blob: af4981225e2a7c1af4792fc1d860fb5be8f6daa5 [file] [log] [blame]
/* SPDX-License-Identifier: LGPL-2.1-or-later */
#include <linux/magic.h>
#include "alloc-util.h"
#include "chase-symlinks.h"
#include "fd-util.h"
#include "fileio.h"
#include "fs-util.h"
#include "glyph-util.h"
#include "log.h"
#include "path-util.h"
#include "string-util.h"
#include "user-util.h"
bool unsafe_transition(const struct stat *a, const struct stat *b) {
/* Returns true if the transition from a to b is safe, i.e. that we never transition from unprivileged to
* privileged files or directories. Why bother? So that unprivileged code can't symlink to privileged files
* making us believe we read something safe even though it isn't safe in the specific context we open it in. */
if (a->st_uid == 0) /* Transitioning from privileged to unprivileged is always fine */
return false;
return a->st_uid != b->st_uid; /* Otherwise we need to stay within the same UID */
}
static int log_unsafe_transition(int a, int b, const char *path, ChaseSymlinksFlags flags) {
_cleanup_free_ char *n1 = NULL, *n2 = NULL, *user_a = NULL, *user_b = NULL;
struct stat st;
if (!FLAGS_SET(flags, CHASE_WARN))
return -ENOLINK;
(void) fd_get_path(a, &n1);
(void) fd_get_path(b, &n2);
if (fstat(a, &st) == 0)
user_a = uid_to_name(st.st_uid);
if (fstat(b, &st) == 0)
user_b = uid_to_name(st.st_uid);
return log_warning_errno(SYNTHETIC_ERRNO(ENOLINK),
"Detected unsafe path transition %s (owned by %s) %s %s (owned by %s) during canonicalization of %s.",
strna(n1), strna(user_a), special_glyph(SPECIAL_GLYPH_ARROW_RIGHT), strna(n2), strna(user_b), path);
}
static int log_autofs_mount_point(int fd, const char *path, ChaseSymlinksFlags flags) {
_cleanup_free_ char *n1 = NULL;
if (!FLAGS_SET(flags, CHASE_WARN))
return -EREMOTE;
(void) fd_get_path(fd, &n1);
return log_warning_errno(SYNTHETIC_ERRNO(EREMOTE),
"Detected autofs mount point %s during canonicalization of %s.",
strna(n1), path);
}
static int log_prohibited_symlink(int fd, ChaseSymlinksFlags flags) {
_cleanup_free_ char *n1 = NULL;
assert(fd >= 0);
if (!FLAGS_SET(flags, CHASE_WARN))
return -EREMCHG;
(void) fd_get_path(fd, &n1);
return log_warning_errno(SYNTHETIC_ERRNO(EREMCHG),
"Detected symlink where not symlink is allowed at %s, refusing.",
strna(n1));
}
int chase_symlinks_at(
int dir_fd,
const char *path,
ChaseSymlinksFlags flags,
char **ret_path,
int *ret_fd) {
_cleanup_free_ char *buffer = NULL, *done = NULL;
_cleanup_close_ int fd = -EBADF, root_fd = -EBADF;
unsigned max_follow = CHASE_SYMLINKS_MAX; /* how many symlinks to follow before giving up and returning ELOOP */
bool exists = true, append_trail_slash = false;
struct stat previous_stat;
const char *todo;
int r;
assert(path);
assert(!FLAGS_SET(flags, CHASE_PREFIX_ROOT));
assert(dir_fd >= 0 || dir_fd == AT_FDCWD);
/* Either the file may be missing, or we return an fd to the final object, but both make no sense */
if ((flags & CHASE_NONEXISTENT) && ret_fd)
return -EINVAL;
if ((flags & CHASE_STEP) && ret_fd)
return -EINVAL;
if (isempty(path))
path = ".";
/* This function resolves symlinks of the path relative to the given directory file descriptor. If
* CHASE_SYMLINKS_RESOLVE_IN_ROOT is specified and a directory file descriptor is provided, symlinks
* are resolved relative to the given directory file descriptor. Otherwise, they are resolved
* relative to the root directory of the host.
*
* Note that when a positive directory file descriptor is provided and CHASE_AT_RESOLVE_IN_ROOT is
* specified and we find an absolute symlink, it is resolved relative to given directory file
* descriptor and not the root of the host. Also, when following relative symlinks, this functions
* ensures they cannot be used to "escape" the given directory file descriptor. If a positive
* directory file descriptor is provided, the "path" parameter is always interpreted relative to the
* given directory file descriptor, even if it is absolute. If the given directory file descriptor is
* AT_FDCWD and "path" is absolute, it is interpreted relative to the root directory of the host.
*
* If "dir_fd" is a valid directory fd, "path" is an absolute path and "ret_path" is not NULL, this
* functions returns a relative path in "ret_path" because openat() like functions generally ignore
* the directory fd if they are provided with an absolute path. On the other hand, if "dir_fd" is
* AT_FDCWD and "path" is an absolute path, we return an absolute path in "ret_path" because
* otherwise, if the caller passes the returned relative path to another openat() like function, it
* would be resolved relative to the current working directory instead of to "/".
*
* Algorithmically this operates on two path buffers: "done" are the components of the path we
* already processed and resolved symlinks, "." and ".." of. "todo" are the components of the path we
* still need to process. On each iteration, we move one component from "todo" to "done", processing
* its special meaning each time. We always keep an O_PATH fd to the component we are currently
* processing, thus keeping lookup races to a minimum.
*
* Suggested usage: whenever you want to canonicalize a path, use this function. Pass the absolute
* path you got as-is: fully qualified and relative to your host's root. Optionally, specify the
* "dir_fd" parameter to tell this function what to do when encountering a symlink with an absolute
* path as directory: resolve it relative to the given directory file descriptor.
*
* There are five ways to invoke this function:
*
* 1. Without CHASE_STEP or ret_fd: in this case the path is resolved and the normalized path is
* returned in `ret_path`. The return value is < 0 on error. If CHASE_NONEXISTENT is also set, 0
* is returned if the file doesn't exist, > 0 otherwise. If CHASE_NONEXISTENT is not set, >= 0 is
* returned if the destination was found, -ENOENT if it wasn't.
*
* 2. With ret_fd: in this case the destination is opened after chasing it as O_PATH and this file
* descriptor is returned as return value. This is useful to open files relative to some root
* directory. Note that the returned O_PATH file descriptors must be converted into a regular one
* (using fd_reopen() or such) before it can be used for reading/writing. ret_fd may not be
* combined with CHASE_NONEXISTENT.
*
* 3. With CHASE_STEP: in this case only a single step of the normalization is executed, i.e. only
* the first symlink or ".." component of the path is resolved, and the resulting path is
* returned. This is useful if a caller wants to trace the path through the file system verbosely.
* Returns < 0 on error, > 0 if the path is fully normalized, and == 0 for each normalization
* step. This may be combined with CHASE_NONEXISTENT, in which case 1 is returned when a component
* is not found.
*
* 4. With CHASE_SAFE: in this case the path must not contain unsafe transitions, i.e. transitions
* from unprivileged to privileged files or directories. In such cases the return value is
* -ENOLINK. If CHASE_WARN is also set, a warning describing the unsafe transition is emitted.
* CHASE_WARN cannot be used in PID 1.
*
* 5. With CHASE_NO_AUTOFS: in this case if an autofs mount point is encountered, path normalization
* is aborted and -EREMOTE is returned. If CHASE_WARN is also set, a warning showing the path of
* the mount point is emitted. CHASE_WARN cannot be used in PID 1.
*/
if (!(flags & (CHASE_AT_RESOLVE_IN_ROOT|CHASE_NONEXISTENT|CHASE_NO_AUTOFS|CHASE_SAFE|CHASE_STEP)) &&
!ret_path && ret_fd) {
/* Shortcut the ret_fd case if the caller isn't interested in the actual path and has no root
* set and doesn't care about any of the other special features we provide either. */
r = openat(dir_fd, path, O_PATH|O_CLOEXEC|((flags & CHASE_NOFOLLOW) ? O_NOFOLLOW : 0));
if (r < 0)
return -errno;
*ret_fd = r;
return 0;
}
buffer = strdup(path);
if (!buffer)
return -ENOMEM;
/* If we receive an absolute path together with AT_FDCWD, we need to return an absolute path, because
* a relative path would be interpreted relative to the current working directory. */
bool need_absolute = dir_fd == AT_FDCWD && path_is_absolute(path);
if (need_absolute) {
done = strdup("/");
if (!done)
return -ENOMEM;
}
/* If we get AT_FDCWD, we always resolve symlinks relative to the host's root. Only if a positive
* directory file descriptor is provided will we look at CHASE_AT_RESOLVE_IN_ROOT to determine
* whether to resolve symlinks in it or not. */
if (dir_fd >= 0 && FLAGS_SET(flags, CHASE_AT_RESOLVE_IN_ROOT))
root_fd = openat(dir_fd, ".", O_CLOEXEC|O_DIRECTORY|O_PATH);
else
root_fd = open("/", O_CLOEXEC|O_DIRECTORY|O_PATH);
if (root_fd < 0)
return -errno;
/* If a positive directory file descriptor is provided, always resolve the given path relative to it,
* regardless of whether it is absolute or not. If we get AT_FDCWD, follow regular openat()
* semantics, if the path is relative, resolve against the current working directory. Otherwise,
* resolve against root. */
if (dir_fd >= 0 || !path_is_absolute(path))
fd = openat(dir_fd, ".", O_CLOEXEC|O_DIRECTORY|O_PATH);
else
fd = open("/", O_CLOEXEC|O_DIRECTORY|O_PATH);
if (fd < 0)
return -errno;
if (fstat(fd, &previous_stat) < 0)
return -errno;
if (flags & CHASE_TRAIL_SLASH)
append_trail_slash = endswith(buffer, "/") || endswith(buffer, "/.");
for (todo = buffer;;) {
_cleanup_free_ char *first = NULL;
_cleanup_close_ int child = -EBADF;
struct stat st;
const char *e;
r = path_find_first_component(&todo, /* accept_dot_dot= */ true, &e);
if (r < 0)
return r;
if (r == 0) { /* We reached the end. */
if (append_trail_slash)
if (!strextend(&done, "/"))
return -ENOMEM;
break;
}
first = strndup(e, r);
if (!first)
return -ENOMEM;
/* Two dots? Then chop off the last bit of what we already found out. */
if (path_equal(first, "..")) {
_cleanup_free_ char *parent = NULL;
_cleanup_close_ int fd_parent = -EBADF;
/* If we already are at the top, then going up will not change anything. This is
* in-line with how the kernel handles this. */
if (empty_or_root(done) && FLAGS_SET(flags, CHASE_AT_RESOLVE_IN_ROOT))
continue;
fd_parent = openat(fd, "..", O_CLOEXEC|O_NOFOLLOW|O_PATH|O_DIRECTORY);
if (fd_parent < 0)
return -errno;
if (fstat(fd_parent, &st) < 0)
return -errno;
/* If we opened the same directory, that means we're at the host root directory, so
* going up won't change anything. */
if (st.st_dev == previous_stat.st_dev && st.st_ino == previous_stat.st_ino)
continue;
r = path_extract_directory(done, &parent);
if (r >= 0 || r == -EDESTADDRREQ)
free_and_replace(done, parent);
else if (IN_SET(r, -EINVAL, -EADDRNOTAVAIL)) {
/* If we're at the top of "dir_fd", start appending ".." to "done". */
if (!path_extend(&done, ".."))
return -ENOMEM;
} else
return r;
if (flags & CHASE_STEP)
goto chased_one;
if (flags & CHASE_SAFE) {
if (unsafe_transition(&previous_stat, &st))
return log_unsafe_transition(fd, fd_parent, path, flags);
previous_stat = st;
}
close_and_replace(fd, fd_parent);
continue;
}
/* Otherwise let's see what this is. */
child = openat(fd, first, O_CLOEXEC|O_NOFOLLOW|O_PATH);
if (child < 0) {
if (errno == ENOENT &&
(flags & CHASE_NONEXISTENT) &&
(isempty(todo) || path_is_safe(todo))) {
/* If CHASE_NONEXISTENT is set, and the path does not exist, then
* that's OK, return what we got so far. But don't allow this if the
* remaining path contains "../" or something else weird. */
if (!path_extend(&done, first, todo))
return -ENOMEM;
exists = false;
break;
}
return -errno;
}
if (fstat(child, &st) < 0)
return -errno;
if ((flags & CHASE_SAFE) &&
unsafe_transition(&previous_stat, &st))
return log_unsafe_transition(fd, child, path, flags);
previous_stat = st;
if ((flags & CHASE_NO_AUTOFS) &&
fd_is_fs_type(child, AUTOFS_SUPER_MAGIC) > 0)
return log_autofs_mount_point(child, path, flags);
if (S_ISLNK(st.st_mode) && !((flags & CHASE_NOFOLLOW) && isempty(todo))) {
_cleanup_free_ char *destination = NULL;
if (flags & CHASE_PROHIBIT_SYMLINKS)
return log_prohibited_symlink(child, flags);
/* This is a symlink, in this case read the destination. But let's make sure we
* don't follow symlinks without bounds. */
if (--max_follow <= 0)
return -ELOOP;
r = readlinkat_malloc(fd, first, &destination);
if (r < 0)
return r;
if (isempty(destination))
return -EINVAL;
if (path_is_absolute(destination)) {
/* An absolute destination. Start the loop from the beginning, but use the
* root file descriptor as base. */
safe_close(fd);
fd = fd_reopen(root_fd, O_CLOEXEC|O_PATH|O_DIRECTORY);
if (fd < 0)
return fd;
if (flags & CHASE_SAFE) {
if (fstat(fd, &st) < 0)
return -errno;
if (unsafe_transition(&previous_stat, &st))
return log_unsafe_transition(child, fd, path, flags);
previous_stat = st;
}
r = free_and_strdup(&done, need_absolute ? "/" : NULL);
if (r < 0)
return r;
}
/* Prefix what's left to do with what we just read, and start the loop again, but
* remain in the current directory. */
if (!path_extend(&destination, todo))
return -ENOMEM;
free_and_replace(buffer, destination);
todo = buffer;
if (flags & CHASE_STEP)
goto chased_one;
continue;
}
/* If this is not a symlink, then let's just add the name we read to what we already verified. */
if (!path_extend(&done, first))
return -ENOMEM;
/* And iterate again, but go one directory further down. */
close_and_replace(fd, child);
}
if (ret_path)
*ret_path = TAKE_PTR(done);
if (ret_fd) {
/* Return the O_PATH fd we currently are looking to the caller. It can translate it to a
* proper fd by opening /proc/self/fd/xyz. */
assert(fd >= 0);
*ret_fd = TAKE_FD(fd);
}
if (flags & CHASE_STEP)
return 1;
return exists;
chased_one:
if (ret_path) {
const char *e;
/* todo may contain slashes at the beginning. */
r = path_find_first_component(&todo, /* accept_dot_dot= */ true, &e);
if (r < 0)
return r;
if (r == 0)
*ret_path = TAKE_PTR(done);
else {
char *c;
c = path_join(done, e);
if (!c)
return -ENOMEM;
*ret_path = c;
}
}
return 0;
}
int chase_symlinks(
const char *path,
const char *original_root,
ChaseSymlinksFlags flags,
char **ret_path,
int *ret_fd) {
_cleanup_free_ char *root = NULL, *absolute = NULL, *p = NULL;
_cleanup_close_ int fd = -EBADF, pfd = -EBADF;
int r;
assert(path);
if (isempty(path))
return -EINVAL;
/* A root directory of "/" or "" is identical to none */
if (empty_or_root(original_root))
original_root = NULL;
if (original_root) {
r = path_make_absolute_cwd(original_root, &root);
if (r < 0)
return r;
/* Simplify the root directory, so that it has no duplicate slashes and nothing at the
* end. While we won't resolve the root path we still simplify it. Note that dropping the
* trailing slash should not change behaviour, since when opening it we specify O_DIRECTORY
* anyway. Moreover at the end of this function after processing everything we'll always turn
* the empty string back to "/". */
delete_trailing_chars(root, "/");
path_simplify(root);
if (flags & CHASE_PREFIX_ROOT) {
absolute = path_join(root, path);
if (!absolute)
return -ENOMEM;
}
}
if (!absolute) {
r = path_make_absolute_cwd(path, &absolute);
if (r < 0)
return r;
}
path = path_startswith(absolute, empty_to_root(root));
if (!path)
return log_full_errno(flags & CHASE_WARN ? LOG_WARNING : LOG_DEBUG,
SYNTHETIC_ERRNO(ECHRNG),
"Specified path '%s' is outside of specified root directory '%s', refusing to resolve.",
absolute, empty_to_root(root));
fd = open(empty_to_root(root), O_CLOEXEC|O_DIRECTORY|O_PATH);
if (fd < 0)
return -errno;
flags |= CHASE_AT_RESOLVE_IN_ROOT;
flags &= ~CHASE_PREFIX_ROOT;
r = chase_symlinks_at(fd, path, flags, ret_path ? &p : NULL, ret_fd ? &pfd : NULL);
if (r < 0)
return r;
if (ret_path) {
char *q = path_join(empty_to_root(root), p);
if (!q)
return -ENOMEM;
*ret_path = TAKE_PTR(q);
}
if (ret_fd)
*ret_fd = TAKE_FD(pfd);
return r;
}
int chase_symlinks_and_open(
const char *path,
const char *root,
ChaseSymlinksFlags chase_flags,
int open_flags,
char **ret_path) {
_cleanup_close_ int path_fd = -EBADF;
_cleanup_free_ char *p = NULL;
int r;
if (chase_flags & (CHASE_NONEXISTENT|CHASE_STEP))
return -EINVAL;
if (empty_or_root(root) && !ret_path && (chase_flags & (CHASE_NO_AUTOFS|CHASE_SAFE)) == 0) {
/* Shortcut this call if none of the special features of this call are requested */
r = open(path, open_flags | (FLAGS_SET(chase_flags, CHASE_NOFOLLOW) ? O_NOFOLLOW : 0));
if (r < 0)
return -errno;
return r;
}
r = chase_symlinks(path, root, chase_flags, ret_path ? &p : NULL, &path_fd);
if (r < 0)
return r;
assert(path_fd >= 0);
r = fd_reopen(path_fd, open_flags);
if (r < 0)
return r;
if (ret_path)
*ret_path = TAKE_PTR(p);
return r;
}
int chase_symlinks_and_opendir(
const char *path,
const char *root,
ChaseSymlinksFlags chase_flags,
char **ret_path,
DIR **ret_dir) {
_cleanup_close_ int path_fd = -EBADF;
_cleanup_free_ char *p = NULL;
DIR *d;
int r;
if (!ret_dir)
return -EINVAL;
if (chase_flags & (CHASE_NONEXISTENT|CHASE_STEP))
return -EINVAL;
if (empty_or_root(root) && !ret_path && (chase_flags & (CHASE_NO_AUTOFS|CHASE_SAFE)) == 0) {
/* Shortcut this call if none of the special features of this call are requested */
d = opendir(path);
if (!d)
return -errno;
*ret_dir = d;
return 0;
}
r = chase_symlinks(path, root, chase_flags, ret_path ? &p : NULL, &path_fd);
if (r < 0)
return r;
assert(path_fd >= 0);
d = xopendirat(path_fd, ".", O_NOFOLLOW);
if (!d)
return -errno;
if (ret_path)
*ret_path = TAKE_PTR(p);
*ret_dir = d;
return 0;
}
int chase_symlinks_and_stat(
const char *path,
const char *root,
ChaseSymlinksFlags chase_flags,
char **ret_path,
struct stat *ret_stat,
int *ret_fd) {
_cleanup_close_ int path_fd = -EBADF;
_cleanup_free_ char *p = NULL;
int r;
assert(path);
assert(ret_stat);
if (chase_flags & (CHASE_NONEXISTENT|CHASE_STEP))
return -EINVAL;
if (empty_or_root(root) && !ret_path && (chase_flags & (CHASE_NO_AUTOFS|CHASE_SAFE)) == 0 && !ret_fd) {
/* Shortcut this call if none of the special features of this call are requested */
if (fstatat(AT_FDCWD, path, ret_stat, FLAGS_SET(chase_flags, CHASE_NOFOLLOW) ? AT_SYMLINK_NOFOLLOW : 0) < 0)
return -errno;
return 1;
}
r = chase_symlinks(path, root, chase_flags, ret_path ? &p : NULL, &path_fd);
if (r < 0)
return r;
assert(path_fd >= 0);
if (fstat(path_fd, ret_stat) < 0)
return -errno;
if (ret_path)
*ret_path = TAKE_PTR(p);
if (ret_fd)
*ret_fd = TAKE_FD(path_fd);
return 1;
}
int chase_symlinks_and_access(
const char *path,
const char *root,
ChaseSymlinksFlags chase_flags,
int access_mode,
char **ret_path,
int *ret_fd) {
_cleanup_close_ int path_fd = -EBADF;
_cleanup_free_ char *p = NULL;
int r;
assert(path);
if (chase_flags & (CHASE_NONEXISTENT|CHASE_STEP))
return -EINVAL;
if (empty_or_root(root) && !ret_path && (chase_flags & (CHASE_NO_AUTOFS|CHASE_SAFE)) == 0 && !ret_fd) {
/* Shortcut this call if none of the special features of this call are requested */
if (faccessat(AT_FDCWD, path, access_mode, FLAGS_SET(chase_flags, CHASE_NOFOLLOW) ? AT_SYMLINK_NOFOLLOW : 0) < 0)
return -errno;
return 1;
}
r = chase_symlinks(path, root, chase_flags, ret_path ? &p : NULL, &path_fd);
if (r < 0)
return r;
assert(path_fd >= 0);
r = access_fd(path_fd, access_mode);
if (r < 0)
return r;
if (ret_path)
*ret_path = TAKE_PTR(p);
if (ret_fd)
*ret_fd = TAKE_FD(path_fd);
return 1;
}
int chase_symlinks_and_fopen_unlocked(
const char *path,
const char *root,
ChaseSymlinksFlags chase_flags,
const char *open_flags,
char **ret_path,
FILE **ret_file) {
_cleanup_free_ char *final_path = NULL;
_cleanup_close_ int fd = -EBADF;
int mode_flags, r;
assert(path);
assert(open_flags);
assert(ret_file);
mode_flags = fopen_mode_to_flags(open_flags);
if (mode_flags < 0)
return mode_flags;
fd = chase_symlinks_and_open(path, root, chase_flags, mode_flags, ret_path ? &final_path : NULL);
if (fd < 0)
return fd;
r = take_fdopen_unlocked(&fd, open_flags, ret_file);
if (r < 0)
return r;
if (ret_path)
*ret_path = TAKE_PTR(final_path);
return 0;
}
int chase_symlinks_and_unlink(
const char *path,
const char *root,
ChaseSymlinksFlags chase_flags,
int unlink_flags,
char **ret_path) {
_cleanup_free_ char *p = NULL, *rp = NULL, *dir = NULL, *fname = NULL;
_cleanup_close_ int fd = -1;
int r;
assert(path);
r = path_extract_directory(path, &dir);
if (r < 0)
return r;
r = path_extract_filename(path, &fname);
if (r < 0)
return r;
fd = chase_symlinks_and_open(dir, root, chase_flags, O_PATH|O_DIRECTORY|O_CLOEXEC, ret_path ? &p : NULL);
if (fd < 0)
return fd;
if (p) {
rp = path_join(p, fname);
if (!rp)
return -ENOMEM;
}
if (unlinkat(fd, fname, unlink_flags) < 0)
return -errno;
if (ret_path)
*ret_path = TAKE_PTR(rp);
return 0;
}