
#include "string-table.h"
#include "string-util.h"
#include "utf8.h"
#define SEND_TIMEOUT_USEC (200 * USEC_PER_MSEC)
static int manager_process_link(sd_netlink *rtnl, sd_netlink_message *mm, void *userdata) {
Manager *m = userdata;
uint16_t type;
Link *l;
int ifindex, r;
assert(rtnl);
assert(m);
assert(mm);
r = sd_netlink_message_get_type(mm, &type);
if (r < 0)
goto fail;
r = sd_rtnl_message_link_get_ifindex(mm, &ifindex);
if (r < 0)
goto fail;
l = hashmap_get(m->links, INT_TO_PTR(ifindex));
switch (type) {
case RTM_NEWLINK:{
bool is_new = !l;
if (!l) {
r = link_new(m, &l, ifindex);
if (r < 0)
goto fail;
}
r = link_process_rtnl(l, mm);
if (r < 0)
goto fail;
r = link_update(l);
if (r < 0)
goto fail;
if (is_new)
log_debug("Found new link %i/%s", ifindex, l->ifname);
break;
}
case RTM_DELLINK:
if (l) {
log_debug("Removing link %i/%s", l->ifindex, l->ifname);
link_remove_user(l);
link_free(l);
}
break;
}
return 0;
fail:
log_warning_errno(r, "Failed to process RTNL link message: %m");
return 0;
}
static int manager_process_address(sd_netlink *rtnl, sd_netlink_message *mm, void *userdata) {
Manager *m = userdata;
union in_addr_union address;
uint16_t type;
int r, ifindex, family;
LinkAddress *a;
Link *l;
assert(rtnl);
assert(mm);
assert(m);
r = sd_netlink_message_get_type(mm, &type);
if (r < 0)
goto fail;
r = sd_rtnl_message_addr_get_ifindex(mm, &ifindex);
if (r < 0)
goto fail;
l = hashmap_get(m->links, INT_TO_PTR(ifindex));
if (!l)
return 0;
r = sd_rtnl_message_addr_get_family(mm, &family);
if (r < 0)
goto fail;
switch (family) {
case AF_INET:
r = sd_netlink_message_read_in_addr(mm, IFA_LOCAL, &address.in);
if (r < 0) {
r = sd_netlink_message_read_in_addr(mm, IFA_ADDRESS, &address.in);
if (r < 0)
goto fail;
}
break;
case AF_INET6:
r = sd_netlink_message_read_in6_addr(mm, IFA_LOCAL, &address.in6);
if (r < 0) {
r = sd_netlink_message_read_in6_addr(mm, IFA_ADDRESS, &address.in6);
if (r < 0)
goto fail;
}
break;
default:
return 0;
}
a = link_find_address(l, family, &address);
switch (type) {
case RTM_NEWADDR:
if (!a) {
r = link_address_new(l, &a, family, &address);
if (r < 0)
return r;
}
r = link_address_update_rtnl(a, mm);
if (r < 0)
return r;
break;
case RTM_DELADDR:
link_address_free(a);
break;
}
return 0;
fail:
log_warning_errno(r, "Failed to process RTNL address message: %m");
return 0;
}
static int manager_rtnl_listen(Manager *m) {
_cleanup_(sd_netlink_message_unrefp) sd_netlink_message *req = NULL, *reply = NULL;
sd_netlink_message *i;
int r;
assert(m);
/* First, subscribe to interfaces coming and going */
r = sd_netlink_open(&m->rtnl);
if (r < 0)
return r;
r = sd_netlink_attach_event(m->rtnl, m->event, SD_EVENT_PRIORITY_IMPORTANT);
if (r < 0)
return r;
r = sd_netlink_add_match(m->rtnl, NULL, RTM_NEWLINK, manager_process_link, NULL, m, "resolve-NEWLINK");
if (r < 0)
return r;
r = sd_netlink_add_match(m->rtnl, NULL, RTM_DELLINK, manager_process_link, NULL, m, "resolve-DELLINK");
if (r < 0)
return r;
r = sd_netlink_add_match(m->rtnl, NULL, RTM_NEWADDR, manager_process_address, NULL, m, "resolve-NEWADDR");
if (r < 0)
return r;
r = sd_netlink_add_match(m->rtnl, NULL, RTM_DELADDR, manager_process_address, NULL, m, "resolve-DELADDR");
if (r < 0)
return r;
/* Then, enumerate all links */
r = sd_rtnl_message_new_link(m->rtnl, &req, RTM_GETLINK, 0);
if (r < 0)
return r;
r = sd_netlink_message_request_dump(req, true);
if (r < 0)
return r;
r = sd_netlink_call(m->rtnl, req, 0, &reply);
if (r < 0)
return r;
for (i = reply; i; i = sd_netlink_message_next(i)) {
r = manager_process_link(m->rtnl, i, m);
if (r < 0)
return r;
}
req = sd_netlink_message_unref(req);
reply = sd_netlink_message_unref(reply);
/* Finally, enumerate all addresses, too */
r = sd_rtnl_message_new_addr(m->rtnl, &req, RTM_GETADDR, 0, AF_UNSPEC);
if (r < 0)
return r;
r = sd_netlink_message_request_dump(req, true);
if (r < 0)
return r;
r = sd_netlink_call(m->rtnl, req, 0, &reply);
if (r < 0)
return r;
for (i = reply; i; i = sd_netlink_message_next(i)) {
r = manager_process_address(m->rtnl, i, m);
if (r < 0)
return r;
}
return r;
}
static int on_network_event(sd_event_source *s, int fd, uint32_t revents, void *userdata) {
Manager *m = userdata;
Link *l;
int r;
assert(m);
sd_network_monitor_flush(m->network_monitor);
HASHMAP_FOREACH(l, m->links) {
r = link_update(l);
if (r < 0)
log_warning_errno(r, "Failed to update monitor information for %i: %m", l->ifindex);
}
(void) manager_write_resolv_conf(m);
(void) manager_send_changed(m, "DNS");
return 0;
}
static int manager_network_monitor_listen(Manager *m) {
int r, fd, events;
assert(m);
r = sd_network_monitor_new(&m->network_monitor, NULL);
if (r < 0)
return r;
fd = sd_network_monitor_get_fd(m->network_monitor);
if (fd < 0)
return fd;
events = sd_network_monitor_get_events(m->network_monitor);
if (events < 0)
return events;
r = sd_event_add_io(m->event, &m->network_event_source, fd, events, &on_network_event, m);
if (r < 0)
return r;
r = sd_event_source_set_priority(m->network_event_source, SD_EVENT_PRIORITY_IMPORTANT+5);
if (r < 0)
return r;
(void) sd_event_source_set_description(m->network_event_source, "network-monitor");
return 0;
}
static int manager_clock_change_listen(Manager *m);
static int on_clock_change(sd_event_source *source, int fd, uint32_t revents, void *userdata) {
Manager *m = userdata;
assert(m);
/* The clock has changed, let's flush all caches. Why that? That's because DNSSEC validation takes
* the system clock into consideration, and if the clock changes the old validations might have been
* wrong. Let's redo all validation with the new, correct time.
*
* (Also, this is triggered after system suspend, which is also a good reason to drop caches, since
* we might be connected to a different network now without this being visible in a dropped link
* carrier or so.) */
log_info("Clock change detected. Flushing caches.");
manager_flush_caches(m, LOG_DEBUG /* downgrade the functions own log message, since we already logged here at LOG_INFO level */);
/* The clock change timerfd is unusable after it triggered once, create a new one. */
return manager_clock_change_listen(m);
}
static int manager_clock_change_listen(Manager *m) {
_cleanup_close_ int fd = -1;
int r;
assert(m);
m->clock_change_event_source = sd_event_source_disable_unref(m->clock_change_event_source);
fd = time_change_fd();
if (fd < 0)
return log_error_errno(fd, "Failed to allocate clock change timer fd: %m");
r = sd_event_add_io(m->event, &m->clock_change_event_source, fd, EPOLLIN, on_clock_change, m);
if (r < 0)
return log_error_errno(r, "Failed to create clock change event source: %m");
r = sd_event_source_set_io_fd_own(m->clock_change_event_source, true);
if (r < 0)
return log_error_errno(r, "Failed to pass ownership of clock fd to event source: %m");
TAKE_FD(fd);
(void) sd_event_source_set_description(m->clock_change_event_source, "clock-change");
return 0;
}
static int determine_hostnames(char **full_hostname, char **llmnr_hostname, char **mdns_hostname) {
_cleanup_free_ char *h = NULL, *n = NULL;
int r;
assert(full_hostname);
assert(llmnr_hostname);
assert(mdns_hostname);
r = resolve_system_hostname(&h, &n);
if (r < 0)
return r;
r = dns_name_concat(n, "local", 0, mdns_hostname);
if (r < 0)
return log_error_errno(r, "Failed to determine mDNS hostname: %m");
*llmnr_hostname = TAKE_PTR(n);
*full_hostname = TAKE_PTR(h);
return 0;
}
static char* fallback_hostname(void) {
/* Determine the fall back hostname. For exposing this system to the outside world, we cannot have it
* to be "localhost" even if that's the default hostname. In this case, let's revert to "linux"
* instead. */
_cleanup_free_ char *n = get_default_hostname();
if (!n)
return NULL;
if (is_localhost(n))
return strdup("linux");
return TAKE_PTR(n);
}
static int make_fallback_hostnames(char **full_hostname, char **llmnr_hostname, char **mdns_hostname) {
_cleanup_free_ char *h = NULL, *n = NULL, *m = NULL;
char label[DNS_LABEL_MAX];
const char *p;
int r;
assert(full_hostname);
assert(llmnr_hostname);
assert(mdns_hostname);
p = h = fallback_hostname();
if (!h)
return log_oom();
r = dns_label_unescape(&p, label, sizeof label, 0);
if (r < 0)
return log_error_errno(r, "Failed to unescape fallback hostname: %m");
assert(r > 0); /* The fallback hostname must have at least one label */
r = dns_label_escape_new(label, r, &n);
if (r < 0)
return log_error_errno(r, "Failed to escape fallback hostname: %m");
r = dns_name_concat(n, "local", 0, &m);
if (r < 0)
return log_error_errno(r, "Failed to concatenate mDNS hostname: %m");
*llmnr_hostname = TAKE_PTR(n);
*mdns_hostname = TAKE_PTR(m);
*full_hostname = TAKE_PTR(h);
return 0;
}
static int on_hostname_change(sd_event_source *es, int fd, uint32_t revents, void *userdata) {
_cleanup_free_ char *full_hostname = NULL, *llmnr_hostname = NULL, *mdns_hostname = NULL;
Manager *m = userdata;
bool llmnr_hostname_changed;
int r;
assert(m);
r = determine_hostnames(&full_hostname, &llmnr_hostname, &mdns_hostname);
if (r < 0) {
log_warning_errno(r, "Failed to determine the local hostname and LLMNR/mDNS names, ignoring: %m");
return 0; /* ignore invalid hostnames */
}
llmnr_hostname_changed = !streq(llmnr_hostname, m->llmnr_hostname);
if (streq(full_hostname, m->full_hostname) &&
!llmnr_hostname_changed &&
streq(mdns_hostname, m->mdns_hostname))
return 0;
log_info("System hostname changed to '%s'.", full_hostname);
free_and_replace(m->full_hostname, full_hostname);
free_and_replace(m->llmnr_hostname, llmnr_hostname);
free_and_replace(m->mdns_hostname, mdns_hostname);
manager_refresh_rrs(m);
(void) manager_send_changed(m, "LLMNRHostname");
return 0;
}
static int manager_watch_hostname(Manager *m) {
int r;
assert(m);
m->hostname_fd = open("/proc/sys/kernel/hostname",
O_RDONLY|O_CLOEXEC|O_NONBLOCK|O_NOCTTY);
if (m->hostname_fd < 0) {
log_warning_errno(errno, "Failed to watch hostname: %m");
return 0;
}
r = sd_event_add_io(m->event, &m->hostname_event_source, m->hostname_fd, 0, on_hostname_change, m);
if (r < 0) {
if (r == -EPERM)
/* kernels prior to 3.2 don't support polling this file. Ignore the failure. */
m->hostname_fd = safe_close(m->hostname_fd);
else
return log_error_errno(r, "Failed to add hostname event source: %m");
}
(void) sd_event_source_set_description(m->hostname_event_source, "hostname");
r = determine_hostnames(&m->full_hostname, &m->llmnr_hostname, &m->mdns_hostname);
if (r < 0) {
_cleanup_free_ char *d = NULL;
d = fallback_hostname();
if (!d)
return log_oom();
log_info("Defaulting to hostname '%s'.", d);
r = make_fallback_hostnames(&m->full_hostname, &m->llmnr_hostname, &m->mdns_hostname);
if (r < 0)
return r;
} else
log_info("Using system hostname '%s'.", m->full_hostname);
return 0;
}
static int manager_sigusr1(sd_event_source *s, const struct signalfd_siginfo *si, void *userdata) {
_cleanup_free_ char *buffer = NULL;
_cleanup_fclose_ FILE *f = NULL;
Manager *m = userdata;
DnsServer *server;
size_t size = 0;
DnsScope *scope;
Link *l;
assert(s);
assert(si);
assert(m);
f = open_memstream_unlocked(&buffer, &size);
if (!f)
return log_oom();
LIST_FOREACH(scopes, scope, m->dns_scopes)
dns_scope_dump(scope, f);
LIST_FOREACH(servers, server, m->dns_servers)
dns_server_dump(server, f);
LIST_FOREACH(servers, server, m->fallback_dns_servers)
dns_server_dump(server, f);
HASHMAP_FOREACH(l, m->links)
LIST_FOREACH(servers, server, l->dns_servers)
dns_server_dump(server, f);
if (fflush_and_check(f) < 0)
return log_oom();
log_dump(LOG_INFO, buffer);
return 0;
}
static int manager_sigusr2(sd_event_source *s, const struct signalfd_siginfo *si, void *userdata) {
Manager *m = userdata;
assert(s);
assert(si);
assert(m);
manager_flush_caches(m, LOG_INFO);
return 0;
}
static int manager_sigrtmin1(sd_event_source *s, const struct signalfd_siginfo *si, void *userdata) {
Manager *m = userdata;
assert(s);
assert(si);
assert(m);
manager_reset_server_features(m);
return 0;
}
int manager_new(Manager **ret) {
_cleanup_(manager_freep) Manager *m = NULL;
int r;
assert(ret);
m = new(Manager, 1);
if (!m)
return -ENOMEM;
*m = (Manager) {
.llmnr_ipv4_udp_fd = -1,
.llmnr_ipv6_udp_fd = -1,
.llmnr_ipv4_tcp_fd = -1,
.llmnr_ipv6_tcp_fd = -1,
.mdns_ipv4_fd = -1,
.mdns_ipv6_fd = -1,
.hostname_fd = -1,
.llmnr_support = DEFAULT_LLMNR_MODE,
.mdns_support = DEFAULT_MDNS_MODE,
.dnssec_mode = DEFAULT_DNSSEC_MODE,
.dns_over_tls_mode = DEFAULT_DNS_OVER_TLS_MODE,
.enable_cache = DNS_CACHE_MODE_YES,
.dns_stub_listener_mode = DNS_STUB_LISTENER_YES,
.read_resolv_conf = true,
.need_builtin_fallbacks = true,
.etc_hosts_last = USEC_INFINITY,
.read_etc_hosts = true,
};
r = dns_trust_anchor_load(&m->trust_anchor);
if (r < 0)
return r;
r = manager_parse_config_file(m);
if (r < 0)
log_warning_errno(r, "Failed to parse configuration file: %m");
#if ENABLE_DNS_OVER_TLS
r = dnstls_manager_init(m);
if (r < 0)
return r;
#endif
r = sd_event_default(&m->event);
if (r < 0)
return r;
(void) sd_event_add_signal(m->event, NULL, SIGTERM, NULL, NULL);
(void) sd_event_add_signal(m->event, NULL, SIGINT, NULL, NULL);
(void) sd_event_set_watchdog(m->event, true);
r = manager_watch_hostname(m);
if (r < 0)
return r;
r = dnssd_load(m);
if (r < 0)
log_warning_errno(r, "Failed to load DNS-SD configuration files: %m");
r = dns_scope_new(m, &m->unicast_scope, NULL, DNS_PROTOCOL_DNS, AF_UNSPEC);
if (r < 0)
return r;
r = manager_network_monitor_listen(m);
if (r < 0)
return r;
r = manager_rtnl_listen(m);
if (r < 0)
return r;
r = manager_clock_change_listen(m);
if (r < 0)
return r;
r = manager_connect_bus(m);
if (r < 0)
return r;
(void) sd_event_add_signal(m->event, &m->sigusr1_event_source, SIGUSR1, manager_sigusr1, m);
(void) sd_event_add_signal(m->event, &m->sigusr2_event_source, SIGUSR2, manager_sigusr2, m);
(void) sd_event_add_signal(m->event, &m->sigrtmin1_event_source, SIGRTMIN+1, manager_sigrtmin1, m);
manager_cleanup_saved_user(m);
*ret = TAKE_PTR(m);
return 0;
}
int manager_start(Manager *m) {
int r;
assert(m);
r = manager_dns_stub_start(m);
if (r < 0)
return r;
r = manager_varlink_init(m);
if (r < 0)
return r;
return 0;
}
Manager *manager_free(Manager *m) {
Link *l;
DnssdService *s;
if (!m)
return NULL;
dns_server_unlink_all(m->dns_servers);
dns_server_unlink_all(m->fallback_dns_servers);
dns_search_domain_unlink_all(m->search_domains);
while ((l = hashmap_first(m->links)))
link_free(l);
while (m->dns_queries)
dns_query_free(m->dns_queries);
m->stub_queries_by_packet = hashmap_free(m->stub_queries_by_packet);
dns_scope_free(m->unicast_scope);
/* At this point only orphaned streams should remain. All others should have been freed already by their
* owners */
while (m->dns_streams)
dns_stream_unref(m->dns_streams);
#if ENABLE_DNS_OVER_TLS
dnstls_manager_free(m);
#endif
hashmap_free(m->links);
hashmap_free(m->dns_transactions);
sd_event_source_unref(m->network_event_source);
sd_network_monitor_unref(m->network_monitor);
sd_netlink_unref(m->rtnl);
sd_event_source_unref(m->rtnl_event_source);
sd_event_source_unref(m->clock_change_event_source);
manager_llmnr_stop(m);
manager_mdns_stop(m);
manager_dns_stub_stop(m);
manager_varlink_done(m);
manager_socket_graveyard_clear(m);
ordered_set_free(m->dns_extra_stub_listeners);
bus_verify_polkit_async_registry_free(m->polkit_registry);
sd_bus_flush_close_unref(m->bus);
sd_event_source_unref(m->sigusr1_event_source);
sd_event_source_unref(m->sigusr2_event_source);
sd_event_source_unref(m->sigrtmin1_event_source);
dns_resource_key_unref(m->llmnr_host_ipv4_key);
dns_resource_key_unref(m->llmnr_host_ipv6_key);
dns_resource_key_unref(m->mdns_host_ipv4_key);
dns_resource_key_unref(m->mdns_host_ipv6_key);
sd_event_source_unref(m->hostname_event_source);
safe_close(m->hostname_fd);
sd_event_unref(m->event);
free(m->full_hostname);
free(m->llmnr_hostname);
free(m->mdns_hostname);
while ((s = hashmap_first(m->dnssd_services)))
dnssd_service_free(s);
hashmap_free(m->dnssd_services);
dns_trust_anchor_flush(&m->trust_anchor);
manager_etc_hosts_flush(m);
return mfree(m);
}
int manager_recv(Manager *m, int fd, DnsProtocol protocol, DnsPacket **ret) {
_cleanup_(dns_packet_unrefp) DnsPacket *p = NULL;
CMSG_BUFFER_TYPE(CMSG_SPACE(MAXSIZE(struct in_pktinfo, struct in6_pktinfo))
+ CMSG_SPACE(int) /* ttl/hoplimit */
+ EXTRA_CMSG_SPACE /* kernel appears to require extra buffer space */) control;
union sockaddr_union sa;
struct iovec iov;
struct msghdr mh = {
.msg_name = &sa.sa,
.msg_namelen = sizeof(sa),
.msg_iov = &iov,
.msg_iovlen = 1,
.msg_control = &control,
.msg_controllen = sizeof(control),
};
struct cmsghdr *cmsg;
ssize_t ms, l;
int r;
assert(m);
assert(fd >= 0);
assert(ret);
ms = next_datagram_size_fd(fd);
if (ms < 0)
return ms;
r = dns_packet_new(&p, protocol, ms, DNS_PACKET_SIZE_MAX);
if (r < 0)
return r;
iov = IOVEC_MAKE(DNS_PACKET_DATA(p), p->allocated);
l = recvmsg_safe(fd, &mh, 0);
if (IN_SET(l, -EAGAIN, -EINTR))
return 0;
if (l <= 0)
return l;
assert(!(mh.msg_flags & MSG_TRUNC));
p->size = (size_t) l;
p->family = sa.sa.sa_family;
p->ipproto = IPPROTO_UDP;
if (p->family == AF_INET) {
p->sender.in = sa.in.sin_addr;
p->sender_port = be16toh(sa.in.sin_port);
} else if (p->family == AF_INET6) {
p->sender.in6 = sa.in6.sin6_addr;
p->sender_port = be16toh(sa.in6.sin6_port);
p->ifindex = sa.in6.sin6_scope_id;
} else
return -EAFNOSUPPORT;
p->timestamp = now(clock_boottime_or_monotonic());
CMSG_FOREACH(cmsg, &mh) {
if (cmsg->cmsg_level == IPPROTO_IPV6) {
assert(p->family == AF_INET6);
switch (cmsg->cmsg_type) {
case IPV6_PKTINFO: {
struct in6_pktinfo *i = (struct in6_pktinfo*) CMSG_DATA(cmsg);
if (p->ifindex <= 0)
p->ifindex = i->ipi6_ifindex;
p->destination.in6 = i->ipi6_addr;
break;
}
case IPV6_HOPLIMIT:
p->ttl = *(int *) CMSG_DATA(cmsg);
break;
case IPV6_RECVFRAGSIZE:
p->fragsize = *(int *) CMSG_DATA(cmsg);
break;
}
} else if (cmsg->cmsg_level == IPPROTO_IP) {
assert(p->family == AF_INET);
switch (cmsg->cmsg_type) {
case IP_PKTINFO: {
struct in_pktinfo *i = (struct in_pktinfo*) CMSG_DATA(cmsg);
if (p->ifindex <= 0)
p->ifindex = i->ipi_ifindex;
p->destination.in = i->ipi_addr;
break;
}
case IP_TTL:
p->ttl = *(int *) CMSG_DATA(cmsg);
break;
case IP_RECVFRAGSIZE:
p->fragsize = *(int *) CMSG_DATA(cmsg);
break;
}
}
}
/* The Linux kernel sets the interface index to the loopback
* device if the packet came from the local host since it
* avoids the routing table in such a case. Let's unset the
* interface index in such a case. */
if (p->ifindex == LOOPBACK_IFINDEX)
p->ifindex = 0;
if (protocol != DNS_PROTOCOL_DNS) {
/* If we don't know the interface index still, we look for the
* first local interface with a matching address. Yuck! */
if (p->ifindex <= 0)
p->ifindex = manager_find_ifindex(m, p->family, &p->destination);
}
log_debug("Received %s UDP packet of size %zu, ifindex=%i, ttl=%i, fragsize=%zu",
dns_protocol_to_string(protocol), p->size, p->ifindex, p->ttl, p->fragsize);
*ret = TAKE_PTR(p);
return 1;
}
static int sendmsg_loop(int fd, struct msghdr *mh, int flags) {
int r;
assert(fd >= 0);
assert(mh);
for (;;) {
if (sendmsg(fd, mh, flags) >= 0)
return 0;
if (errno == EINTR)
continue;
if (errno != EAGAIN)
return -errno;
r = fd_wait_for_event(fd, POLLOUT, SEND_TIMEOUT_USEC);
if (r < 0)
return r;
if (r == 0)
return -ETIMEDOUT;
}
}
static int write_loop(int fd, void *message, size_t length) {
int r;
assert(fd >= 0);
assert(message);
for (;;) {
if (write(fd, message, length) >= 0)
return 0;
if (errno == EINTR)
continue;
if (errno != EAGAIN)
return -errno;
r = fd_wait_for_event(fd, POLLOUT, SEND_TIMEOUT_USEC);
if (r < 0)
return r;
if (r == 0)
return -ETIMEDOUT;
}
}
int manager_write(Manager *m, int fd, DnsPacket *p) {
int r;
log_debug("Sending %s%s packet with id %" PRIu16 " of size %zu.",
DNS_PACKET_TC(p) ? "truncated (!) " : "",
DNS_PACKET_QR(p) ? "response" : "query",
DNS_PACKET_ID(p),
p->size);
r = write_loop(fd, DNS_PACKET_DATA(p), p->size);
if (r < 0)
return r;
return 0;
}
static int manager_ipv4_send(
Manager *m,
int fd,
int ifindex,
const struct in_addr *destination,
uint16_t port,
const struct in_addr *source,
DnsPacket *p) {
CMSG_BUFFER_TYPE(CMSG_SPACE(sizeof(struct in_pktinfo))) control = {};
union sockaddr_union sa;
struct iovec iov;
struct msghdr mh = {
.msg_iov = &iov,
.msg_iovlen = 1,
.msg_name = &sa.sa,
.msg_namelen = sizeof(sa.in),
};
assert(m);
assert(fd >= 0);
assert(destination);
assert(port > 0);
assert(p);
iov = IOVEC_MAKE(DNS_PACKET_DATA(p), p->size);
sa = (union sockaddr_union) {
.in.sin_family = AF_INET,
.in.sin_addr = *destination,
.in.sin_port = htobe16(port),
};
if (ifindex > 0) {
struct cmsghdr *cmsg;
struct in_pktinfo *pi;
mh.msg_control = &control;
mh.msg_controllen = sizeof(control);
cmsg = CMSG_FIRSTHDR(&mh);
cmsg->cmsg_len = CMSG_LEN(sizeof(struct in_pktinfo));
cmsg->cmsg_level = IPPROTO_IP;
cmsg->cmsg_type = IP_PKTINFO;
pi = (struct in_pktinfo*) CMSG_DATA(cmsg);
pi->ipi_ifindex = ifindex;
if (source)
pi->ipi_spec_dst = *source;
}
return sendmsg_loop(fd, &mh, 0);
}
static int manager_ipv6_send(
Manager *m,
int fd,
int ifindex,
const struct in6_addr *destination,
uint16_t port,
const struct in6_addr *source,
DnsPacket *p) {
CMSG_BUFFER_TYPE(CMSG_SPACE(sizeof(struct in6_pktinfo))) control = {};
union sockaddr_union sa;
struct iovec iov;
struct msghdr mh = {
.msg_iov = &iov,
.msg_iovlen = 1,
.msg_name = &sa.sa,
.msg_namelen = sizeof(sa.in6),
};
assert(m);
assert(fd >= 0);
assert(destination);
assert(port > 0);
assert(p);
iov = IOVEC_MAKE(DNS_PACKET_DATA(p), p->size);
sa = (union sockaddr_union) {
.in6.sin6_family = AF_INET6,
.in6.sin6_addr = *destination,
.in6.sin6_port = htobe16(port),
.in6.sin6_scope_id = ifindex,
};
if (ifindex > 0) {
struct cmsghdr *cmsg;
struct in6_pktinfo *pi;
mh.msg_control = &control;
mh.msg_controllen = sizeof(control);
cmsg = CMSG_FIRSTHDR(&mh);
cmsg->cmsg_len = CMSG_LEN(sizeof(struct in6_pktinfo));
cmsg->cmsg_level = IPPROTO_IPV6;
cmsg->cmsg_type = IPV6_PKTINFO;
pi = (struct in6_pktinfo*) CMSG_DATA(cmsg);
pi->ipi6_ifindex = ifindex;
if (source)
pi->ipi6_addr = *source;
}
return sendmsg_loop(fd, &mh, 0);
}
int manager_send(
Manager *m,
int fd,
int ifindex,
int family,
const union in_addr_union *destination,
uint16_t port,
const union in_addr_union *source,
DnsPacket *p) {
assert(m);
assert(fd >= 0);
assert(destination);
assert(port > 0);
assert(p);
log_debug("Sending %s%s packet with id %" PRIu16 " on interface %i/%s of size %zu.",
DNS_PACKET_TC(p) ? "truncated (!) " : "",
DNS_PACKET_QR(p) ? "response" : "query",
DNS_PACKET_ID(p),
ifindex, af_to_name(family),
p->size);
if (family == AF_INET)
return manager_ipv4_send(m, fd, ifindex, &destination->in, port, source ? &source->in : NULL, p);
if (family == AF_INET6)
return manager_ipv6_send(m, fd, ifindex, &destination->in6, port, source ? &source->in6 : NULL, p);
return -EAFNOSUPPORT;
}
uint32_t manager_find_mtu(Manager *m) {
uint32_t mtu = 0;
Link *l;
/* If we don't know on which link a DNS packet would be delivered, let's find the largest MTU that
* works on all interfaces we know of that have an IP address associated */
HASHMAP_FOREACH(l, m->links) {
/* Let's filter out links without IP addresses (e.g. AF_CAN links and suchlike) */
if (!l->addresses)
continue;
/* Safety check: MTU shorter than what we need for the absolutely shortest DNS request? Then
* let's ignore this link. */
if (l->mtu < MIN(UDP4_PACKET_HEADER_SIZE + DNS_PACKET_HEADER_SIZE,
UDP6_PACKET_HEADER_SIZE + DNS_PACKET_HEADER_SIZE))
continue;
if (mtu <= 0 || l->mtu < mtu)
mtu = l->mtu;
}
if (mtu == 0) /* found nothing? then let's assume the typical Ethernet MTU for lack of anything more precise */
return 1500;
return mtu;
}
int manager_find_ifindex(Manager *m, int family, const union in_addr_union *in_addr) {
LinkAddress *a;
assert(m);
if (!IN_SET(family, AF_INET, AF_INET6))
return 0;
if (!in_addr)
return 0;
a = manager_find_link_address(m, family, in_addr);
if (a)
return a->link->ifindex;
return 0;
}
void manager_refresh_rrs(Manager *m) {
Link *l;
DnssdService *s;
assert(m);
m->llmnr_host_ipv4_key = dns_resource_key_unref(m->llmnr_host_ipv4_key);
m->llmnr_host_ipv6_key = dns_resource_key_unref(m->llmnr_host_ipv6_key);
m->mdns_host_ipv4_key = dns_resource_key_unref(m->mdns_host_ipv4_key);
m->mdns_host_ipv6_key = dns_resource_key_unref(m->mdns_host_ipv6_key);
HASHMAP_FOREACH(l, m->links)
link_add_rrs(l, true);
if (m->mdns_support == RESOLVE_SUPPORT_YES)
HASHMAP_FOREACH(s, m->dnssd_services)
if (dnssd_update_rrs(s) < 0)
log_warning("Failed to refresh DNS-SD service '%s'", s->name);
HASHMAP_FOREACH(l, m->links)
link_add_rrs(l, false);
}
static int manager_next_random_name(const char *old, char **ret_new) {
const char *p;
uint64_t u, a;
char *n;
p = strchr(old, 0);
assert(p);
while (p > old) {
if (!strchr(DIGITS, p[-1]))
break;
p--;
}
if (*p == 0 || safe_atou64(p, &u) < 0 || u <= 0)
u = 1;
/* Add a random number to the old value. This way we can avoid
* that two hosts pick the same hostname, win on IPv4 and lose
* on IPv6 (or vice versa), and pick the same hostname
* replacement hostname, ad infinitum. We still want the
* numbers to go up monotonically, hence we just add a random
* value 1..10 */
random_bytes(&a, sizeof(a));
u += 1 + a % 10;
if (asprintf(&n, "%.*s%" PRIu64, (int) (p - old), old, u) < 0)
return -ENOMEM;
*ret_new = n;
return 0;
}
int manager_next_hostname(Manager *m) {
_cleanup_free_ char *h = NULL, *k = NULL;
int r;
assert(m);
r = manager_next_random_name(m->llmnr_hostname, &h);
if (r < 0)
return r;
r = dns_name_concat(h, "local", 0, &k);
if (r < 0)
return r;
log_info("Hostname conflict, changing published hostname from '%s' to '%s'.", m->llmnr_hostname, h);
free_and_replace(m->llmnr_hostname, h);
free_and_replace(m->mdns_hostname, k);
manager_refresh_rrs(m);
(void) manager_send_changed(m, "LLMNRHostname");
return 0;
}
LinkAddress* manager_find_link_address(Manager *m, int family, const union in_addr_union *in_addr) {
Link *l;
assert(m);
if (!IN_SET(family, AF_INET, AF_INET6))
return NULL;
if (!in_addr)
return NULL;
HASHMAP_FOREACH(l, m->links) {
LinkAddress *a;
a = link_find_address(l, family, in_addr);
if (a)
return a;
}
return NULL;
}
bool manager_packet_from_local_address(Manager *m, DnsPacket *p) {
assert(m);
assert(p);
/* Let's see if this packet comes from an IP address we have on any local interface */
return !!manager_find_link_address(m, p->family, &p->sender);
}
bool manager_packet_from_our_transaction(Manager *m, DnsPacket *p) {
DnsTransaction *t;
assert(m);
assert(p);
/* Let's see if we have a transaction with a query message with the exact same binary contents as the
* one we just got. If so, it's almost definitely a packet loop of some kind. */
t = hashmap_get(m->dns_transactions, UINT_TO_PTR(DNS_PACKET_ID(p)));
if (!t)
return false;
return t->sent && dns_packet_equal(t->sent, p);
}
DnsScope* manager_find_scope(Manager *m, DnsPacket *p) {
Link *l;
assert(m);
assert(p);
l = hashmap_get(m->links, INT_TO_PTR(p->ifindex));
if (!l)
return NULL;
switch (p->protocol) {
case DNS_PROTOCOL_LLMNR:
if (p->family == AF_INET)
return l->llmnr_ipv4_scope;
else if (p->family == AF_INET6)
return l->llmnr_ipv6_scope;
break;
case DNS_PROTOCOL_MDNS:
if (p->family == AF_INET)
return l->mdns_ipv4_scope;
else if (p->family == AF_INET6)
return l->mdns_ipv6_scope;
break;
default:
break;
}
return NULL;
}
void manager_verify_all(Manager *m) {
DnsScope *s;
assert(m);
LIST_FOREACH(scopes, s, m->dns_scopes)
dns_zone_verify_all(&s->zone);
}
int manager_is_own_hostname(Manager *m, const char *name) {
int r;
assert(m);
assert(name);
if (m->llmnr_hostname) {
r = dns_name_equal(name, m->llmnr_hostname);
if (r != 0)
return r;
}
if (m->mdns_hostname) {
r = dns_name_equal(name, m->mdns_hostname);
if (r != 0)
return r;
}
if (m->full_hostname)
return dns_name_equal(name, m->full_hostname);
return 0;
}
int manager_compile_dns_servers(Manager *m, OrderedSet **dns) {
DnsServer *s;
Link *l;
int r;
assert(m);
assert(dns);
r = ordered_set_ensure_allocated(dns, &dns_server_hash_ops);
if (r < 0)
return r;
/* First add the system-wide servers and domains */
LIST_FOREACH(servers, s, m->dns_servers) {
r = ordered_set_put(*dns, s);
if (r == -EEXIST)
continue;
if (r < 0)
return r;
}
/* Then, add the per-link servers */
HASHMAP_FOREACH(l, m->links) {
LIST_FOREACH(servers, s, l->dns_servers) {
r = ordered_set_put(*dns, s);
if (r == -EEXIST)
continue;
if (r < 0)
return r;
}
}
/* If we found nothing, add the fallback servers */
if (ordered_set_isempty(*dns)) {
LIST_FOREACH(servers, s, m->fallback_dns_servers) {
r = ordered_set_put(*dns, s);
if (r == -EEXIST)
continue;
if (r < 0)
return r;
}
}
return 0;
}
/* filter_route is a tri-state:
* < 0: no filtering
* = 0 or false: return only domains which should be used for searching
* > 0 or true: return only domains which are for routing only
*/
int manager_compile_search_domains(Manager *m, OrderedSet **domains, int filter_route) {
DnsSearchDomain *d;
Link *l;
int r;
assert(m);
assert(domains);
r = ordered_set_ensure_allocated(domains, &dns_name_hash_ops);
if (r < 0)
return r;
LIST_FOREACH(domains, d, m->search_domains) {
if (filter_route >= 0 &&
d->route_only != !!filter_route)
continue;
r = ordered_set_put(*domains, d->name);
if (r == -EEXIST)
continue;
if (r < 0)
return r;
}
HASHMAP_FOREACH(l, m->links) {
LIST_FOREACH(domains, d, l->search_domains) {
if (filter_route >= 0 &&
d->route_only != !!filter_route)
continue;
r = ordered_set_put(*domains, d->name);
if (r == -EEXIST)
continue;
if (r < 0)
return r;
}
}
return 0;
}
DnssecMode manager_get_dnssec_mode(Manager *m) {
assert(m);
if (m->dnssec_mode != _DNSSEC_MODE_INVALID)
return m->dnssec_mode;
return DNSSEC_NO;
}
bool manager_dnssec_supported(Manager *m) {
DnsServer *server;
Link *l;
assert(m);
if (manager_get_dnssec_mode(m) == DNSSEC_NO)
return false;
server = manager_get_dns_server(m);
if (server && !dns_server_dnssec_supported(server))
return false;
HASHMAP_FOREACH(l, m->links)
if (!link_dnssec_supported(l))
return false;
return true;
}
DnsOverTlsMode manager_get_dns_over_tls_mode(Manager *m) {
assert(m);
if (m->dns_over_tls_mode != _DNS_OVER_TLS_MODE_INVALID)
return m->dns_over_tls_mode;
return DNS_OVER_TLS_NO;
}
void manager_dnssec_verdict(Manager *m, DnssecVerdict verdict, const DnsResourceKey *key) {
assert(verdict >= 0);
assert(verdict < _DNSSEC_VERDICT_MAX);
if (DEBUG_LOGGING) {
char s[DNS_RESOURCE_KEY_STRING_MAX];
log_debug("Found verdict for lookup %s: %s",
dns_resource_key_to_string(key, s, sizeof s),
dnssec_verdict_to_string(verdict));
}
m->n_dnssec_verdict[verdict]++;
}
bool manager_routable(Manager *m) {
Link *l;
assert(m);
/* Returns true if the host has at least one interface with a routable address (regardless if IPv4 or IPv6) */
HASHMAP_FOREACH(l, m->links)
if (link_relevant(l, AF_UNSPEC, false))
return true;
return false;
}
void manager_flush_caches(Manager *m, int log_level) {
DnsScope *scope;
assert(m);
LIST_FOREACH(scopes, scope, m->dns_scopes)
dns_cache_flush(&scope->cache);
log_full(log_level, "Flushed all caches.");
}
void manager_reset_server_features(Manager *m) {
Link *l;
dns_server_reset_features_all(m->dns_servers);
dns_server_reset_features_all(m->fallback_dns_servers);
HASHMAP_FOREACH(l, m->links)
dns_server_reset_features_all(l->dns_servers);
log_info("Resetting learnt feature levels on all servers.");
}
void manager_cleanup_saved_user(Manager *m) {
_cleanup_closedir_ DIR *d = NULL;
struct dirent *de;
assert(m);
/* Clean up all saved per-link files in /run/systemd/resolve/netif/ that don't have a matching interface
* anymore. These files are created to persist settings pushed in by the user via the bus, so that resolved can
* be restarted without losing this data. */
d = opendir("/run/systemd/resolve/netif/");
if (!d) {
if (errno == ENOENT)
return;
log_warning_errno(errno, "Failed to open interface directory: %m");
return;
}
FOREACH_DIRENT_ALL(de, d, log_error_errno(errno, "Failed to read interface directory: %m")) {
_cleanup_free_ char *p = NULL;
int ifindex;
Link *l;
if (!IN_SET(de->d_type, DT_UNKNOWN, DT_REG))
continue;
if (dot_or_dot_dot(de->d_name))
continue;
ifindex = parse_ifindex(de->d_name);
if (ifindex < 0) /* Probably some temporary file from a previous run. Delete it */
goto rm;
l = hashmap_get(m->links, INT_TO_PTR(ifindex));
if (!l) /* link vanished */
goto rm;
if (l->is_managed) /* now managed by networkd, hence the bus settings are useless */
goto rm;
continue;
rm:
p = path_join("/run/systemd/resolve/netif", de->d_name);
if (!p) {
log_oom();
return;
}
(void) unlink(p);
}
}
bool manager_next_dnssd_names(Manager *m) {
DnssdService *s;
bool tried = false;
int r;
assert(m);
HASHMAP_FOREACH(s, m->dnssd_services) {
_cleanup_free_ char * new_name = NULL;
if (!s->withdrawn)
continue;
r = manager_next_random_name(s->name_template, &new_name);
if (r < 0) {
log_warning_errno(r, "Failed to get new name for service '%s': %m", s->name);
continue;
}
free_and_replace(s->name_template, new_name);
s->withdrawn = false;
tried = true;
}
if (tried)
manager_refresh_rrs(m);
return tried;
}
bool manager_server_is_stub(Manager *m, DnsServer *s) {
DnsStubListenerExtra *l;
assert(m);
assert(s);
/* Safety check: we generally already skip the main stub when parsing configuration. But let's be
* extra careful, and check here again */
if (s->family == AF_INET &&
s->address.in.s_addr == htobe32(INADDR_DNS_STUB) &&
dns_server_port(s) == 53)
return true;
/* Main reason to call this is to check server data against the extra listeners, and filter things
* out. */
ORDERED_SET_FOREACH(l, m->dns_extra_stub_listeners)
if (s->family == l->family &&
in_addr_equal(s->family, &s->address, &l->address) &&
dns_server_port(s) == dns_stub_listener_extra_port(l))
return true;
return false;
}
int socket_disable_pmtud(int fd, int af) {
int r;
assert(fd >= 0);
if (af == AF_UNSPEC) {
r = socket_get_family(fd, &af);
if (r < 0)
return r;
}
switch (af) {
case AF_INET: {
/* Turn off path MTU discovery, let's rather fragment on the way than to open us up against
* PMTU forgery vulnerabilities.
*
* There appears to be no documentation about IP_PMTUDISC_OMIT, but it has the effect that
* the "Don't Fragment" bit in the IPv4 header is turned off, thus enforcing fragmentation if
* our datagram size exceeds the MTU of a router in the path, and turning off path MTU
* discovery.
*
* This helps mitigating the PMTUD vulnerability described here:
*
* https://blog.apnic.net/2019/07/12/its-time-to-consider-avoiding-ip-fragmentation-in-the-dns/
*
* Similar logic is in place in most DNS servers.
*
* There are multiple conflicting goals: we want to allow the largest datagrams possible (for
* efficiency reasons), but not have fragmentation (for security reasons), nor use PMTUD (for
* security reasons, too). Our strategy to deal with this is: use large packets, turn off
* PMTUD, but watch fragmentation taking place, and then size our packets to the max of the
* fragments seen — and if we need larger packets always go to TCP.
*/
r = setsockopt_int(fd, IPPROTO_IP, IP_MTU_DISCOVER, IP_PMTUDISC_OMIT);
if (r < 0)
return r;
return 0;
}
case AF_INET6: {
/* On IPv6 fragmentation only is done by the sender — never by routers on the path. PMTUD is
* mandatory. If we want to turn off PMTUD, the only way is by sending with minimal MTU only,
* so that we apply maximum fragmentation locally already, and thus PMTUD doesn't happen
* because there's nothing that could be fragmented further anymore. */
r = setsockopt_int(fd, IPPROTO_IPV6, IPV6_MTU, IPV6_MIN_MTU);
if (r < 0)
return r;
return 0;
}
default:
return -EAFNOSUPPORT;
}
}