blob: 3c03f2af23598a28a70b5241078f8cbc73863ee0 [file] [log] [blame]
/* SPDX-License-Identifier: LGPL-2.1-or-later */
#pragma once
#include <assert.h>
#include <errno.h>
#include <inttypes.h>
#include <stdbool.h>
#include <sys/param.h>
#include <sys/sysmacros.h>
#include <sys/types.h>
#include "constants.h"
#include "macro-fundamental.h"
/* Note: on GCC "no_sanitize_address" is a function attribute only, on llvm it may also be applied to global
* variables. We define a specific macro which knows this. Note that on GCC we don't need this decorator so much, since
* our primary usecase for this attribute is registration structures placed in named ELF sections which shall not be
* padded, but GCC doesn't pad those anyway if AddressSanitizer is enabled. */
#if HAS_FEATURE_ADDRESS_SANITIZER && defined(__clang__)
#define _variable_no_sanitize_address_ __attribute__((__no_sanitize_address__))
#else
#define _variable_no_sanitize_address_
#endif
/* Apparently there's no has_feature() call defined to check for ubsan, hence let's define this
* unconditionally on llvm */
#if defined(__clang__)
#define _function_no_sanitize_float_cast_overflow_ __attribute__((no_sanitize("float-cast-overflow")))
#else
#define _function_no_sanitize_float_cast_overflow_
#endif
/* Temporarily disable some warnings */
#define DISABLE_WARNING_DEPRECATED_DECLARATIONS \
_Pragma("GCC diagnostic push"); \
_Pragma("GCC diagnostic ignored \"-Wdeprecated-declarations\"")
#define DISABLE_WARNING_FORMAT_NONLITERAL \
_Pragma("GCC diagnostic push"); \
_Pragma("GCC diagnostic ignored \"-Wformat-nonliteral\"")
#define DISABLE_WARNING_MISSING_PROTOTYPES \
_Pragma("GCC diagnostic push"); \
_Pragma("GCC diagnostic ignored \"-Wmissing-prototypes\"")
#define DISABLE_WARNING_NONNULL \
_Pragma("GCC diagnostic push"); \
_Pragma("GCC diagnostic ignored \"-Wnonnull\"")
#define DISABLE_WARNING_SHADOW \
_Pragma("GCC diagnostic push"); \
_Pragma("GCC diagnostic ignored \"-Wshadow\"")
#define DISABLE_WARNING_INCOMPATIBLE_POINTER_TYPES \
_Pragma("GCC diagnostic push"); \
_Pragma("GCC diagnostic ignored \"-Wincompatible-pointer-types\"")
#if HAVE_WSTRINGOP_TRUNCATION
# define DISABLE_WARNING_STRINGOP_TRUNCATION \
_Pragma("GCC diagnostic push"); \
_Pragma("GCC diagnostic ignored \"-Wstringop-truncation\"")
#else
# define DISABLE_WARNING_STRINGOP_TRUNCATION \
_Pragma("GCC diagnostic push")
#endif
#define DISABLE_WARNING_TYPE_LIMITS \
_Pragma("GCC diagnostic push"); \
_Pragma("GCC diagnostic ignored \"-Wtype-limits\"")
#define DISABLE_WARNING_ADDRESS \
_Pragma("GCC diagnostic push"); \
_Pragma("GCC diagnostic ignored \"-Waddress\"")
#define REENABLE_WARNING \
_Pragma("GCC diagnostic pop")
/* automake test harness */
#define EXIT_TEST_SKIP 77
/* builtins */
#if __SIZEOF_INT__ == 4
#define BUILTIN_FFS_U32(x) __builtin_ffs(x);
#elif __SIZEOF_LONG__ == 4
#define BUILTIN_FFS_U32(x) __builtin_ffsl(x);
#else
#error "neither int nor long are four bytes long?!?"
#endif
/* align to next higher power-of-2 (except for: 0 => 0, overflow => 0) */
static inline unsigned long ALIGN_POWER2(unsigned long u) {
/* Avoid subtraction overflow */
if (u == 0)
return 0;
/* clz(0) is undefined */
if (u == 1)
return 1;
/* left-shift overflow is undefined */
if (__builtin_clzl(u - 1UL) < 1)
return 0;
return 1UL << (sizeof(u) * 8 - __builtin_clzl(u - 1UL));
}
static inline size_t GREEDY_ALLOC_ROUND_UP(size_t l) {
size_t m;
/* Round up allocation sizes a bit to some reasonable, likely larger value. This is supposed to be
* used for cases which are likely called in an allocation loop of some form, i.e. that repetitively
* grow stuff, for example strv_extend() and suchlike.
*
* Note the difference to GREEDY_REALLOC() here, as this helper operates on a single size value only,
* and rounds up to next multiple of 2, needing no further counter.
*
* Note the benefits of direct ALIGN_POWER2() usage: type-safety for size_t, sane handling for very
* small (i.e. <= 2) and safe handling for very large (i.e. > SSIZE_MAX) values. */
if (l <= 2)
return 2; /* Never allocate less than 2 of something. */
m = ALIGN_POWER2(l);
if (m == 0) /* overflow? */
return l;
return m;
}
/*
* container_of - cast a member of a structure out to the containing structure
* @ptr: the pointer to the member.
* @type: the type of the container struct this is embedded in.
* @member: the name of the member within the struct.
*/
#define container_of(ptr, type, member) __container_of(UNIQ, (ptr), type, member)
#define __container_of(uniq, ptr, type, member) \
({ \
const typeof( ((type*)0)->member ) *UNIQ_T(A, uniq) = (ptr); \
(type*)( (char *)UNIQ_T(A, uniq) - offsetof(type, member) ); \
})
#ifdef __COVERITY__
/* Use special definitions of assertion macros in order to prevent
* false positives of ASSERT_SIDE_EFFECT on Coverity static analyzer
* for uses of assert_se() and assert_return().
*
* These definitions make expression go through a (trivial) function
* call to ensure they are not discarded. Also use ! or !! to ensure
* the boolean expressions are seen as such.
*
* This technique has been described and recommended in:
* https://community.synopsys.com/s/question/0D534000046Yuzb/suppressing-assertsideeffect-for-functions-that-allow-for-sideeffects
*/
extern void __coverity_panic__(void);
static inline void __coverity_check__(int condition) {
if (!condition)
__coverity_panic__();
}
static inline int __coverity_check_and_return__(int condition) {
return condition;
}
#define assert_message_se(expr, message) __coverity_check__(!!(expr))
#define assert_log(expr, message) __coverity_check_and_return__(!!(expr))
#else /* ! __COVERITY__ */
#define assert_message_se(expr, message) \
do { \
if (_unlikely_(!(expr))) \
log_assert_failed(message, PROJECT_FILE, __LINE__, __func__); \
} while (false)
#define assert_log(expr, message) ((_likely_(expr)) \
? (true) \
: (log_assert_failed_return(message, PROJECT_FILE, __LINE__, __func__), false))
#endif /* __COVERITY__ */
#define assert_se(expr) assert_message_se(expr, #expr)
/* We override the glibc assert() here. */
#undef assert
#ifdef NDEBUG
#define assert(expr) do {} while (false)
#else
#define assert(expr) assert_message_se(expr, #expr)
#endif
#define assert_not_reached() \
log_assert_failed_unreachable(PROJECT_FILE, __LINE__, __func__)
#define assert_return(expr, r) \
do { \
if (!assert_log(expr, #expr)) \
return (r); \
} while (false)
#define assert_return_errno(expr, r, err) \
do { \
if (!assert_log(expr, #expr)) { \
errno = err; \
return (r); \
} \
} while (false)
#define return_with_errno(r, err) \
do { \
errno = abs(err); \
return r; \
} while (false)
#define PTR_TO_INT(p) ((int) ((intptr_t) (p)))
#define INT_TO_PTR(u) ((void *) ((intptr_t) (u)))
#define PTR_TO_UINT(p) ((unsigned) ((uintptr_t) (p)))
#define UINT_TO_PTR(u) ((void *) ((uintptr_t) (u)))
#define PTR_TO_LONG(p) ((long) ((intptr_t) (p)))
#define LONG_TO_PTR(u) ((void *) ((intptr_t) (u)))
#define PTR_TO_ULONG(p) ((unsigned long) ((uintptr_t) (p)))
#define ULONG_TO_PTR(u) ((void *) ((uintptr_t) (u)))
#define PTR_TO_UINT8(p) ((uint8_t) ((uintptr_t) (p)))
#define UINT8_TO_PTR(u) ((void *) ((uintptr_t) (u)))
#define PTR_TO_INT32(p) ((int32_t) ((intptr_t) (p)))
#define INT32_TO_PTR(u) ((void *) ((intptr_t) (u)))
#define PTR_TO_UINT32(p) ((uint32_t) ((uintptr_t) (p)))
#define UINT32_TO_PTR(u) ((void *) ((uintptr_t) (u)))
#define PTR_TO_INT64(p) ((int64_t) ((intptr_t) (p)))
#define INT64_TO_PTR(u) ((void *) ((intptr_t) (u)))
#define PTR_TO_UINT64(p) ((uint64_t) ((uintptr_t) (p)))
#define UINT64_TO_PTR(u) ((void *) ((uintptr_t) (u)))
#define PTR_TO_SIZE(p) ((size_t) ((uintptr_t) (p)))
#define SIZE_TO_PTR(u) ((void *) ((uintptr_t) (u)))
#define CHAR_TO_STR(x) ((char[2]) { x, 0 })
#define char_array_0(x) x[sizeof(x)-1] = 0;
#define sizeof_field(struct_type, member) sizeof(((struct_type *) 0)->member)
/* Returns the number of chars needed to format variables of the specified type as a decimal string. Adds in
* extra space for a negative '-' prefix for signed types. Includes space for the trailing NUL. */
#define DECIMAL_STR_MAX(type) \
((size_t) IS_SIGNED_INTEGER_TYPE(type) + 1U + \
(sizeof(type) <= 1 ? 3U : \
sizeof(type) <= 2 ? 5U : \
sizeof(type) <= 4 ? 10U : \
sizeof(type) <= 8 ? (IS_SIGNED_INTEGER_TYPE(type) ? 19U : 20U) : sizeof(int[-2*(sizeof(type) > 8)])))
/* Returns the number of chars needed to format the specified integer value. It's hence more specific than
* DECIMAL_STR_MAX() which answers the same question for all possible values of the specified type. Does
* *not* include space for a trailing NUL. (If you wonder why we special case _x_ == 0 here: it's to trick
* out gcc's -Wtype-limits, which would complain on comparing an unsigned type with < 0, otherwise. By
* special-casing == 0 here first, we can use <= 0 instead of < 0 to trick out gcc.) */
#define DECIMAL_STR_WIDTH(x) \
({ \
typeof(x) _x_ = (x); \
size_t ans; \
if (_x_ == 0) \
ans = 1; \
else { \
ans = _x_ <= 0 ? 2 : 1; \
while ((_x_ /= 10) != 0) \
ans++; \
} \
ans; \
})
#define SWAP_TWO(x, y) do { \
typeof(x) _t = (x); \
(x) = (y); \
(y) = (_t); \
} while (false)
#define STRV_MAKE(...) ((char**) ((const char*[]) { __VA_ARGS__, NULL }))
#define STRV_MAKE_EMPTY ((char*[1]) { NULL })
#define STRV_MAKE_CONST(...) ((const char* const*) ((const char*[]) { __VA_ARGS__, NULL }))
/* Pointers range from NULL to POINTER_MAX */
#define POINTER_MAX ((void*) UINTPTR_MAX)
/* Iterates through a specified list of pointers. Accepts NULL pointers, but uses POINTER_MAX as internal marker for EOL. */
#define FOREACH_POINTER(p, x, ...) \
for (typeof(p) *_l = (typeof(p)[]) { ({ p = x; }), ##__VA_ARGS__, POINTER_MAX }; \
p != (typeof(p)) POINTER_MAX; \
p = *(++_l))
#define DEFINE_TRIVIAL_DESTRUCTOR(name, type, func) \
static inline void name(type *p) { \
func(p); \
}
/* When func() returns the void value (NULL, -1, …) of the appropriate type */
#define DEFINE_TRIVIAL_CLEANUP_FUNC(type, func) \
static inline void func##p(type *p) { \
if (*p) \
*p = func(*p); \
}
/* When func() doesn't return the appropriate type, set variable to empty afterwards.
* The func() may be provided by a dynamically loaded shared library, hence add an assertion. */
#define DEFINE_TRIVIAL_CLEANUP_FUNC_FULL(type, func, empty) \
static inline void func##p(type *p) { \
if (*p != (empty)) { \
DISABLE_WARNING_ADDRESS; \
assert(func); \
REENABLE_WARNING; \
func(*p); \
*p = (empty); \
} \
}
#define _DEFINE_TRIVIAL_REF_FUNC(type, name, scope) \
scope type *name##_ref(type *p) { \
if (!p) \
return NULL; \
\
/* For type check. */ \
unsigned *q = &p->n_ref; \
assert(*q > 0); \
assert_se(*q < UINT_MAX); \
\
(*q)++; \
return p; \
}
#define _DEFINE_TRIVIAL_UNREF_FUNC(type, name, free_func, scope) \
scope type *name##_unref(type *p) { \
if (!p) \
return NULL; \
\
assert(p->n_ref > 0); \
p->n_ref--; \
if (p->n_ref > 0) \
return NULL; \
\
return free_func(p); \
}
#define DEFINE_TRIVIAL_REF_FUNC(type, name) \
_DEFINE_TRIVIAL_REF_FUNC(type, name,)
#define DEFINE_PRIVATE_TRIVIAL_REF_FUNC(type, name) \
_DEFINE_TRIVIAL_REF_FUNC(type, name, static)
#define DEFINE_PUBLIC_TRIVIAL_REF_FUNC(type, name) \
_DEFINE_TRIVIAL_REF_FUNC(type, name, _public_)
#define DEFINE_TRIVIAL_UNREF_FUNC(type, name, free_func) \
_DEFINE_TRIVIAL_UNREF_FUNC(type, name, free_func,)
#define DEFINE_PRIVATE_TRIVIAL_UNREF_FUNC(type, name, free_func) \
_DEFINE_TRIVIAL_UNREF_FUNC(type, name, free_func, static)
#define DEFINE_PUBLIC_TRIVIAL_UNREF_FUNC(type, name, free_func) \
_DEFINE_TRIVIAL_UNREF_FUNC(type, name, free_func, _public_)
#define DEFINE_TRIVIAL_REF_UNREF_FUNC(type, name, free_func) \
DEFINE_TRIVIAL_REF_FUNC(type, name); \
DEFINE_TRIVIAL_UNREF_FUNC(type, name, free_func);
#define DEFINE_PRIVATE_TRIVIAL_REF_UNREF_FUNC(type, name, free_func) \
DEFINE_PRIVATE_TRIVIAL_REF_FUNC(type, name); \
DEFINE_PRIVATE_TRIVIAL_UNREF_FUNC(type, name, free_func);
#define DEFINE_PUBLIC_TRIVIAL_REF_UNREF_FUNC(type, name, free_func) \
DEFINE_PUBLIC_TRIVIAL_REF_FUNC(type, name); \
DEFINE_PUBLIC_TRIVIAL_UNREF_FUNC(type, name, free_func);
/* A macro to force copying of a variable from memory. This is useful whenever we want to read something from
* memory and want to make sure the compiler won't optimize away the destination variable for us. It's not
* supposed to be a full CPU memory barrier, i.e. CPU is still allowed to reorder the reads, but it is not
* allowed to remove our local copies of the variables. We want this to work for unaligned memory, hence
* memcpy() is great for our purposes. */
#define READ_NOW(x) \
({ \
typeof(x) _copy; \
memcpy(&_copy, &(x), sizeof(_copy)); \
asm volatile ("" : : : "memory"); \
_copy; \
})
#define saturate_add(x, y, limit) \
({ \
typeof(limit) _x = (x); \
typeof(limit) _y = (y); \
_x > (limit) || _y >= (limit) - _x ? (limit) : _x + _y; \
})
static inline size_t size_add(size_t x, size_t y) {
return saturate_add(x, y, SIZE_MAX);
}
typedef struct {
int _empty[0];
} dummy_t;
assert_cc(sizeof(dummy_t) == 0);
/* A little helper for subtracting 1 off a pointer in a safe UB-free way. This is intended to be used for
* loops that count down from a high pointer until some base. A naive loop would implement this like this:
*
* for (p = end-1; p >= base; p--) …
*
* But this is not safe because p before the base is UB in C. With this macro the loop becomes this instead:
*
* for (p = PTR_SUB1(end, base); p; p = PTR_SUB1(p, base)) …
*
* And is free from UB! */
#define PTR_SUB1(p, base) \
({ \
typeof(p) _q = (p); \
_q && _q > (base) ? &_q[-1] : NULL; \
})
#include "log.h"