blob: 380a4e30d7afbcdc3298f4f55d03c4c4dece83e5 [file] [log] [blame]
/* SPDX-License-Identifier: LGPL-2.1-or-later */
#include <errno.h>
#include <fcntl.h>
#include <linux/kd.h>
#include <sys/epoll.h>
#include <sys/inotify.h>
#include <sys/ioctl.h>
#include <sys/mount.h>
#include <sys/reboot.h>
#include <sys/timerfd.h>
#include <sys/utsname.h>
#include <sys/wait.h>
#include <unistd.h>
#if HAVE_AUDIT
#include <libaudit.h>
#endif
#include "sd-daemon.h"
#include "sd-messages.h"
#include "sd-path.h"
#include "all-units.h"
#include "alloc-util.h"
#include "audit-fd.h"
#include "boot-timestamps.h"
#include "bus-common-errors.h"
#include "bus-error.h"
#include "bus-kernel.h"
#include "bus-util.h"
#include "clean-ipc.h"
#include "clock-util.h"
#include "constants.h"
#include "core-varlink.h"
#include "creds-util.h"
#include "dbus-job.h"
#include "dbus-manager.h"
#include "dbus-unit.h"
#include "dbus.h"
#include "dirent-util.h"
#include "env-util.h"
#include "escape.h"
#include "event-util.h"
#include "exec-util.h"
#include "execute.h"
#include "exit-status.h"
#include "fd-util.h"
#include "fileio.h"
#include "generator-setup.h"
#include "hashmap.h"
#include "initrd-util.h"
#include "inotify-util.h"
#include "install.h"
#include "io-util.h"
#include "label.h"
#include "load-fragment.h"
#include "locale-setup.h"
#include "log.h"
#include "macro.h"
#include "manager.h"
#include "manager-dump.h"
#include "manager-serialize.h"
#include "memory-util.h"
#include "mkdir-label.h"
#include "mount-util.h"
#include "os-util.h"
#include "parse-util.h"
#include "path-lookup.h"
#include "path-util.h"
#include "process-util.h"
#include "ratelimit.h"
#include "rlimit-util.h"
#include "rm-rf.h"
#include "selinux-util.h"
#include "signal-util.h"
#include "socket-util.h"
#include "special.h"
#include "stat-util.h"
#include "string-table.h"
#include "string-util.h"
#include "strv.h"
#include "strxcpyx.h"
#include "sysctl-util.h"
#include "syslog-util.h"
#include "terminal-util.h"
#include "time-util.h"
#include "transaction.h"
#include "uid-range.h"
#include "umask-util.h"
#include "unit-name.h"
#include "user-util.h"
#include "virt.h"
#include "watchdog.h"
#define NOTIFY_RCVBUF_SIZE (8*1024*1024)
#define CGROUPS_AGENT_RCVBUF_SIZE (8*1024*1024)
/* Initial delay and the interval for printing status messages about running jobs */
#define JOBS_IN_PROGRESS_WAIT_USEC (2*USEC_PER_SEC)
#define JOBS_IN_PROGRESS_QUIET_WAIT_USEC (25*USEC_PER_SEC)
#define JOBS_IN_PROGRESS_PERIOD_USEC (USEC_PER_SEC / 3)
#define JOBS_IN_PROGRESS_PERIOD_DIVISOR 3
/* If there are more than 1K bus messages queue across our API and direct buses, then let's not add more on top until
* the queue gets more empty. */
#define MANAGER_BUS_BUSY_THRESHOLD 1024LU
/* How many units and jobs to process of the bus queue before returning to the event loop. */
#define MANAGER_BUS_MESSAGE_BUDGET 100U
static int manager_dispatch_notify_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata);
static int manager_dispatch_cgroups_agent_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata);
static int manager_dispatch_signal_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata);
static int manager_dispatch_time_change_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata);
static int manager_dispatch_idle_pipe_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata);
static int manager_dispatch_user_lookup_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata);
static int manager_dispatch_jobs_in_progress(sd_event_source *source, usec_t usec, void *userdata);
static int manager_dispatch_run_queue(sd_event_source *source, void *userdata);
static int manager_dispatch_sigchld(sd_event_source *source, void *userdata);
static int manager_dispatch_timezone_change(sd_event_source *source, const struct inotify_event *event, void *userdata);
static int manager_run_environment_generators(Manager *m);
static int manager_run_generators(Manager *m);
static void manager_vacuum(Manager *m);
static usec_t manager_watch_jobs_next_time(Manager *m) {
usec_t timeout;
if (MANAGER_IS_USER(m))
/* Let the user manager without a timeout show status quickly, so the system manager can make
* use of it, if it wants to. */
timeout = JOBS_IN_PROGRESS_WAIT_USEC * 2 / 3;
else if (show_status_on(m->show_status))
/* When status is on, just use the usual timeout. */
timeout = JOBS_IN_PROGRESS_WAIT_USEC;
else
timeout = JOBS_IN_PROGRESS_QUIET_WAIT_USEC;
return usec_add(now(CLOCK_MONOTONIC), timeout);
}
static void manager_watch_jobs_in_progress(Manager *m) {
usec_t next;
int r;
assert(m);
/* We do not want to show the cylon animation if the user
* needs to confirm service executions otherwise confirmation
* messages will be screwed by the cylon animation. */
if (!manager_is_confirm_spawn_disabled(m))
return;
if (m->jobs_in_progress_event_source)
return;
next = manager_watch_jobs_next_time(m);
r = sd_event_add_time(
m->event,
&m->jobs_in_progress_event_source,
CLOCK_MONOTONIC,
next, 0,
manager_dispatch_jobs_in_progress, m);
if (r < 0)
return;
(void) sd_event_source_set_description(m->jobs_in_progress_event_source, "manager-jobs-in-progress");
}
#define CYLON_BUFFER_EXTRA (2*STRLEN(ANSI_RED) + STRLEN(ANSI_HIGHLIGHT_RED) + 2*STRLEN(ANSI_NORMAL))
static void draw_cylon(char buffer[], size_t buflen, unsigned width, unsigned pos) {
char *p = buffer;
assert(buflen >= CYLON_BUFFER_EXTRA + width + 1);
assert(pos <= width+1); /* 0 or width+1 mean that the center light is behind the corner */
if (pos > 1) {
if (pos > 2)
p = mempset(p, ' ', pos-2);
if (log_get_show_color())
p = stpcpy(p, ANSI_RED);
*p++ = '*';
}
if (pos > 0 && pos <= width) {
if (log_get_show_color())
p = stpcpy(p, ANSI_HIGHLIGHT_RED);
*p++ = '*';
}
if (log_get_show_color())
p = stpcpy(p, ANSI_NORMAL);
if (pos < width) {
if (log_get_show_color())
p = stpcpy(p, ANSI_RED);
*p++ = '*';
if (pos < width-1)
p = mempset(p, ' ', width-1-pos);
if (log_get_show_color())
strcpy(p, ANSI_NORMAL);
}
}
static void manager_flip_auto_status(Manager *m, bool enable, const char *reason) {
assert(m);
if (enable) {
if (m->show_status == SHOW_STATUS_AUTO)
manager_set_show_status(m, SHOW_STATUS_TEMPORARY, reason);
} else {
if (m->show_status == SHOW_STATUS_TEMPORARY)
manager_set_show_status(m, SHOW_STATUS_AUTO, reason);
}
}
static void manager_print_jobs_in_progress(Manager *m) {
Job *j;
unsigned counter = 0, print_nr;
char cylon[6 + CYLON_BUFFER_EXTRA + 1];
unsigned cylon_pos;
uint64_t timeout = 0;
assert(m);
assert(m->n_running_jobs > 0);
manager_flip_auto_status(m, true, "delay");
print_nr = (m->jobs_in_progress_iteration / JOBS_IN_PROGRESS_PERIOD_DIVISOR) % m->n_running_jobs;
HASHMAP_FOREACH(j, m->jobs)
if (j->state == JOB_RUNNING && counter++ == print_nr)
break;
/* m->n_running_jobs must be consistent with the contents of m->jobs,
* so the above loop must have succeeded in finding j. */
assert(counter == print_nr + 1);
assert(j);
cylon_pos = m->jobs_in_progress_iteration % 14;
if (cylon_pos >= 8)
cylon_pos = 14 - cylon_pos;
draw_cylon(cylon, sizeof(cylon), 6, cylon_pos);
m->jobs_in_progress_iteration++;
char job_of_n[STRLEN("( of ) ") + DECIMAL_STR_MAX(unsigned)*2] = "";
if (m->n_running_jobs > 1)
xsprintf(job_of_n, "(%u of %u) ", counter, m->n_running_jobs);
(void) job_get_timeout(j, &timeout);
/* We want to use enough information for the user to identify previous lines talking about the same
* unit, but keep the message as short as possible. So if 'Starting foo.service' or 'Starting
* foo.service - Description' were used, 'foo.service' is enough here. On the other hand, if we used
* 'Starting Description' before, then we shall also use 'Description' here. So we pass NULL as the
* second argument to unit_status_string(). */
const char *ident = unit_status_string(j->unit, NULL);
const char *time = FORMAT_TIMESPAN(now(CLOCK_MONOTONIC) - j->begin_usec, 1*USEC_PER_SEC);
const char *limit = timeout > 0 ? FORMAT_TIMESPAN(timeout - j->begin_usec, 1*USEC_PER_SEC) : "no limit";
if (m->status_unit_format == STATUS_UNIT_FORMAT_DESCRIPTION)
/* When using 'Description', we effectively don't have enough space to show the nested status
* without ellipsization, so let's not even try. */
manager_status_printf(m, STATUS_TYPE_EPHEMERAL, cylon,
"%sA %s job is running for %s (%s / %s)",
job_of_n,
job_type_to_string(j->type),
ident,
time, limit);
else {
const char *status_text = unit_status_text(j->unit);
manager_status_printf(m, STATUS_TYPE_EPHEMERAL, cylon,
"%sJob %s/%s running (%s / %s)%s%s",
job_of_n,
ident,
job_type_to_string(j->type),
time, limit,
status_text ? ": " : "",
strempty(status_text));
}
sd_notifyf(false,
"STATUS=%sUser job %s/%s running (%s / %s)...",
job_of_n,
ident,
job_type_to_string(j->type),
time, limit);
m->status_ready = false;
}
static int have_ask_password(void) {
_cleanup_closedir_ DIR *dir = NULL;
dir = opendir("/run/systemd/ask-password");
if (!dir) {
if (errno == ENOENT)
return false;
else
return -errno;
}
FOREACH_DIRENT_ALL(de, dir, return -errno)
if (startswith(de->d_name, "ask."))
return true;
return false;
}
static int manager_dispatch_ask_password_fd(sd_event_source *source,
int fd, uint32_t revents, void *userdata) {
Manager *m = ASSERT_PTR(userdata);
(void) flush_fd(fd);
m->have_ask_password = have_ask_password();
if (m->have_ask_password < 0)
/* Log error but continue. Negative have_ask_password
* is treated as unknown status. */
log_error_errno(m->have_ask_password, "Failed to list /run/systemd/ask-password: %m");
return 0;
}
static void manager_close_ask_password(Manager *m) {
assert(m);
m->ask_password_event_source = sd_event_source_disable_unref(m->ask_password_event_source);
m->ask_password_inotify_fd = safe_close(m->ask_password_inotify_fd);
m->have_ask_password = -EINVAL;
}
static int manager_check_ask_password(Manager *m) {
int r;
assert(m);
if (!m->ask_password_event_source) {
assert(m->ask_password_inotify_fd < 0);
(void) mkdir_p_label("/run/systemd/ask-password", 0755);
m->ask_password_inotify_fd = inotify_init1(IN_NONBLOCK|IN_CLOEXEC);
if (m->ask_password_inotify_fd < 0)
return log_error_errno(errno, "Failed to create inotify object: %m");
r = inotify_add_watch_and_warn(m->ask_password_inotify_fd,
"/run/systemd/ask-password",
IN_CREATE|IN_DELETE|IN_MOVE);
if (r < 0) {
manager_close_ask_password(m);
return r;
}
r = sd_event_add_io(m->event, &m->ask_password_event_source,
m->ask_password_inotify_fd, EPOLLIN,
manager_dispatch_ask_password_fd, m);
if (r < 0) {
log_error_errno(r, "Failed to add event source for /run/systemd/ask-password: %m");
manager_close_ask_password(m);
return r;
}
(void) sd_event_source_set_description(m->ask_password_event_source, "manager-ask-password");
/* Queries might have been added meanwhile... */
manager_dispatch_ask_password_fd(m->ask_password_event_source,
m->ask_password_inotify_fd, EPOLLIN, m);
}
return m->have_ask_password;
}
static int manager_watch_idle_pipe(Manager *m) {
int r;
assert(m);
if (m->idle_pipe_event_source)
return 0;
if (m->idle_pipe[2] < 0)
return 0;
r = sd_event_add_io(m->event, &m->idle_pipe_event_source, m->idle_pipe[2], EPOLLIN, manager_dispatch_idle_pipe_fd, m);
if (r < 0)
return log_error_errno(r, "Failed to watch idle pipe: %m");
(void) sd_event_source_set_description(m->idle_pipe_event_source, "manager-idle-pipe");
return 0;
}
static void manager_close_idle_pipe(Manager *m) {
assert(m);
m->idle_pipe_event_source = sd_event_source_disable_unref(m->idle_pipe_event_source);
safe_close_pair(m->idle_pipe);
safe_close_pair(m->idle_pipe + 2);
}
static int manager_setup_time_change(Manager *m) {
int r;
assert(m);
if (MANAGER_IS_TEST_RUN(m))
return 0;
m->time_change_event_source = sd_event_source_disable_unref(m->time_change_event_source);
r = event_add_time_change(m->event, &m->time_change_event_source, manager_dispatch_time_change_fd, m);
if (r < 0)
return log_error_errno(r, "Failed to create time change event source: %m");
/* Schedule this slightly earlier than the .timer event sources */
r = sd_event_source_set_priority(m->time_change_event_source, SD_EVENT_PRIORITY_NORMAL-1);
if (r < 0)
return log_error_errno(r, "Failed to set priority of time change event sources: %m");
log_debug("Set up TFD_TIMER_CANCEL_ON_SET timerfd.");
return 0;
}
static int manager_read_timezone_stat(Manager *m) {
struct stat st;
bool changed;
assert(m);
/* Read the current stat() data of /etc/localtime so that we detect changes */
if (lstat("/etc/localtime", &st) < 0) {
log_debug_errno(errno, "Failed to stat /etc/localtime, ignoring: %m");
changed = m->etc_localtime_accessible;
m->etc_localtime_accessible = false;
} else {
usec_t k;
k = timespec_load(&st.st_mtim);
changed = !m->etc_localtime_accessible || k != m->etc_localtime_mtime;
m->etc_localtime_mtime = k;
m->etc_localtime_accessible = true;
}
return changed;
}
static int manager_setup_timezone_change(Manager *m) {
_cleanup_(sd_event_source_unrefp) sd_event_source *new_event = NULL;
int r;
assert(m);
if (MANAGER_IS_TEST_RUN(m))
return 0;
/* We watch /etc/localtime for three events: change of the link count (which might mean removal from /etc even
* though another link might be kept), renames, and file close operations after writing. Note we don't bother
* with IN_DELETE_SELF, as that would just report when the inode is removed entirely, i.e. after the link count
* went to zero and all fds to it are closed.
*
* Note that we never follow symlinks here. This is a simplification, but should cover almost all cases
* correctly.
*
* Note that we create the new event source first here, before releasing the old one. This should optimize
* behaviour as this way sd-event can reuse the old watch in case the inode didn't change. */
r = sd_event_add_inotify(m->event, &new_event, "/etc/localtime",
IN_ATTRIB|IN_MOVE_SELF|IN_CLOSE_WRITE|IN_DONT_FOLLOW, manager_dispatch_timezone_change, m);
if (r == -ENOENT) {
/* If the file doesn't exist yet, subscribe to /etc instead, and wait until it is created either by
* O_CREATE or by rename() */
log_debug_errno(r, "/etc/localtime doesn't exist yet, watching /etc instead.");
r = sd_event_add_inotify(m->event, &new_event, "/etc",
IN_CREATE|IN_MOVED_TO|IN_ONLYDIR, manager_dispatch_timezone_change, m);
}
if (r < 0)
return log_error_errno(r, "Failed to create timezone change event source: %m");
/* Schedule this slightly earlier than the .timer event sources */
r = sd_event_source_set_priority(new_event, SD_EVENT_PRIORITY_NORMAL-1);
if (r < 0)
return log_error_errno(r, "Failed to set priority of timezone change event sources: %m");
sd_event_source_unref(m->timezone_change_event_source);
m->timezone_change_event_source = TAKE_PTR(new_event);
return 0;
}
static int enable_special_signals(Manager *m) {
_cleanup_close_ int fd = -EBADF;
assert(m);
if (MANAGER_IS_TEST_RUN(m))
return 0;
/* Enable that we get SIGINT on control-alt-del. In containers
* this will fail with EPERM (older) or EINVAL (newer), so
* ignore that. */
if (reboot(RB_DISABLE_CAD) < 0 && !IN_SET(errno, EPERM, EINVAL))
log_warning_errno(errno, "Failed to enable ctrl-alt-del handling: %m");
fd = open_terminal("/dev/tty0", O_RDWR|O_NOCTTY|O_CLOEXEC);
if (fd < 0) {
/* Support systems without virtual console */
if (fd != -ENOENT)
log_warning_errno(errno, "Failed to open /dev/tty0: %m");
} else {
/* Enable that we get SIGWINCH on kbrequest */
if (ioctl(fd, KDSIGACCEPT, SIGWINCH) < 0)
log_warning_errno(errno, "Failed to enable kbrequest handling: %m");
}
return 0;
}
#define RTSIG_IF_AVAILABLE(signum) (signum <= SIGRTMAX ? signum : -1)
static int manager_setup_signals(Manager *m) {
struct sigaction sa = {
.sa_handler = SIG_DFL,
.sa_flags = SA_NOCLDSTOP|SA_RESTART,
};
sigset_t mask;
int r;
assert(m);
assert_se(sigaction(SIGCHLD, &sa, NULL) == 0);
/* We make liberal use of realtime signals here. On
* Linux/glibc we have 30 of them (with the exception of Linux
* on hppa, see below), between SIGRTMIN+0 ... SIGRTMIN+30
* (aka SIGRTMAX). */
assert_se(sigemptyset(&mask) == 0);
sigset_add_many(&mask,
SIGCHLD, /* Child died */
SIGTERM, /* Reexecute daemon */
SIGHUP, /* Reload configuration */
SIGUSR1, /* systemd: reconnect to D-Bus */
SIGUSR2, /* systemd: dump status */
SIGINT, /* Kernel sends us this on control-alt-del */
SIGWINCH, /* Kernel sends us this on kbrequest (alt-arrowup) */
SIGPWR, /* Some kernel drivers and upsd send us this on power failure */
SIGRTMIN+0, /* systemd: start default.target */
SIGRTMIN+1, /* systemd: isolate rescue.target */
SIGRTMIN+2, /* systemd: isolate emergency.target */
SIGRTMIN+3, /* systemd: start halt.target */
SIGRTMIN+4, /* systemd: start poweroff.target */
SIGRTMIN+5, /* systemd: start reboot.target */
SIGRTMIN+6, /* systemd: start kexec.target */
/* ... space for more special targets ... */
SIGRTMIN+13, /* systemd: Immediate halt */
SIGRTMIN+14, /* systemd: Immediate poweroff */
SIGRTMIN+15, /* systemd: Immediate reboot */
SIGRTMIN+16, /* systemd: Immediate kexec */
/* ... space for more immediate system state changes ... */
SIGRTMIN+20, /* systemd: enable status messages */
SIGRTMIN+21, /* systemd: disable status messages */
SIGRTMIN+22, /* systemd: set log level to LOG_DEBUG */
SIGRTMIN+23, /* systemd: set log level to LOG_INFO */
SIGRTMIN+24, /* systemd: Immediate exit (--user only) */
SIGRTMIN+25, /* systemd: reexecute manager */
/* Apparently Linux on hppa had fewer RT signals until v3.18,
* SIGRTMAX was SIGRTMIN+25, and then SIGRTMIN was lowered,
* see commit v3.17-7614-g1f25df2eff.
*
* We cannot unconditionally make use of those signals here,
* so let's use a runtime check. Since these commands are
* accessible by different means and only really a safety
* net, the missing functionality on hppa shouldn't matter.
*/
RTSIG_IF_AVAILABLE(SIGRTMIN+26), /* systemd: set log target to journal-or-kmsg */
RTSIG_IF_AVAILABLE(SIGRTMIN+27), /* systemd: set log target to console */
RTSIG_IF_AVAILABLE(SIGRTMIN+28), /* systemd: set log target to kmsg */
RTSIG_IF_AVAILABLE(SIGRTMIN+29), /* systemd: set log target to syslog-or-kmsg (obsolete) */
/* ... one free signal here SIGRTMIN+30 ... */
-1);
assert_se(sigprocmask(SIG_SETMASK, &mask, NULL) == 0);
m->signal_fd = signalfd(-1, &mask, SFD_NONBLOCK|SFD_CLOEXEC);
if (m->signal_fd < 0)
return -errno;
r = sd_event_add_io(m->event, &m->signal_event_source, m->signal_fd, EPOLLIN, manager_dispatch_signal_fd, m);
if (r < 0)
return r;
(void) sd_event_source_set_description(m->signal_event_source, "manager-signal");
/* Process signals a bit earlier than the rest of things, but later than notify_fd processing, so that the
* notify processing can still figure out to which process/service a message belongs, before we reap the
* process. Also, process this before handling cgroup notifications, so that we always collect child exit
* status information before detecting that there's no process in a cgroup. */
r = sd_event_source_set_priority(m->signal_event_source, SD_EVENT_PRIORITY_NORMAL-6);
if (r < 0)
return r;
if (MANAGER_IS_SYSTEM(m))
return enable_special_signals(m);
return 0;
}
static char** sanitize_environment(char **l) {
/* Let's remove some environment variables that we need ourselves to communicate with our clients */
strv_env_unset_many(
l,
"CACHE_DIRECTORY",
"CONFIGURATION_DIRECTORY",
"CREDENTIALS_DIRECTORY",
"EXIT_CODE",
"EXIT_STATUS",
"INVOCATION_ID",
"JOURNAL_STREAM",
"LISTEN_FDNAMES",
"LISTEN_FDS",
"LISTEN_PID",
"LOGS_DIRECTORY",
"MAINPID",
"MANAGERPID",
"NOTIFY_SOCKET",
"PIDFILE",
"REMOTE_ADDR",
"REMOTE_PORT",
"RUNTIME_DIRECTORY",
"SERVICE_RESULT",
"STATE_DIRECTORY",
"WATCHDOG_PID",
"WATCHDOG_USEC",
NULL);
/* Let's order the environment alphabetically, just to make it pretty */
return strv_sort(l);
}
int manager_default_environment(Manager *m) {
int r;
assert(m);
m->transient_environment = strv_free(m->transient_environment);
if (MANAGER_IS_SYSTEM(m)) {
/* The system manager always starts with a clean
* environment for its children. It does not import
* the kernel's or the parents' exported variables.
*
* The initial passed environment is untouched to keep
* /proc/self/environ valid; it is used for tagging
* the init process inside containers. */
m->transient_environment = strv_new("PATH=" DEFAULT_PATH);
if (!m->transient_environment)
return log_oom();
/* Import locale variables LC_*= from configuration */
(void) locale_setup(&m->transient_environment);
} else {
/* The user manager passes its own environment along to its children, except for $PATH. */
m->transient_environment = strv_copy(environ);
if (!m->transient_environment)
return log_oom();
r = strv_env_replace_strdup(&m->transient_environment, "PATH=" DEFAULT_USER_PATH);
if (r < 0)
return log_oom();
}
sanitize_environment(m->transient_environment);
return 0;
}
static int manager_setup_prefix(Manager *m) {
struct table_entry {
uint64_t type;
const char *suffix;
};
static const struct table_entry paths_system[_EXEC_DIRECTORY_TYPE_MAX] = {
[EXEC_DIRECTORY_RUNTIME] = { SD_PATH_SYSTEM_RUNTIME, NULL },
[EXEC_DIRECTORY_STATE] = { SD_PATH_SYSTEM_STATE_PRIVATE, NULL },
[EXEC_DIRECTORY_CACHE] = { SD_PATH_SYSTEM_STATE_CACHE, NULL },
[EXEC_DIRECTORY_LOGS] = { SD_PATH_SYSTEM_STATE_LOGS, NULL },
[EXEC_DIRECTORY_CONFIGURATION] = { SD_PATH_SYSTEM_CONFIGURATION, NULL },
};
static const struct table_entry paths_user[_EXEC_DIRECTORY_TYPE_MAX] = {
[EXEC_DIRECTORY_RUNTIME] = { SD_PATH_USER_RUNTIME, NULL },
[EXEC_DIRECTORY_STATE] = { SD_PATH_USER_CONFIGURATION, NULL },
[EXEC_DIRECTORY_CACHE] = { SD_PATH_USER_STATE_CACHE, NULL },
[EXEC_DIRECTORY_LOGS] = { SD_PATH_USER_CONFIGURATION, "log" },
[EXEC_DIRECTORY_CONFIGURATION] = { SD_PATH_USER_CONFIGURATION, NULL },
};
assert(m);
const struct table_entry *p = MANAGER_IS_SYSTEM(m) ? paths_system : paths_user;
int r;
for (ExecDirectoryType i = 0; i < _EXEC_DIRECTORY_TYPE_MAX; i++) {
r = sd_path_lookup(p[i].type, p[i].suffix, &m->prefix[i]);
if (r < 0)
return log_warning_errno(r, "Failed to lookup %s path: %m",
exec_directory_type_to_string(i));
}
return 0;
}
static void manager_free_unit_name_maps(Manager *m) {
m->unit_id_map = hashmap_free(m->unit_id_map);
m->unit_name_map = hashmap_free(m->unit_name_map);
m->unit_path_cache = set_free(m->unit_path_cache);
m->unit_cache_timestamp_hash = 0;
}
static int manager_setup_run_queue(Manager *m) {
int r;
assert(m);
assert(!m->run_queue_event_source);
r = sd_event_add_defer(m->event, &m->run_queue_event_source, manager_dispatch_run_queue, m);
if (r < 0)
return r;
r = sd_event_source_set_priority(m->run_queue_event_source, SD_EVENT_PRIORITY_IDLE);
if (r < 0)
return r;
r = sd_event_source_set_enabled(m->run_queue_event_source, SD_EVENT_OFF);
if (r < 0)
return r;
(void) sd_event_source_set_description(m->run_queue_event_source, "manager-run-queue");
return 0;
}
static int manager_setup_sigchld_event_source(Manager *m) {
int r;
assert(m);
assert(!m->sigchld_event_source);
r = sd_event_add_defer(m->event, &m->sigchld_event_source, manager_dispatch_sigchld, m);
if (r < 0)
return r;
r = sd_event_source_set_priority(m->sigchld_event_source, SD_EVENT_PRIORITY_NORMAL-7);
if (r < 0)
return r;
r = sd_event_source_set_enabled(m->sigchld_event_source, SD_EVENT_OFF);
if (r < 0)
return r;
(void) sd_event_source_set_description(m->sigchld_event_source, "manager-sigchld");
return 0;
}
static int manager_find_credentials_dirs(Manager *m) {
const char *e;
int r;
assert(m);
r = get_credentials_dir(&e);
if (r < 0) {
if (r != -ENXIO)
log_debug_errno(r, "Failed to determine credentials directory, ignoring: %m");
} else {
m->received_credentials_directory = strdup(e);
if (!m->received_credentials_directory)
return -ENOMEM;
}
r = get_encrypted_credentials_dir(&e);
if (r < 0) {
if (r != -ENXIO)
log_debug_errno(r, "Failed to determine encrypted credentials directory, ignoring: %m");
} else {
m->received_encrypted_credentials_directory = strdup(e);
if (!m->received_encrypted_credentials_directory)
return -ENOMEM;
}
return 0;
}
void manager_set_switching_root(Manager *m, bool switching_root) {
assert(m);
m->switching_root = MANAGER_IS_SYSTEM(m) && switching_root;
}
int manager_new(LookupScope scope, ManagerTestRunFlags test_run_flags, Manager **_m) {
_cleanup_(manager_freep) Manager *m = NULL;
int r;
assert(_m);
assert(IN_SET(scope, LOOKUP_SCOPE_SYSTEM, LOOKUP_SCOPE_USER));
m = new(Manager, 1);
if (!m)
return -ENOMEM;
*m = (Manager) {
.unit_file_scope = scope,
.objective = _MANAGER_OBJECTIVE_INVALID,
.status_unit_format = STATUS_UNIT_FORMAT_DEFAULT,
.default_timer_accuracy_usec = USEC_PER_MINUTE,
.default_memory_accounting = MEMORY_ACCOUNTING_DEFAULT,
.default_tasks_accounting = true,
.default_tasks_max = TASKS_MAX_UNSET,
.default_timeout_start_usec = manager_default_timeout(scope == LOOKUP_SCOPE_SYSTEM),
.default_timeout_stop_usec = manager_default_timeout(scope == LOOKUP_SCOPE_SYSTEM),
.default_restart_usec = DEFAULT_RESTART_USEC,
.default_device_timeout_usec = manager_default_timeout(scope == LOOKUP_SCOPE_SYSTEM),
.original_log_level = -1,
.original_log_target = _LOG_TARGET_INVALID,
.watchdog_overridden[WATCHDOG_RUNTIME] = USEC_INFINITY,
.watchdog_overridden[WATCHDOG_REBOOT] = USEC_INFINITY,
.watchdog_overridden[WATCHDOG_KEXEC] = USEC_INFINITY,
.watchdog_overridden[WATCHDOG_PRETIMEOUT] = USEC_INFINITY,
.show_status_overridden = _SHOW_STATUS_INVALID,
.notify_fd = -EBADF,
.cgroups_agent_fd = -EBADF,
.signal_fd = -EBADF,
.user_lookup_fds = PIPE_EBADF,
.private_listen_fd = -EBADF,
.dev_autofs_fd = -EBADF,
.cgroup_inotify_fd = -EBADF,
.pin_cgroupfs_fd = -EBADF,
.ask_password_inotify_fd = -EBADF,
.idle_pipe = { -EBADF, -EBADF, -EBADF, -EBADF},
/* start as id #1, so that we can leave #0 around as "null-like" value */
.current_job_id = 1,
.have_ask_password = -EINVAL, /* we don't know */
.first_boot = -1,
.test_run_flags = test_run_flags,
.default_oom_policy = OOM_STOP,
};
#if ENABLE_EFI
if (MANAGER_IS_SYSTEM(m) && detect_container() <= 0)
boot_timestamps(m->timestamps + MANAGER_TIMESTAMP_USERSPACE,
m->timestamps + MANAGER_TIMESTAMP_FIRMWARE,
m->timestamps + MANAGER_TIMESTAMP_LOADER);
#endif
/* Prepare log fields we can use for structured logging */
if (MANAGER_IS_SYSTEM(m)) {
m->unit_log_field = "UNIT=";
m->unit_log_format_string = "UNIT=%s";
m->invocation_log_field = "INVOCATION_ID=";
m->invocation_log_format_string = "INVOCATION_ID=%s";
} else {
m->unit_log_field = "USER_UNIT=";
m->unit_log_format_string = "USER_UNIT=%s";
m->invocation_log_field = "USER_INVOCATION_ID=";
m->invocation_log_format_string = "USER_INVOCATION_ID=%s";
}
/* Reboot immediately if the user hits C-A-D more often than 7x per 2s */
m->ctrl_alt_del_ratelimit = (const RateLimit) { .interval = 2 * USEC_PER_SEC, .burst = 7 };
r = manager_default_environment(m);
if (r < 0)
return r;
r = hashmap_ensure_allocated(&m->units, &string_hash_ops);
if (r < 0)
return r;
r = hashmap_ensure_allocated(&m->cgroup_unit, &path_hash_ops);
if (r < 0)
return r;
r = hashmap_ensure_allocated(&m->watch_bus, &string_hash_ops);
if (r < 0)
return r;
r = prioq_ensure_allocated(&m->run_queue, compare_job_priority);
if (r < 0)
return r;
r = manager_setup_prefix(m);
if (r < 0)
return r;
r = manager_find_credentials_dirs(m);
if (r < 0)
return r;
r = sd_event_default(&m->event);
if (r < 0)
return r;
r = manager_setup_run_queue(m);
if (r < 0)
return r;
if (FLAGS_SET(test_run_flags, MANAGER_TEST_RUN_MINIMAL)) {
m->cgroup_root = strdup("");
if (!m->cgroup_root)
return -ENOMEM;
} else {
r = manager_setup_signals(m);
if (r < 0)
return r;
r = manager_setup_cgroup(m);
if (r < 0)
return r;
r = manager_setup_time_change(m);
if (r < 0)
return r;
r = manager_read_timezone_stat(m);
if (r < 0)
return r;
(void) manager_setup_timezone_change(m);
r = manager_setup_sigchld_event_source(m);
if (r < 0)
return r;
#if HAVE_LIBBPF
if (MANAGER_IS_SYSTEM(m) && lsm_bpf_supported(/* initialize = */ true)) {
r = lsm_bpf_setup(m);
if (r < 0)
log_warning_errno(r, "Failed to setup LSM BPF, ignoring: %m");
}
#endif
}
if (test_run_flags == 0) {
if (MANAGER_IS_SYSTEM(m))
r = mkdir_label("/run/systemd/units", 0755);
else {
_cleanup_free_ char *units_path = NULL;
r = xdg_user_runtime_dir(&units_path, "/systemd/units");
if (r < 0)
return r;
r = mkdir_p_label(units_path, 0755);
}
if (r < 0 && r != -EEXIST)
return r;
}
m->taint_usr =
!in_initrd() &&
dir_is_empty("/usr", /* ignore_hidden_or_backup= */ false) > 0;
/* Note that we do not set up the notify fd here. We do that after deserialization,
* since they might have gotten serialized across the reexec. */
*_m = TAKE_PTR(m);
return 0;
}
static int manager_setup_notify(Manager *m) {
int r;
if (MANAGER_IS_TEST_RUN(m))
return 0;
if (m->notify_fd < 0) {
_cleanup_close_ int fd = -EBADF;
union sockaddr_union sa;
socklen_t sa_len;
/* First free all secondary fields */
m->notify_socket = mfree(m->notify_socket);
m->notify_event_source = sd_event_source_disable_unref(m->notify_event_source);
fd = socket(AF_UNIX, SOCK_DGRAM|SOCK_CLOEXEC|SOCK_NONBLOCK, 0);
if (fd < 0)
return log_error_errno(errno, "Failed to allocate notification socket: %m");
fd_increase_rxbuf(fd, NOTIFY_RCVBUF_SIZE);
m->notify_socket = path_join(m->prefix[EXEC_DIRECTORY_RUNTIME], "systemd/notify");
if (!m->notify_socket)
return log_oom();
r = sockaddr_un_set_path(&sa.un, m->notify_socket);
if (r < 0)
return log_error_errno(r, "Notify socket '%s' not valid for AF_UNIX socket address, refusing.",
m->notify_socket);
sa_len = r;
(void) mkdir_parents_label(m->notify_socket, 0755);
(void) sockaddr_un_unlink(&sa.un);
r = mac_selinux_bind(fd, &sa.sa, sa_len);
if (r < 0)
return log_error_errno(r, "bind(%s) failed: %m", m->notify_socket);
r = setsockopt_int(fd, SOL_SOCKET, SO_PASSCRED, true);
if (r < 0)
return log_error_errno(r, "SO_PASSCRED failed: %m");
m->notify_fd = TAKE_FD(fd);
log_debug("Using notification socket %s", m->notify_socket);
}
if (!m->notify_event_source) {
r = sd_event_add_io(m->event, &m->notify_event_source, m->notify_fd, EPOLLIN, manager_dispatch_notify_fd, m);
if (r < 0)
return log_error_errno(r, "Failed to allocate notify event source: %m");
/* Process notification messages a bit earlier than SIGCHLD, so that we can still identify to which
* service an exit message belongs. */
r = sd_event_source_set_priority(m->notify_event_source, SD_EVENT_PRIORITY_NORMAL-8);
if (r < 0)
return log_error_errno(r, "Failed to set priority of notify event source: %m");
(void) sd_event_source_set_description(m->notify_event_source, "manager-notify");
}
return 0;
}
static int manager_setup_cgroups_agent(Manager *m) {
static const union sockaddr_union sa = {
.un.sun_family = AF_UNIX,
.un.sun_path = "/run/systemd/cgroups-agent",
};
int r;
/* This creates a listening socket we receive cgroups agent messages on. We do not use D-Bus for delivering
* these messages from the cgroups agent binary to PID 1, as the cgroups agent binary is very short-living, and
* each instance of it needs a new D-Bus connection. Since D-Bus connections are SOCK_STREAM/AF_UNIX, on
* overloaded systems the backlog of the D-Bus socket becomes relevant, as not more than the configured number
* of D-Bus connections may be queued until the kernel will start dropping further incoming connections,
* possibly resulting in lost cgroups agent messages. To avoid this, we'll use a private SOCK_DGRAM/AF_UNIX
* socket, where no backlog is relevant as communication may take place without an actual connect() cycle, and
* we thus won't lose messages.
*
* Note that PID 1 will forward the agent message to system bus, so that the user systemd instance may listen
* to it. The system instance hence listens on this special socket, but the user instances listen on the system
* bus for these messages. */
if (MANAGER_IS_TEST_RUN(m))
return 0;
if (!MANAGER_IS_SYSTEM(m))
return 0;
r = cg_unified_controller(SYSTEMD_CGROUP_CONTROLLER);
if (r < 0)
return log_error_errno(r, "Failed to determine whether unified cgroups hierarchy is used: %m");
if (r > 0) /* We don't need this anymore on the unified hierarchy */
return 0;
if (m->cgroups_agent_fd < 0) {
_cleanup_close_ int fd = -EBADF;
/* First free all secondary fields */
m->cgroups_agent_event_source = sd_event_source_disable_unref(m->cgroups_agent_event_source);
fd = socket(AF_UNIX, SOCK_DGRAM|SOCK_CLOEXEC|SOCK_NONBLOCK, 0);
if (fd < 0)
return log_error_errno(errno, "Failed to allocate cgroups agent socket: %m");
fd_increase_rxbuf(fd, CGROUPS_AGENT_RCVBUF_SIZE);
(void) sockaddr_un_unlink(&sa.un);
/* Only allow root to connect to this socket */
WITH_UMASK(0077)
r = bind(fd, &sa.sa, SOCKADDR_UN_LEN(sa.un));
if (r < 0)
return log_error_errno(errno, "bind(%s) failed: %m", sa.un.sun_path);
m->cgroups_agent_fd = TAKE_FD(fd);
}
if (!m->cgroups_agent_event_source) {
r = sd_event_add_io(m->event, &m->cgroups_agent_event_source, m->cgroups_agent_fd, EPOLLIN, manager_dispatch_cgroups_agent_fd, m);
if (r < 0)
return log_error_errno(r, "Failed to allocate cgroups agent event source: %m");
/* Process cgroups notifications early. Note that when the agent notification is received
* we'll just enqueue the unit in the cgroup empty queue, hence pick a high priority than
* that. Also see handling of cgroup inotify for the unified cgroup stuff. */
r = sd_event_source_set_priority(m->cgroups_agent_event_source, SD_EVENT_PRIORITY_NORMAL-9);
if (r < 0)
return log_error_errno(r, "Failed to set priority of cgroups agent event source: %m");
(void) sd_event_source_set_description(m->cgroups_agent_event_source, "manager-cgroups-agent");
}
return 0;
}
static int manager_setup_user_lookup_fd(Manager *m) {
int r;
assert(m);
/* Set up the socket pair used for passing UID/GID resolution results from forked off processes to PID
* 1. Background: we can't do name lookups (NSS) from PID 1, since it might involve IPC and thus activation,
* and we might hence deadlock on ourselves. Hence we do all user/group lookups asynchronously from the forked
* off processes right before executing the binaries to start. In order to be able to clean up any IPC objects
* created by a unit (see RemoveIPC=) we need to know in PID 1 the used UID/GID of the executed processes,
* hence we establish this communication channel so that forked off processes can pass their UID/GID
* information back to PID 1. The forked off processes send their resolved UID/GID to PID 1 in a simple
* datagram, along with their unit name, so that we can share one communication socket pair among all units for
* this purpose.
*
* You might wonder why we need a communication channel for this that is independent of the usual notification
* socket scheme (i.e. $NOTIFY_SOCKET). The primary difference is about trust: data sent via the $NOTIFY_SOCKET
* channel is only accepted if it originates from the right unit and if reception was enabled for it. The user
* lookup socket OTOH is only accessible by PID 1 and its children until they exec(), and always available.
*
* Note that this function is called under two circumstances: when we first initialize (in which case we
* allocate both the socket pair and the event source to listen on it), and when we deserialize after a reload
* (in which case the socket pair already exists but we still need to allocate the event source for it). */
if (m->user_lookup_fds[0] < 0) {
/* Free all secondary fields */
safe_close_pair(m->user_lookup_fds);
m->user_lookup_event_source = sd_event_source_disable_unref(m->user_lookup_event_source);
if (socketpair(AF_UNIX, SOCK_DGRAM|SOCK_CLOEXEC, 0, m->user_lookup_fds) < 0)
return log_error_errno(errno, "Failed to allocate user lookup socket: %m");
(void) fd_increase_rxbuf(m->user_lookup_fds[0], NOTIFY_RCVBUF_SIZE);
}
if (!m->user_lookup_event_source) {
r = sd_event_add_io(m->event, &m->user_lookup_event_source, m->user_lookup_fds[0], EPOLLIN, manager_dispatch_user_lookup_fd, m);
if (r < 0)
return log_error_errno(errno, "Failed to allocate user lookup event source: %m");
/* Process even earlier than the notify event source, so that we always know first about valid UID/GID
* resolutions */
r = sd_event_source_set_priority(m->user_lookup_event_source, SD_EVENT_PRIORITY_NORMAL-11);
if (r < 0)
return log_error_errno(errno, "Failed to set priority of user lookup event source: %m");
(void) sd_event_source_set_description(m->user_lookup_event_source, "user-lookup");
}
return 0;
}
static unsigned manager_dispatch_cleanup_queue(Manager *m) {
Unit *u;
unsigned n = 0;
assert(m);
while ((u = m->cleanup_queue)) {
assert(u->in_cleanup_queue);
unit_free(u);
n++;
}
return n;
}
enum {
GC_OFFSET_IN_PATH, /* This one is on the path we were traveling */
GC_OFFSET_UNSURE, /* No clue */
GC_OFFSET_GOOD, /* We still need this unit */
GC_OFFSET_BAD, /* We don't need this unit anymore */
_GC_OFFSET_MAX
};
static void unit_gc_mark_good(Unit *u, unsigned gc_marker) {
Unit *other;
u->gc_marker = gc_marker + GC_OFFSET_GOOD;
/* Recursively mark referenced units as GOOD as well */
UNIT_FOREACH_DEPENDENCY(other, u, UNIT_ATOM_REFERENCES)
if (other->gc_marker == gc_marker + GC_OFFSET_UNSURE)
unit_gc_mark_good(other, gc_marker);
}
static void unit_gc_sweep(Unit *u, unsigned gc_marker) {
Unit *other;
bool is_bad;
assert(u);
if (IN_SET(u->gc_marker - gc_marker,
GC_OFFSET_GOOD, GC_OFFSET_BAD, GC_OFFSET_UNSURE, GC_OFFSET_IN_PATH))
return;
if (u->in_cleanup_queue)
goto bad;
if (!unit_may_gc(u))
goto good;
u->gc_marker = gc_marker + GC_OFFSET_IN_PATH;
is_bad = true;
UNIT_FOREACH_DEPENDENCY(other, u, UNIT_ATOM_REFERENCED_BY) {
unit_gc_sweep(other, gc_marker);
if (other->gc_marker == gc_marker + GC_OFFSET_GOOD)
goto good;
if (other->gc_marker != gc_marker + GC_OFFSET_BAD)
is_bad = false;
}
LIST_FOREACH(refs_by_target, ref, u->refs_by_target) {
unit_gc_sweep(ref->source, gc_marker);
if (ref->source->gc_marker == gc_marker + GC_OFFSET_GOOD)
goto good;
if (ref->source->gc_marker != gc_marker + GC_OFFSET_BAD)
is_bad = false;
}
if (is_bad)
goto bad;
/* We were unable to find anything out about this entry, so
* let's investigate it later */
u->gc_marker = gc_marker + GC_OFFSET_UNSURE;
unit_add_to_gc_queue(u);
return;
bad:
/* We definitely know that this one is not useful anymore, so
* let's mark it for deletion */
u->gc_marker = gc_marker + GC_OFFSET_BAD;
unit_add_to_cleanup_queue(u);
return;
good:
unit_gc_mark_good(u, gc_marker);
}
static unsigned manager_dispatch_gc_unit_queue(Manager *m) {
unsigned n = 0, gc_marker;
Unit *u;
assert(m);
/* log_debug("Running GC..."); */
m->gc_marker += _GC_OFFSET_MAX;
if (m->gc_marker + _GC_OFFSET_MAX <= _GC_OFFSET_MAX)
m->gc_marker = 1;
gc_marker = m->gc_marker;
while ((u = m->gc_unit_queue)) {
assert(u->in_gc_queue);
unit_gc_sweep(u, gc_marker);
LIST_REMOVE(gc_queue, m->gc_unit_queue, u);
u->in_gc_queue = false;
n++;
if (IN_SET(u->gc_marker - gc_marker,
GC_OFFSET_BAD, GC_OFFSET_UNSURE)) {
if (u->id)
log_unit_debug(u, "Collecting.");
u->gc_marker = gc_marker + GC_OFFSET_BAD;
unit_add_to_cleanup_queue(u);
}
}
return n;
}
static unsigned manager_dispatch_gc_job_queue(Manager *m) {
unsigned n = 0;
Job *j;
assert(m);
while ((j = m->gc_job_queue)) {
assert(j->in_gc_queue);
LIST_REMOVE(gc_queue, m->gc_job_queue, j);
j->in_gc_queue = false;
n++;
if (!job_may_gc(j))
continue;
log_unit_debug(j->unit, "Collecting job.");
(void) job_finish_and_invalidate(j, JOB_COLLECTED, false, false);
}
return n;
}
static unsigned manager_dispatch_stop_when_unneeded_queue(Manager *m) {
unsigned n = 0;
Unit *u;
int r;
assert(m);
while ((u = m->stop_when_unneeded_queue)) {
_cleanup_(sd_bus_error_free) sd_bus_error error = SD_BUS_ERROR_NULL;
assert(u->in_stop_when_unneeded_queue);
LIST_REMOVE(stop_when_unneeded_queue, m->stop_when_unneeded_queue, u);
u->in_stop_when_unneeded_queue = false;
n++;
if (!unit_is_unneeded(u))
continue;
log_unit_debug(u, "Unit is not needed anymore.");
/* If stopping a unit fails continuously we might enter a stop loop here, hence stop acting on the
* service being unnecessary after a while. */
if (!ratelimit_below(&u->auto_start_stop_ratelimit)) {
log_unit_warning(u, "Unit not needed anymore, but not stopping since we tried this too often recently.");
continue;
}
/* Ok, nobody needs us anymore. Sniff. Then let's commit suicide */
r = manager_add_job(u->manager, JOB_STOP, u, JOB_FAIL, NULL, &error, NULL);
if (r < 0)
log_unit_warning_errno(u, r, "Failed to enqueue stop job, ignoring: %s", bus_error_message(&error, r));
}
return n;
}
static unsigned manager_dispatch_start_when_upheld_queue(Manager *m) {
unsigned n = 0;
Unit *u;
int r;
assert(m);
while ((u = m->start_when_upheld_queue)) {
_cleanup_(sd_bus_error_free) sd_bus_error error = SD_BUS_ERROR_NULL;
Unit *culprit = NULL;
assert(u->in_start_when_upheld_queue);
LIST_REMOVE(start_when_upheld_queue, m->start_when_upheld_queue, u);
u->in_start_when_upheld_queue = false;
n++;
if (!unit_is_upheld_by_active(u, &culprit))
continue;
log_unit_debug(u, "Unit is started because upheld by active unit %s.", culprit->id);
/* If stopping a unit fails continuously we might enter a stop loop here, hence stop acting on the
* service being unnecessary after a while. */
if (!ratelimit_below(&u->auto_start_stop_ratelimit)) {
log_unit_warning(u, "Unit needs to be started because active unit %s upholds it, but not starting since we tried this too often recently.", culprit->id);
continue;
}
r = manager_add_job(u->manager, JOB_START, u, JOB_FAIL, NULL, &error, NULL);
if (r < 0)
log_unit_warning_errno(u, r, "Failed to enqueue start job, ignoring: %s", bus_error_message(&error, r));
}
return n;
}
static unsigned manager_dispatch_stop_when_bound_queue(Manager *m) {
unsigned n = 0;
Unit *u;
int r;
assert(m);
while ((u = m->stop_when_bound_queue)) {
_cleanup_(sd_bus_error_free) sd_bus_error error = SD_BUS_ERROR_NULL;
Unit *culprit = NULL;
assert(u->in_stop_when_bound_queue);
LIST_REMOVE(stop_when_bound_queue, m->stop_when_bound_queue, u);
u->in_stop_when_bound_queue = false;
n++;
if (!unit_is_bound_by_inactive(u, &culprit))
continue;
log_unit_debug(u, "Unit is stopped because bound to inactive unit %s.", culprit->id);
/* If stopping a unit fails continuously we might enter a stop loop here, hence stop acting on the
* service being unnecessary after a while. */
if (!ratelimit_below(&u->auto_start_stop_ratelimit)) {
log_unit_warning(u, "Unit needs to be stopped because it is bound to inactive unit %s it, but not stopping since we tried this too often recently.", culprit->id);
continue;
}
r = manager_add_job(u->manager, JOB_STOP, u, JOB_REPLACE, NULL, &error, NULL);
if (r < 0)
log_unit_warning_errno(u, r, "Failed to enqueue stop job, ignoring: %s", bus_error_message(&error, r));
}
return n;
}
static void manager_clear_jobs_and_units(Manager *m) {
Unit *u;
assert(m);
while ((u = hashmap_first(m->units)))
unit_free(u);
manager_dispatch_cleanup_queue(m);
assert(!m->load_queue);
assert(prioq_isempty(m->run_queue));
assert(!m->dbus_unit_queue);
assert(!m->dbus_job_queue);
assert(!m->cleanup_queue);
assert(!m->gc_unit_queue);
assert(!m->gc_job_queue);
assert(!m->cgroup_realize_queue);
assert(!m->cgroup_empty_queue);
assert(!m->cgroup_oom_queue);
assert(!m->target_deps_queue);
assert(!m->stop_when_unneeded_queue);
assert(!m->start_when_upheld_queue);
assert(!m->stop_when_bound_queue);
assert(hashmap_isempty(m->jobs));
assert(hashmap_isempty(m->units));
m->n_on_console = 0;
m->n_running_jobs = 0;
m->n_installed_jobs = 0;
m->n_failed_jobs = 0;
}
Manager* manager_free(Manager *m) {
if (!m)
return NULL;
manager_clear_jobs_and_units(m);
for (UnitType c = 0; c < _UNIT_TYPE_MAX; c++)
if (unit_vtable[c]->shutdown)
unit_vtable[c]->shutdown(m);
/* Keep the cgroup hierarchy in place except when we know we are going down for good */
manager_shutdown_cgroup(m, IN_SET(m->objective, MANAGER_EXIT, MANAGER_REBOOT, MANAGER_POWEROFF, MANAGER_HALT, MANAGER_KEXEC));
lookup_paths_flush_generator(&m->lookup_paths);
bus_done(m);
manager_varlink_done(m);
exec_runtime_vacuum(m);
hashmap_free(m->exec_runtime_by_id);
dynamic_user_vacuum(m, false);
hashmap_free(m->dynamic_users);
hashmap_free(m->units);
hashmap_free(m->units_by_invocation_id);
hashmap_free(m->jobs);
hashmap_free(m->watch_pids);
hashmap_free(m->watch_bus);
prioq_free(m->run_queue);
set_free(m->startup_units);
set_free(m->failed_units);
sd_event_source_unref(m->signal_event_source);
sd_event_source_unref(m->sigchld_event_source);
sd_event_source_unref(m->notify_event_source);
sd_event_source_unref(m->cgroups_agent_event_source);
sd_event_source_unref(m->time_change_event_source);
sd_event_source_unref(m->timezone_change_event_source);
sd_event_source_unref(m->jobs_in_progress_event_source);
sd_event_source_unref(m->run_queue_event_source);
sd_event_source_unref(m->user_lookup_event_source);
safe_close(m->signal_fd);
safe_close(m->notify_fd);
safe_close(m->cgroups_agent_fd);
safe_close_pair(m->user_lookup_fds);
manager_close_ask_password(m);
manager_close_idle_pipe(m);
sd_event_unref(m->event);
free(m->notify_socket);
lookup_paths_free(&m->lookup_paths);
strv_free(m->transient_environment);
strv_free(m->client_environment);
hashmap_free(m->cgroup_unit);
manager_free_unit_name_maps(m);
free(m->switch_root);
free(m->switch_root_init);
free(m->default_smack_process_label);
rlimit_free_all(m->rlimit);
assert(hashmap_isempty(m->units_requiring_mounts_for));
hashmap_free(m->units_requiring_mounts_for);
hashmap_free(m->uid_refs);
hashmap_free(m->gid_refs);
for (ExecDirectoryType dt = 0; dt < _EXEC_DIRECTORY_TYPE_MAX; dt++)
m->prefix[dt] = mfree(m->prefix[dt]);
free(m->received_credentials_directory);
free(m->received_encrypted_credentials_directory);
free(m->watchdog_pretimeout_governor);
free(m->watchdog_pretimeout_governor_overridden);
#if BPF_FRAMEWORK
lsm_bpf_destroy(m->restrict_fs);
#endif
return mfree(m);
}
static void manager_enumerate_perpetual(Manager *m) {
assert(m);
if (FLAGS_SET(m->test_run_flags, MANAGER_TEST_RUN_MINIMAL))
return;
/* Let's ask every type to load all units from disk/kernel that it might know */
for (UnitType c = 0; c < _UNIT_TYPE_MAX; c++) {
if (!unit_type_supported(c)) {
log_debug("Unit type .%s is not supported on this system.", unit_type_to_string(c));
continue;
}
if (unit_vtable[c]->enumerate_perpetual)
unit_vtable[c]->enumerate_perpetual(m);
}
}
static void manager_enumerate(Manager *m) {
assert(m);
if (FLAGS_SET(m->test_run_flags, MANAGER_TEST_RUN_MINIMAL))
return;
/* Let's ask every type to load all units from disk/kernel that it might know */
for (UnitType c = 0; c < _UNIT_TYPE_MAX; c++) {
if (!unit_type_supported(c)) {
log_debug("Unit type .%s is not supported on this system.", unit_type_to_string(c));
continue;
}
if (unit_vtable[c]->enumerate)
unit_vtable[c]->enumerate(m);
}
manager_dispatch_load_queue(m);
}
static void manager_coldplug(Manager *m) {
Unit *u;
char *k;
int r;
assert(m);
log_debug("Invoking unit coldplug() handlers%s", special_glyph(SPECIAL_GLYPH_ELLIPSIS));
/* Let's place the units back into their deserialized state */
HASHMAP_FOREACH_KEY(u, k, m->units) {
/* ignore aliases */
if (u->id != k)
continue;
r = unit_coldplug(u);
if (r < 0)
log_warning_errno(r, "We couldn't coldplug %s, proceeding anyway: %m", u->id);
}
}
static void manager_catchup(Manager *m) {
Unit *u;
char *k;
assert(m);
log_debug("Invoking unit catchup() handlers%s", special_glyph(SPECIAL_GLYPH_ELLIPSIS));
/* Let's catch up on any state changes that happened while we were reloading/reexecing */
HASHMAP_FOREACH_KEY(u, k, m->units) {
/* ignore aliases */
if (u->id != k)
continue;
unit_catchup(u);
}
}
static void manager_distribute_fds(Manager *m, FDSet *fds) {
Unit *u;
assert(m);
HASHMAP_FOREACH(u, m->units) {
if (fdset_size(fds) <= 0)
break;
if (!UNIT_VTABLE(u)->distribute_fds)
continue;
UNIT_VTABLE(u)->distribute_fds(u, fds);
}
}
static bool manager_dbus_is_running(Manager *m, bool deserialized) {
Unit *u;
assert(m);
/* This checks whether the dbus instance we are supposed to expose our APIs on is up. We check both the socket
* and the service unit. If the 'deserialized' parameter is true we'll check the deserialized state of the unit
* rather than the current one. */
if (MANAGER_IS_TEST_RUN(m))
return false;
u = manager_get_unit(m, SPECIAL_DBUS_SOCKET);
if (!u)
return false;
if ((deserialized ? SOCKET(u)->deserialized_state : SOCKET(u)->state) != SOCKET_RUNNING)
return false;
u = manager_get_unit(m, SPECIAL_DBUS_SERVICE);
if (!u)
return false;
if (!IN_SET((deserialized ? SERVICE(u)->deserialized_state : SERVICE(u)->state), SERVICE_RUNNING, SERVICE_RELOAD))
return false;
return true;
}
static void manager_setup_bus(Manager *m) {
assert(m);
/* Let's set up our private bus connection now, unconditionally */
(void) bus_init_private(m);
/* If we are in --user mode also connect to the system bus now */
if (MANAGER_IS_USER(m))
(void) bus_init_system(m);
/* Let's connect to the bus now, but only if the unit is supposed to be up */
if (manager_dbus_is_running(m, MANAGER_IS_RELOADING(m))) {
(void) bus_init_api(m);
if (MANAGER_IS_SYSTEM(m))
(void) bus_init_system(m);
}
}
static void manager_preset_all(Manager *m) {
int r;
assert(m);
if (m->first_boot <= 0)
return;
if (!MANAGER_IS_SYSTEM(m))
return;
if (MANAGER_IS_TEST_RUN(m))
return;
/* If this is the first boot, and we are in the host system, then preset everything */
UnitFilePresetMode mode = FIRST_BOOT_FULL_PRESET ? UNIT_FILE_PRESET_FULL : UNIT_FILE_PRESET_ENABLE_ONLY;
r = unit_file_preset_all(LOOKUP_SCOPE_SYSTEM, 0, NULL, mode, NULL, 0);
if (r < 0)
log_full_errno(r == -EEXIST ? LOG_NOTICE : LOG_WARNING, r,
"Failed to populate /etc with preset unit settings, ignoring: %m");
else
log_info("Populated /etc with preset unit settings.");
}
static void manager_ready(Manager *m) {
assert(m);
/* After having loaded everything, do the final round of catching up with what might have changed */
m->objective = MANAGER_OK; /* Tell everyone we are up now */
/* It might be safe to log to the journal now and connect to dbus */
manager_recheck_journal(m);
manager_recheck_dbus(m);
/* Let's finally catch up with any changes that took place while we were reloading/reexecing */
manager_catchup(m);
/* Create a file which will indicate when the manager started loading units the last time. */
if (MANAGER_IS_SYSTEM(m))
(void) touch_file("/run/systemd/systemd-units-load", false,
m->timestamps[MANAGER_TIMESTAMP_UNITS_LOAD].realtime ?: now(CLOCK_REALTIME),
UID_INVALID, GID_INVALID, 0444);
}
Manager* manager_reloading_start(Manager *m) {
m->n_reloading++;
dual_timestamp_get(m->timestamps + MANAGER_TIMESTAMP_UNITS_LOAD);
return m;
}
void manager_reloading_stopp(Manager **m) {
if (*m) {
assert((*m)->n_reloading > 0);
(*m)->n_reloading--;
}
}
int manager_startup(Manager *m, FILE *serialization, FDSet *fds, const char *root) {
int r;
assert(m);
/* If we are running in test mode, we still want to run the generators,
* but we should not touch the real generator directories. */
r = lookup_paths_init_or_warn(&m->lookup_paths, m->unit_file_scope,
MANAGER_IS_TEST_RUN(m) ? LOOKUP_PATHS_TEMPORARY_GENERATED : 0,
root);
if (r < 0)
return r;
dual_timestamp_get(m->timestamps + manager_timestamp_initrd_mangle(MANAGER_TIMESTAMP_GENERATORS_START));
r = manager_run_environment_generators(m);
if (r >= 0)
r = manager_run_generators(m);
dual_timestamp_get(m->timestamps + manager_timestamp_initrd_mangle(MANAGER_TIMESTAMP_GENERATORS_FINISH));
if (r < 0)
return r;
manager_preset_all(m);
lookup_paths_log(&m->lookup_paths);
{
/* This block is (optionally) done with the reloading counter bumped */
_unused_ _cleanup_(manager_reloading_stopp) Manager *reloading = NULL;
/* If we will deserialize make sure that during enumeration this is already known, so we increase the
* counter here already */
if (serialization)
reloading = manager_reloading_start(m);
/* First, enumerate what we can from all config files */
dual_timestamp_get(m->timestamps + manager_timestamp_initrd_mangle(MANAGER_TIMESTAMP_UNITS_LOAD_START));
manager_enumerate_perpetual(m);
manager_enumerate(m);
dual_timestamp_get(m->timestamps + manager_timestamp_initrd_mangle(MANAGER_TIMESTAMP_UNITS_LOAD_FINISH));
/* Second, deserialize if there is something to deserialize */
if (serialization) {
r = manager_deserialize(m, serialization, fds);
if (r < 0)
return log_error_errno(r, "Deserialization failed: %m");
}
/* Any fds left? Find some unit which wants them. This is useful to allow container managers to pass
* some file descriptors to us pre-initialized. This enables socket-based activation of entire
* containers. */
manager_distribute_fds(m, fds);
/* We might have deserialized the notify fd, but if we didn't then let's create the bus now */
r = manager_setup_notify(m);
if (r < 0)
/* No sense to continue without notifications, our children would fail anyway. */
return r;
r = manager_setup_cgroups_agent(m);
if (r < 0)
/* Likewise, no sense to continue without empty cgroup notifications. */
return r;
r = manager_setup_user_lookup_fd(m);
if (r < 0)
/* This shouldn't fail, except if things are really broken. */
return r;
/* Connect to the bus if we are good for it */
manager_setup_bus(m);
/* Now that we are connected to all possible buses, let's deserialize who is tracking us. */
r = bus_track_coldplug(m, &m->subscribed, false, m->deserialized_subscribed);
if (r < 0)
log_warning_errno(r, "Failed to deserialized tracked clients, ignoring: %m");
m->deserialized_subscribed = strv_free(m->deserialized_subscribed);
r = manager_varlink_init(m);
if (r < 0)
log_warning_errno(r, "Failed to set up Varlink, ignoring: %m");
/* Third, fire things up! */
manager_coldplug(m);
/* Clean up runtime objects */
manager_vacuum(m);
if (serialization)
/* Let's wait for the UnitNew/JobNew messages being sent, before we notify that the
* reload is finished */
m->send_reloading_done = true;
}
manager_ready(m);
manager_set_switching_root(m, false);
return 0;
}
int manager_add_job(
Manager *m,
JobType type,
Unit *unit,
JobMode mode,
Set *affected_jobs,
sd_bus_error *error,
Job **ret) {
Transaction *tr;
int r;
assert(m);
assert(type < _JOB_TYPE_MAX);
assert(unit);
assert(mode < _JOB_MODE_MAX);
if (mode == JOB_ISOLATE && type != JOB_START)
return sd_bus_error_set(error, SD_BUS_ERROR_INVALID_ARGS, "Isolate is only valid for start.");
if (mode == JOB_ISOLATE && !unit->allow_isolate)
return sd_bus_error_set(error, BUS_ERROR_NO_ISOLATION, "Operation refused, unit may not be isolated.");
if (mode == JOB_TRIGGERING && type != JOB_STOP)
return sd_bus_error_set(error, SD_BUS_ERROR_INVALID_ARGS, "--job-mode=triggering is only valid for stop.");
log_unit_debug(unit, "Trying to enqueue job %s/%s/%s", unit->id, job_type_to_string(type), job_mode_to_string(mode));
type = job_type_collapse(type, unit);
tr = transaction_new(mode == JOB_REPLACE_IRREVERSIBLY);
if (!tr)
return -ENOMEM;
r = transaction_add_job_and_dependencies(tr, type, unit, NULL, true, false,
IN_SET(mode, JOB_IGNORE_DEPENDENCIES, JOB_IGNORE_REQUIREMENTS),
mode == JOB_IGNORE_DEPENDENCIES, error);
if (r < 0)
goto tr_abort;
if (mode == JOB_ISOLATE) {
r = transaction_add_isolate_jobs(tr, m);
if (r < 0)
goto tr_abort;
}
if (mode == JOB_TRIGGERING) {
r = transaction_add_triggering_jobs(tr, unit);
if (r < 0)
goto tr_abort;
}
r = transaction_activate(tr, m, mode, affected_jobs, error);
if (r < 0)
goto tr_abort;
log_unit_debug(unit,
"Enqueued job %s/%s as %u", unit->id,
job_type_to_string(type), (unsigned) tr->anchor_job->id);
if (ret)
*ret = tr->anchor_job;
transaction_free(tr);
return 0;
tr_abort:
transaction_abort(tr);
transaction_free(tr);
return r;
}
int manager_add_job_by_name(Manager *m, JobType type, const char *name, JobMode mode, Set *affected_jobs, sd_bus_error *e, Job **ret) {
Unit *unit = NULL; /* just to appease gcc, initialization is not really necessary */
int r;
assert(m);
assert(type < _JOB_TYPE_MAX);
assert(name);
assert(mode < _JOB_MODE_MAX);
r = manager_load_unit(m, name, NULL, NULL, &unit);
if (r < 0)
return r;
assert(unit);
return manager_add_job(m, type, unit, mode, affected_jobs, e, ret);
}
int manager_add_job_by_name_and_warn(Manager *m, JobType type, const char *name, JobMode mode, Set *affected_jobs, Job **ret) {
_cleanup_(sd_bus_error_free) sd_bus_error error = SD_BUS_ERROR_NULL;
int r;
assert(m);
assert(type < _JOB_TYPE_MAX);
assert(name);
assert(mode < _JOB_MODE_MAX);
r = manager_add_job_by_name(m, type, name, mode, affected_jobs, &error, ret);
if (r < 0)
return log_warning_errno(r, "Failed to enqueue %s job for %s: %s", job_mode_to_string(mode), name, bus_error_message(&error, r));
return r;
}
int manager_propagate_reload(Manager *m, Unit *unit, JobMode mode, sd_bus_error *e) {
int r;
Transaction *tr;
assert(m);
assert(unit);
assert(mode < _JOB_MODE_MAX);
assert(mode != JOB_ISOLATE); /* Isolate is only valid for start */
tr = transaction_new(mode == JOB_REPLACE_IRREVERSIBLY);
if (!tr)
return -ENOMEM;
/* We need an anchor job */
r = transaction_add_job_and_dependencies(tr, JOB_NOP, unit, NULL, false, false, true, true, e);
if (r < 0)
goto tr_abort;
/* Failure in adding individual dependencies is ignored, so this always succeeds. */
transaction_add_propagate_reload_jobs(tr, unit, tr->anchor_job, mode == JOB_IGNORE_DEPENDENCIES, e);
r = transaction_activate(tr, m, mode, NULL, e);
if (r < 0)
goto tr_abort;
transaction_free(tr);
return 0;
tr_abort:
transaction_abort(tr);
transaction_free(tr);
return r;
}
Job *manager_get_job(Manager *m, uint32_t id) {
assert(m);
return hashmap_get(m->jobs, UINT32_TO_PTR(id));
}
Unit *manager_get_unit(Manager *m, const char *name) {
assert(m);
assert(name);
return hashmap_get(m->units, name);
}
static int manager_dispatch_target_deps_queue(Manager *m) {
Unit *u;
int r = 0;
assert(m);
while ((u = m->target_deps_queue)) {
_cleanup_free_ Unit **targets = NULL;
int n_targets;
assert(u->in_target_deps_queue);
LIST_REMOVE(target_deps_queue, u->manager->target_deps_queue, u);
u->in_target_deps_queue = false;
/* Take an "atomic" snapshot of dependencies here, as the call below will likely modify the
* dependencies, and we can't have it that hash tables we iterate through are modified while
* we are iterating through them. */
n_targets = unit_get_dependency_array(u, UNIT_ATOM_DEFAULT_TARGET_DEPENDENCIES, &targets);
if (n_targets < 0)
return n_targets;
for (int i = 0; i < n_targets; i++) {
r = unit_add_default_target_dependency(u, targets[i]);
if (r < 0)
return r;
}
}
return r;
}
unsigned manager_dispatch_load_queue(Manager *m) {
Unit *u;
unsigned n = 0;
assert(m);
/* Make sure we are not run recursively */
if (m->dispatching_load_queue)
return 0;
m->dispatching_load_queue = true;
/* Dispatches the load queue. Takes a unit from the queue and
* tries to load its data until the queue is empty */
while ((u = m->load_queue)) {
assert(u->in_load_queue);
unit_load(u);
n++;
}
m->dispatching_load_queue = false;
/* Dispatch the units waiting for their target dependencies to be added now, as all targets that we know about
* should be loaded and have aliases resolved */
(void) manager_dispatch_target_deps_queue(m);
return n;
}
bool manager_unit_cache_should_retry_load(Unit *u) {
assert(u);
/* Automatic reloading from disk only applies to units which were not found sometime in the past, and
* the not-found stub is kept pinned in the unit graph by dependencies. For units that were
* previously loaded, we don't do automatic reloading, and daemon-reload is necessary to update. */
if (u->load_state != UNIT_NOT_FOUND)
return false;
/* The cache has been updated since the last time we tried to load the unit. There might be new
* fragment paths to read. */
if (u->manager->unit_cache_timestamp_hash != u->fragment_not_found_timestamp_hash)
return true;
/* The cache needs to be updated because there are modifications on disk. */
return !lookup_paths_timestamp_hash_same(&u->manager->lookup_paths, u->manager->unit_cache_timestamp_hash, NULL);
}
int manager_load_unit_prepare(
Manager *m,
const char *name,
const char *path,
sd_bus_error *e,
Unit **ret) {
_cleanup_(unit_freep) Unit *cleanup_unit = NULL;
_cleanup_free_ char *nbuf = NULL;
int r;
assert(m);
assert(ret);
assert(name || path);
/* This will prepare the unit for loading, but not actually load anything from disk. */
if (path && !path_is_absolute(path))
return sd_bus_error_setf(e, SD_BUS_ERROR_INVALID_ARGS, "Path %s is not absolute.", path);
if (!name) {
r = path_extract_filename(path, &nbuf);
if (r < 0)
return r;
if (r == O_DIRECTORY)
return sd_bus_error_setf(e, SD_BUS_ERROR_INVALID_ARGS, "Path '%s' refers to directory, refusing.", path);
name = nbuf;
}
UnitType t = unit_name_to_type(name);
if (t == _UNIT_TYPE_INVALID || !unit_name_is_valid(name, UNIT_NAME_PLAIN|UNIT_NAME_INSTANCE)) {
if (unit_name_is_valid(name, UNIT_NAME_TEMPLATE))
return sd_bus_error_setf(e, SD_BUS_ERROR_INVALID_ARGS, "Unit name %s is missing the instance name.", name);
return sd_bus_error_setf(e, SD_BUS_ERROR_INVALID_ARGS, "Unit name %s is not valid.", name);
}
Unit *unit = manager_get_unit(m, name);
if (unit) {
/* The time-based cache allows to start new units without daemon-reload,
* but if they are already referenced (because of dependencies or ordering)
* then we have to force a load of the fragment. As an optimization, check
* first if anything in the usual paths was modified since the last time
* the cache was loaded. Also check if the last time an attempt to load the
* unit was made was before the most recent cache refresh, so that we know
* we need to try again — even if the cache is current, it might have been
* updated in a different context before we had a chance to retry loading
* this particular unit. */
if (manager_unit_cache_should_retry_load(unit))
unit->load_state = UNIT_STUB;
else {
*ret = unit;
return 0; /* The unit was already loaded */
}
} else {
unit = cleanup_unit = unit_new(m, unit_vtable[t]->object_size);
if (!unit)
return -ENOMEM;
}
if (path) {
r = free_and_strdup(&unit->fragment_path, path);
if (r < 0)
return r;
}
r = unit_add_name(unit, name);
if (r < 0)
return r;
unit_add_to_load_queue(unit);
unit_add_to_dbus_queue(unit);
unit_add_to_gc_queue(unit);
*ret = unit;
TAKE_PTR(cleanup_unit);
return 1; /* The unit was added the load queue */
}
int manager_load_unit(
Manager *m,
const char *name,
const char *path,
sd_bus_error *e,
Unit **ret) {
int r;
assert(m);
assert(ret);
/* This will load the unit config, but not actually start any services or anything. */
r = manager_load_unit_prepare(m, name, path, e, ret);
if (r <= 0)
return r;
/* Unit was newly loaded */
manager_dispatch_load_queue(m);
*ret = unit_follow_merge(*ret);
return 0;
}
int manager_load_startable_unit_or_warn(
Manager *m,
const char *name,
const char *path,
Unit **ret) {
/* Load a unit, make sure it loaded fully and is not masked. */
_cleanup_(sd_bus_error_free) sd_bus_error error = SD_BUS_ERROR_NULL;
Unit *unit;
int r;
r = manager_load_unit(m, name, path, &error, &unit);
if (r < 0)
return log_error_errno(r, "Failed to load %s %s: %s",
name ? "unit" : "unit file", name ?: path,
bus_error_message(&error, r));
r = bus_unit_validate_load_state(unit, &error);
if (r < 0)
return log_error_errno(r, "%s", bus_error_message(&error, r));
*ret = unit;
return 0;
}
void manager_clear_jobs(Manager *m) {
Job *j;
assert(m);
while ((j = hashmap_first(m->jobs)))
/* No need to recurse. We're cancelling all jobs. */
job_finish_and_invalidate(j, JOB_CANCELED, false, false);
}
void manager_unwatch_pid(Manager *m, pid_t pid) {
assert(m);
/* First let's drop the unit keyed as "pid". */
(void) hashmap_remove(m->watch_pids, PID_TO_PTR(pid));
/* Then, let's also drop the array keyed by -pid. */
free(hashmap_remove(m->watch_pids, PID_TO_PTR(-pid)));
}
static int manager_dispatch_run_queue(sd_event_source *source, void *userdata) {
Manager *m = ASSERT_PTR(userdata);
Job *j;
assert(source);
while ((j = prioq_peek(m->run_queue))) {
assert(j->installed);
assert(j->in_run_queue);
(void) job_run_and_invalidate(j);
}
if (m->n_running_jobs > 0)
manager_watch_jobs_in_progress(m);
if (m->n_on_console > 0)
manager_watch_idle_pipe(m);
return 1;
}
void manager_trigger_run_queue(Manager *m) {
int r;
assert(m);
r = sd_event_source_set_enabled(
m->run_queue_event_source,
prioq_isempty(m->run_queue) ? SD_EVENT_OFF : SD_EVENT_ONESHOT);
if (r < 0)
log_warning_errno(r, "Failed to enable job run queue event source, ignoring: %m");
}
static unsigned manager_dispatch_dbus_queue(Manager *m) {
unsigned n = 0, budget;
Unit *u;
Job *j;
assert(m);
/* When we are reloading, let's not wait with generating signals, since we need to exit the manager as quickly
* as we can. There's no point in throttling generation of signals in that case. */
if (MANAGER_IS_RELOADING(m) || m->send_reloading_done || m->pending_reload_message)
budget = UINT_MAX; /* infinite budget in this case */
else {
/* Anything to do at all? */
if (!m->dbus_unit_queue && !m->dbus_job_queue)
return 0;
/* Do we have overly many messages queued at the moment? If so, let's not enqueue more on top, let's
* sit this cycle out, and process things in a later cycle when the queues got a bit emptier. */
if (manager_bus_n_queued_write(m) > MANAGER_BUS_BUSY_THRESHOLD)
return 0;
/* Only process a certain number of units/jobs per event loop iteration. Even if the bus queue wasn't
* overly full before this call we shouldn't increase it in size too wildly in one step, and we
* shouldn't monopolize CPU time with generating these messages. Note the difference in counting of
* this "budget" and the "threshold" above: the "budget" is decreased only once per generated message,
* regardless how many buses/direct connections it is enqueued on, while the "threshold" is applied to
* each queued instance of bus message, i.e. if the same message is enqueued to five buses/direct
* connections it will be counted five times. This difference in counting ("references"
* vs. "instances") is primarily a result of the fact that it's easier to implement it this way,
* however it also reflects the thinking that the "threshold" should put a limit on used queue memory,
* i.e. space, while the "budget" should put a limit on time. Also note that the "threshold" is
* currently chosen much higher than the "budget". */
budget = MANAGER_BUS_MESSAGE_BUDGET;
}
while (budget != 0 && (u = m->dbus_unit_queue)) {
assert(u->in_dbus_queue);
bus_unit_send_change_signal(u);
n++;
if (budget != UINT_MAX)
budget--;
}
while (budget != 0 && (j = m->dbus_job_queue)) {
assert(j->in_dbus_queue);
bus_job_send_change_signal(j);
n++;
if (budget != UINT_MAX)
budget--;
}
if (m->send_reloading_done) {
m->send_reloading_done = false;
bus_manager_send_reloading(m, false);
n++;
}
if (m->pending_reload_message) {
bus_send_pending_reload_message(m);
n++;
}
return n;
}
static int manager_dispatch_cgroups_agent_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata) {
Manager *m = userdata;
char buf[PATH_MAX];
ssize_t n;
n = recv(fd, buf, sizeof(buf), 0);
if (n < 0)
return log_error_errno(errno, "Failed to read cgroups agent message: %m");
if (n == 0) {
log_error("Got zero-length cgroups agent message, ignoring.");
return 0;
}
if ((size_t) n >= sizeof(buf)) {
log_error("Got overly long cgroups agent message, ignoring.");
return 0;
}
if (memchr(buf, 0, n)) {
log_error("Got cgroups agent message with embedded NUL byte, ignoring.");
return 0;
}
buf[n] = 0;
manager_notify_cgroup_empty(m, buf);
(void) bus_forward_agent_released(m, buf);
return 0;
}
static bool manager_process_barrier_fd(char * const *tags, FDSet *fds) {
/* nothing else must be sent when using BARRIER=1 */
if (strv_contains(tags, "BARRIER=1")) {
if (strv_length(tags) == 1) {
if (fdset_size(fds) != 1)
log_warning("Got incorrect number of fds with BARRIER=1, closing them.");
} else
log_warning("Extra notification messages sent with BARRIER=1, ignoring everything.");
/* Drop the message if BARRIER=1 was found */
return true;
}
return false;
}
static void manager_invoke_notify_message(
Manager *m,
Unit *u,
const struct ucred *ucred,
char * const *tags,
FDSet *fds) {
assert(m);
assert(u);
assert(ucred);
assert(tags);
if (u->notifygen == m->notifygen) /* Already invoked on this same unit in this same iteration? */
return;
u->notifygen = m->notifygen;
if (UNIT_VTABLE(u)->notify_message)
UNIT_VTABLE(u)->notify_message(u, ucred, tags, fds);
else if (DEBUG_LOGGING) {
_cleanup_free_ char *buf = NULL, *x = NULL, *y = NULL;
buf = strv_join(tags, ", ");
if (buf)
x = ellipsize(buf, 20, 90);
if (x)
y = cescape(x);
log_unit_debug(u, "Got notification message \"%s\", ignoring.", strnull(y));
}
}
static int manager_dispatch_notify_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata) {
_cleanup_fdset_free_ FDSet *fds = NULL;
Manager *m = ASSERT_PTR(userdata);
char buf[NOTIFY_BUFFER_MAX+1];
struct iovec iovec = {
.iov_base = buf,
.iov_len = sizeof(buf)-1,
};
CMSG_BUFFER_TYPE(CMSG_SPACE(sizeof(struct ucred)) +
CMSG_SPACE(sizeof(int) * NOTIFY_FD_MAX)) control;
struct msghdr msghdr = {
.msg_iov = &iovec,
.msg_iovlen = 1,
.msg_control = &control,
.msg_controllen = sizeof(control),
};
struct cmsghdr *cmsg;
struct ucred *ucred = NULL;
_cleanup_free_ Unit **array_copy = NULL;
_cleanup_strv_free_ char **tags = NULL;
Unit *u1, *u2, **array;
int r, *fd_array = NULL;
size_t n_fds = 0;
bool found = false;
ssize_t n;
assert(m->notify_fd == fd);
if (revents != EPOLLIN) {
log_warning("Got unexpected poll event for notify fd.");
return 0;
}
n = recvmsg_safe(m->notify_fd, &msghdr, MSG_DONTWAIT|MSG_CMSG_CLOEXEC|MSG_TRUNC);
if (n < 0) {
if (ERRNO_IS_TRANSIENT(n))
return 0; /* Spurious wakeup, try again */
if (n == -EXFULL) {
log_warning("Got message with truncated control data (too many fds sent?), ignoring.");
return 0;
}
/* If this is any other, real error, then let's stop processing this socket. This of course
* means we won't take notification messages anymore, but that's still better than busy
* looping around this: being woken up over and over again but being unable to actually read
* the message off the socket. */
return log_error_errno(n, "Failed to receive notification message: %m");
}
CMSG_FOREACH(cmsg, &msghdr) {
if (cmsg->cmsg_level == SOL_SOCKET && cmsg->cmsg_type == SCM_RIGHTS) {
assert(!fd_array);
fd_array = (int*) CMSG_DATA(cmsg);
n_fds = (cmsg->cmsg_len - CMSG_LEN(0)) / sizeof(int);
} else if (cmsg->cmsg_level == SOL_SOCKET &&
cmsg->cmsg_type == SCM_CREDENTIALS &&
cmsg->cmsg_len == CMSG_LEN(sizeof(struct ucred))) {
assert(!ucred);
ucred = (struct ucred*) CMSG_DATA(cmsg);
}
}
if (n_fds > 0) {
assert(fd_array);
r = fdset_new_array(&fds, fd_array, n_fds);
if (r < 0) {
close_many(fd_array, n_fds);
log_oom();
return 0;
}
}
if (!ucred || !pid_is_valid(ucred->pid)) {
log_warning("Received notify message without valid credentials. Ignoring.");
return 0;
}
if ((size_t) n >= sizeof(buf) || (msghdr.msg_flags & MSG_TRUNC)) {
log_warning("Received notify message exceeded maximum size. Ignoring.");
return 0;
}
/* As extra safety check, let's make sure the string we get doesn't contain embedded NUL bytes.
* We permit one trailing NUL byte in the message, but don't expect it. */
if (n > 1 && memchr(buf, 0, n-1)) {
log_warning("Received notify message with embedded NUL bytes. Ignoring.");
return 0;
}
/* Make sure it's NUL-terminated, then parse it to obtain the tags list. */
buf[n] = 0;
tags = strv_split_newlines(buf);
if (!tags) {
log_oom();
return 0;
}
/* Possibly a barrier fd, let's see. */
if (manager_process_barrier_fd(tags, fds))
return 0;
/* Increase the generation counter used for filtering out duplicate unit invocations. */
m->notifygen++;
/* Notify every unit that might be interested, which might be multiple. */
u1 = manager_get_unit_by_pid_cgroup(m, ucred->pid);
u2 = hashmap_get(m->watch_pids, PID_TO_PTR(ucred->pid));
array = hashmap_get(m->watch_pids, PID_TO_PTR(-ucred->pid));
if (array) {
size_t k = 0;
while (array[k])
k++;
array_copy = newdup(Unit*, array, k+1);
if (!array_copy)
log_oom();
}
/* And now invoke the per-unit callbacks. Note that manager_invoke_notify_message() will handle
* duplicate units make sure we only invoke each unit's handler once. */
if (u1) {
manager_invoke_notify_message(m, u1, ucred, tags, fds);
found = true;
}
if (u2) {
manager_invoke_notify_message(m, u2, ucred, tags, fds);
found = true;
}
if (array_copy)
for (size_t i = 0; array_copy[i]; i++) {
manager_invoke_notify_message(m, array_copy[i], ucred, tags, fds);
found = true;
}
if (!found)
log_warning("Cannot find unit for notify message of PID "PID_FMT", ignoring.", ucred->pid);
if (fdset_size(fds) > 0)
log_warning("Got extra auxiliary fds with notification message, closing them.");
return 0;
}
static void manager_invoke_sigchld_event(
Manager *m,
Unit *u,
const siginfo_t *si) {
assert(m);
assert(u);
assert(si);
/* Already invoked the handler of this unit in this iteration? Then don't process this again */
if (u->sigchldgen == m->sigchldgen)
return;
u->sigchldgen = m->sigchldgen;
log_unit_debug(u, "Child "PID_FMT" belongs to %s.", si->si_pid, u->id);
unit_unwatch_pid(u, si->si_pid);
if (UNIT_VTABLE(u)->sigchld_event)
UNIT_VTABLE(u)->sigchld_event(u, si->si_pid, si->si_code, si->si_status);
}
static int manager_dispatch_sigchld(sd_event_source *source, void *userdata) {
Manager *m = ASSERT_PTR(userdata);
siginfo_t si = {};
int r;
assert(source);
/* First we call waitid() for a PID and do not reap the zombie. That way we can still access
* /proc/$PID for it while it is a zombie. */
if (waitid(P_ALL, 0, &si, WEXITED|WNOHANG|WNOWAIT) < 0) {
if (errno != ECHILD)
log_error_errno(errno, "Failed to peek for child with waitid(), ignoring: %m");
goto turn_off;
}
if (si.si_pid <= 0)
goto turn_off;
if (IN_SET(si.si_code, CLD_EXITED, CLD_KILLED, CLD_DUMPED)) {
_cleanup_free_ Unit **array_copy = NULL;
_cleanup_free_ char *name = NULL;
Unit *u1, *u2, **array;
(void) get_process_comm(si.si_pid, &name);
log_debug("Child "PID_FMT" (%s) died (code=%s, status=%i/%s)",
si.si_pid, strna(name),
sigchld_code_to_string(si.si_code),
si.si_status,
strna(si.si_code == CLD_EXITED
? exit_status_to_string(si.si_status, EXIT_STATUS_FULL)
: signal_to_string(si.si_status)));
/* Increase the generation counter used for filtering out duplicate unit invocations */
m->sigchldgen++;
/* And now figure out the unit this belongs to, it might be multiple... */
u1 = manager_get_unit_by_pid_cgroup(m, si.si_pid);
u2 = hashmap_get(m->watch_pids, PID_TO_PTR(si.si_pid));
array = hashmap_get(m->watch_pids, PID_TO_PTR(-si.si_pid));
if (array) {
size_t n = 0;
/* Count how many entries the array has */
while (array[n])
n++;
/* Make a copy of the array so that we don't trip up on the array changing beneath us */
array_copy = newdup(Unit*, array, n+1);
if (!array_copy)
log_oom();
}
/* Finally, execute them all. Note that u1, u2 and the array might contain duplicates, but
* that's fine, manager_invoke_sigchld_event() will ensure we only invoke the handlers once for
* each iteration. */
if (u1) {
/* We check for oom condition, in case we got SIGCHLD before the oom notification.
* We only do this for the cgroup the PID belonged to. */
(void) unit_check_oom(u1);
/* We check if systemd-oomd performed a kill so that we log and notify appropriately */
(void) unit_check_oomd_kill(u1);
manager_invoke_sigchld_event(m, u1, &si);
}
if (u2)
manager_invoke_sigchld_event(m, u2, &si);
if (array_copy)
for (size_t i = 0; array_copy[i]; i++)
manager_invoke_sigchld_event(m, array_copy[i], &si);
}
/* And now, we actually reap the zombie. */
if (waitid(P_PID, si.si_pid, &si, WEXITED) < 0) {
log_error_errno(errno, "Failed to dequeue child, ignoring: %m");
return 0;
}
return 0;
turn_off:
/* All children processed for now, turn off event source */
r = sd_event_source_set_enabled(m->sigchld_event_source, SD_EVENT_OFF);
if (r < 0)
return log_error_errno(r, "Failed to disable SIGCHLD event source: %m");
return 0;
}
static void manager_start_special(Manager *m, const char *name, JobMode mode) {
Job *job;
if (manager_add_job_by_name_and_warn(m, JOB_START, name, mode, NULL, &job) < 0)
return;
const char *s = unit_status_string(job->unit, NULL);
log_info("Activating special unit %s...", s);
sd_notifyf(false,
"STATUS=Activating special unit %s...", s);
m->status_ready = false;
}
static void manager_handle_ctrl_alt_del(Manager *m) {
/* If the user presses C-A-D more than
* 7 times within 2s, we reboot/shutdown immediately,
* unless it was disabled in system.conf */
if (ratelimit_below(&m->ctrl_alt_del_ratelimit) || m->cad_burst_action == EMERGENCY_ACTION_NONE)
manager_start_special(m, SPECIAL_CTRL_ALT_DEL_TARGET, JOB_REPLACE_IRREVERSIBLY);
else
emergency_action(m, m->cad_burst_action, EMERGENCY_ACTION_WARN, NULL, -1,
"Ctrl-Alt-Del was pressed more than 7 times within 2s");
}
static int manager_dispatch_signal_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata) {
Manager *m = ASSERT_PTR(userdata);
ssize_t n;
struct signalfd_siginfo sfsi;
int r;
assert(m->signal_fd == fd);
if (revents != EPOLLIN) {
log_warning("Got unexpected events from signal file descriptor.");
return 0;
}
n = read(m->signal_fd, &sfsi, sizeof(sfsi));
if (n < 0) {
if (ERRNO_IS_TRANSIENT(errno))
return 0;
/* We return an error here, which will kill this handler,
* to avoid a busy loop on read error. */
return log_error_errno(errno, "Reading from signal fd failed: %m");
}
if (n != sizeof(sfsi)) {
log_warning("Truncated read from signal fd (%zi bytes), ignoring!", n);
return 0;
}
log_received_signal(sfsi.ssi_signo == SIGCHLD ||
(sfsi.ssi_signo == SIGTERM && MANAGER_IS_USER(m))
? LOG_DEBUG : LOG_INFO,
&sfsi);
switch (sfsi.ssi_signo) {
case SIGCHLD:
r = sd_event_source_set_enabled(m->sigchld_event_source, SD_EVENT_ON);
if (r < 0)
log_warning_errno(r, "Failed to enable SIGCHLD event source, ignoring: %m");
break;
case SIGTERM:
if (MANAGER_IS_SYSTEM(m)) {
/* This is for compatibility with the original sysvinit */
if (verify_run_space_and_log("Refusing to reexecute") < 0)
break;
m->objective = MANAGER_REEXECUTE;
break;
}
_fallthrough_;
case SIGINT:
if (MANAGER_IS_SYSTEM(m))
manager_handle_ctrl_alt_del(m);
else
manager_start_special(m, SPECIAL_EXIT_TARGET, JOB_REPLACE_IRREVERSIBLY);
break;
case SIGWINCH:
/* This is a nop on non-init */
if (MANAGER_IS_SYSTEM(m))
manager_start_special(m, SPECIAL_KBREQUEST_TARGET, JOB_REPLACE);
break;
case SIGPWR:
/* This is a nop on non-init */
if (MANAGER_IS_SYSTEM(m))
manager_start_special(m, SPECIAL_SIGPWR_TARGET, JOB_REPLACE);
break;
case SIGUSR1:
if (manager_dbus_is_running(m, false)) {
log_info("Trying to reconnect to bus...");
(void) bus_init_api(m);
if (MANAGER_IS_SYSTEM(m))
(void) bus_init_system(m);
} else
manager_start_special(m, SPECIAL_DBUS_SERVICE, JOB_REPLACE);
break;
case SIGUSR2: {
_cleanup_free_ char *dump = NULL;
r = manager_get_dump_string(m, /* patterns= */ NULL, &dump);
if (r < 0) {
log_warning_errno(errno, "Failed to acquire manager dump: %m");
break;
}
log_dump(LOG_INFO, dump);
break;
}
case SIGHUP:
if (verify_run_space_and_log("Refusing to reload") < 0)
break;
m->objective = MANAGER_RELOAD;
break;
default: {
/* Starting SIGRTMIN+0 */
static const struct {
const char *target;
JobMode mode;
} target_table[] = {
[0] = { SPECIAL_DEFAULT_TARGET, JOB_ISOLATE },
[1] = { SPECIAL_RESCUE_TARGET, JOB_ISOLATE },
[2] = { SPECIAL_EMERGENCY_TARGET, JOB_ISOLATE },
[3] = { SPECIAL_HALT_TARGET, JOB_REPLACE_IRREVERSIBLY },
[4] = { SPECIAL_POWEROFF_TARGET, JOB_REPLACE_IRREVERSIBLY },
[5] = { SPECIAL_REBOOT_TARGET, JOB_REPLACE_IRREVERSIBLY },
[6] = { SPECIAL_KEXEC_TARGET, JOB_REPLACE_IRREVERSIBLY },
};
/* Starting SIGRTMIN+13, so that target halt and system halt are 10 apart */
static const ManagerObjective objective_table[] = {
[0] = MANAGER_HALT,
[1] = MANAGER_POWEROFF,
[2] = MANAGER_REBOOT,
[3] = MANAGER_KEXEC,
};
if ((int) sfsi.ssi_signo >= SIGRTMIN+0 &&
(int) sfsi.ssi_signo < SIGRTMIN+(int) ELEMENTSOF(target_table)) {
int idx = (int) sfsi.ssi_signo - SIGRTMIN;
manager_start_special(m, target_table[idx].target, target_table[idx].mode);
break;
}
if ((int) sfsi.ssi_signo >= SIGRTMIN+13 &&
(int) sfsi.ssi_signo < SIGRTMIN+13+(int) ELEMENTSOF(objective_table)) {
m->objective = objective_table[sfsi.ssi_signo - SIGRTMIN - 13];
break;
}
switch (sfsi.ssi_signo - SIGRTMIN) {
case 20:
manager_override_show_status(m, SHOW_STATUS_YES, "signal");
break;
case 21:
manager_override_show_status(m, SHOW_STATUS_NO, "signal");
break;
case 22:
manager_override_log_level(m, LOG_DEBUG);
break;
case 23:
manager_restore_original_log_level(m);
break;
case 24:
if (MANAGER_IS_USER(m)) {
m->objective = MANAGER_EXIT;
return 0;
}
/* This is a nop on init */
break;
case 25:
m->objective = MANAGER_REEXECUTE;
break;
case 26:
case 29: /* compatibility: used to be mapped to LOG_TARGET_SYSLOG_OR_KMSG */
manager_restore_original_log_target(m);
break;
case 27:
manager_override_log_target(m, LOG_TARGET_CONSOLE);
break;
case 28:
manager_override_log_target(m, LOG_TARGET_KMSG);
break;
default:
log_warning("Got unhandled signal <%s>.", signal_to_string(sfsi.ssi_signo));
}
}}
return 0;
}
static int manager_dispatch_time_change_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata) {
Manager *m = ASSERT_PTR(userdata);
Unit *u;
log_struct(LOG_DEBUG,
"MESSAGE_ID=" SD_MESSAGE_TIME_CHANGE_STR,
LOG_MESSAGE("Time has been changed"));
/* Restart the watch */
(void) manager_setup_time_change(m);
HASHMAP_FOREACH(u, m->units)
if (UNIT_VTABLE(u)->time_change)
UNIT_VTABLE(u)->time_change(u);
return 0;
}
static int manager_dispatch_timezone_change(
sd_event_source *source,
const struct inotify_event *e,
void *userdata) {
Manager *m = ASSERT_PTR(userdata);
int changed;
Unit *u;
log_debug("inotify event for /etc/localtime");
changed = manager_read_timezone_stat(m);
if (changed <= 0)
return changed;
/* Something changed, restart the watch, to ensure we watch the new /etc/localtime if it changed */
(void) manager_setup_timezone_change(m);
/* Read the new timezone */
tzset();
log_debug("Timezone has been changed (now: %s).", tzname[daylight]);
HASHMAP_FOREACH(u, m->units)
if (UNIT_VTABLE(u)->timezone_change)
UNIT_VTABLE(u)->timezone_change(u);
return 0;
}
static int manager_dispatch_idle_pipe_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata) {
Manager *m = ASSERT_PTR(userdata);
assert(m->idle_pipe[2] == fd);
/* There's at least one Type=idle child that just gave up on us waiting for the boot process to
* complete. Let's now turn off any further console output if there's at least one service that needs
* console access, so that from now on our own output should not spill into that service's output
* anymore. After all, we support Type=idle only to beautify console output and it generally is set
* on services that want to own the console exclusively without our interference. */
m->no_console_output = m->n_on_console > 0;
/* Acknowledge the child's request, and let all other children know too that they shouldn't wait
* any longer by closing the pipes towards them, which is what they are waiting for. */
manager_close_idle_pipe(m);
return 0;
}
static int manager_dispatch_jobs_in_progress(sd_event_source *source, usec_t usec, void *userdata) {
Manager *m = ASSERT_PTR(userdata);
int r;
assert(source);
manager_print_jobs_in_progress(m);
r = sd_event_source_set_time_relative(source, JOBS_IN_PROGRESS_PERIOD_USEC);
if (r < 0)
return r;
return sd_event_source_set_enabled(source, SD_EVENT_ONESHOT);
}
int manager_loop(Manager *m) {
RateLimit rl = { .interval = 1*USEC_PER_SEC, .burst = 50000 };
int r;
assert(m);
assert(m->objective == MANAGER_OK); /* Ensure manager_startup() has been called */
manager_check_finished(m);
/* There might still be some zombies hanging around from before we were exec()'ed. Let's reap them. */
r = sd_event_source_set_enabled(m->sigchld_event_source, SD_EVENT_ON);
if (r < 0)
return log_error_errno(r, "Failed to enable SIGCHLD event source: %m");
while (m->objective == MANAGER_OK) {
(void) watchdog_ping();
if (!ratelimit_below(&rl)) {
/* Yay, something is going seriously wrong, pause a little */
log_warning("Looping too fast. Throttling execution a little.");
sleep(1);
}
if (manager_dispatch_load_queue(m) > 0)
continue;
if (manager_dispatch_gc_job_queue(m) > 0)
continue;
if (manager_dispatch_gc_unit_queue(m) > 0)
continue;
if (manager_dispatch_cleanup_queue(m) > 0)
continue;
if (manager_dispatch_cgroup_realize_queue(m) > 0)
continue;
if (manager_dispatch_start_when_upheld_queue(m) > 0)
continue;
if (manager_dispatch_stop_when_bound_queue(m) > 0)
continue;
if (manager_dispatch_stop_when_unneeded_queue(m) > 0)
continue;
if (manager_dispatch_dbus_queue(m) > 0)
continue;
/* Sleep for watchdog runtime wait time */
r = sd_event_run(m->event, watchdog_runtime_wait());
if (r < 0)
return log_error_errno(r, "Failed to run event loop: %m");
}
return m->objective;
}
int manager_load_unit_from_dbus_path(Manager *m, const char *s, sd_bus_error *e, Unit **_u) {
_cleanup_free_ char *n = NULL;
sd_id128_t invocation_id;
Unit *u;
int r;
assert(m);
assert(s);
assert(_u);
r = unit_name_from_dbus_path(s, &n);
if (r < 0)
return r;
/* Permit addressing units by invocation ID: if the passed bus path is suffixed by a 128bit ID then
* we use it as invocation ID. */
r = sd_id128_from_string(n, &invocation_id);
if (r >= 0) {
u = hashmap_get(m->units_by_invocation_id, &invocation_id);
if (u) {
*_u = u;
return 0;
}
return sd_bus_error_setf(e, BUS_ERROR_NO_UNIT_FOR_INVOCATION_ID,
"No unit with the specified invocation ID " SD_ID128_FORMAT_STR " known.",
SD_ID128_FORMAT_VAL(invocation_id));
}
/* If this didn't work, we check if this is a unit name */
if (!unit_name_is_valid(n, UNIT_NAME_PLAIN|UNIT_NAME_INSTANCE)) {
_cleanup_free_ char *nn = NULL;
nn = cescape(n);
return sd_bus_error_setf(e, SD_BUS_ERROR_INVALID_ARGS,
"Unit name %s is neither a valid invocation ID nor unit name.", strnull(nn));
}
r = manager_load_unit(m, n, NULL, e, &u);
if (r < 0)
return r;
*_u = u;
return 0;
}
int manager_get_job_from_dbus_path(Manager *m, const char *s, Job **_j) {
const char *p;
unsigned id;
Job *j;
int r;
assert(m);
assert(s);
assert(_j);
p = startswith(s, "/org/freedesktop/systemd1/job/");
if (!p)
return -EINVAL;
r = safe_atou(p, &id);
if (r < 0)
return r;
j = manager_get_job(m, id);
if (!j)
return -ENOENT;
*_j = j;
return 0;
}
void manager_send_unit_audit(Manager *m, Unit *u, int type, bool success) {
#if HAVE_AUDIT
_cleanup_free_ char *p = NULL;
const char *msg;
int audit_fd, r;
if (!MANAGER_IS_SYSTEM(m))
return;
audit_fd = get_audit_fd();
if (audit_fd < 0)
return;
/* Don't generate audit events if the service was already
* started and we're just deserializing */
if (MANAGER_IS_RELOADING(m))
return;
if (u->type != UNIT_SERVICE)
return;
r = unit_name_to_prefix_and_instance(u->id, &p);
if (r < 0) {
log_error_errno(r, "Failed to extract prefix and instance of unit name: %m");
return;
}
msg = strjoina("unit=", p);
if (audit_log_user_comm_message(audit_fd, type, msg, "systemd", NULL, NULL, NULL, success) < 0) {
if (errno == EPERM)
/* We aren't allowed to send audit messages?
* Then let's not retry again. */
close_audit_fd();
else
log_warning_errno(errno, "Failed to send audit message: %m");
}
#endif
}
void manager_send_unit_plymouth(Manager *m, Unit *u) {
static const union sockaddr_union sa = PLYMOUTH_SOCKET;
_cleanup_free_ char *message = NULL;
_cleanup_close_ int fd = -EBADF;
int n = 0;
/* Don't generate plymouth events if the service was already
* started and we're just deserializing */
if (MANAGER_IS_RELOADING(m))
return;
if (!MANAGER_IS_SYSTEM(m))
return;
if (detect_container() > 0)
return;
if (!IN_SET(u->type, UNIT_SERVICE, UNIT_MOUNT, UNIT_SWAP))
return;
/* We set SOCK_NONBLOCK here so that we rather drop the
* message then wait for plymouth */
fd = socket(AF_UNIX, SOCK_STREAM|SOCK_CLOEXEC|SOCK_NONBLOCK, 0);
if (fd < 0) {
log_error_errno(errno, "socket() failed: %m");
return;
}
if (connect(fd, &sa.sa, SOCKADDR_UN_LEN(sa.un)) < 0) {
if (!IN_SET(errno, EAGAIN, ENOENT) && !ERRNO_IS_DISCONNECT(errno))
log_error_errno(errno, "connect() failed: %m");
return;
}
if (asprintf(&message, "U\002%c%s%n", (int) (strlen(u->id) + 1), u->id, &n) < 0)
return (void) log_oom();
errno = 0;
if (write(fd, message, n + 1) != n + 1)
if (!IN_SET(errno, EAGAIN, ENOENT) && !ERRNO_IS_DISCONNECT(errno))
log_error_errno(errno, "Failed to write Plymouth message: %m");
}
usec_t manager_get_watchdog(Manager *m, WatchdogType t) {
assert(m);
if (MANAGER_IS_USER(m))
return USEC_INFINITY;
if (timestamp_is_set(m->watchdog_overridden[t]))
return m->watchdog_overridden[t];
return m->watchdog[t];
}
void manager_set_watchdog(Manager *m, WatchdogType t, usec_t timeout) {
assert(m);
if (MANAGER_IS_USER(m))
return;
if (m->watchdog[t] == timeout)
return;
if (t == WATCHDOG_RUNTIME) {
if (!timestamp_is_set(m->watchdog_overridden[WATCHDOG_RUNTIME]))
(void) watchdog_setup(timeout);
} else if (t == WATCHDOG_PRETIMEOUT)
if (m->watchdog_overridden[WATCHDOG_PRETIMEOUT] == USEC_INFINITY)
(void) watchdog_setup_pretimeout(timeout);
m->watchdog[t] = timeout;
}
void manager_override_watchdog(Manager *m, WatchdogType t, usec_t timeout) {
assert(m);
if (MANAGER_IS_USER(m))
return;
if (m->watchdog_overridden[t] == timeout)
return;
if (t == WATCHDOG_RUNTIME) {
usec_t usec = timestamp_is_set(timeout) ? timeout : m->watchdog[t];
(void) watchdog_setup(usec);
} else if (t == WATCHDOG_PRETIMEOUT)
(void) watchdog_setup_pretimeout(timeout);
m->watchdog_overridden[t] = timeout;
}
int manager_set_watchdog_pretimeout_governor(Manager *m, const char *governor) {
_cleanup_free_ char *p = NULL;
int r;
assert(m);
if (MANAGER_IS_USER(m))
return 0;
if (streq_ptr(m->watchdog_pretimeout_governor, governor))
return 0;
p = strdup(governor);
if (!p)
return -ENOMEM;
r = watchdog_setup_pretimeout_governor(governor);
if (r < 0)
return r;
return free_and_replace(m->watchdog_pretimeout_governor, p);
}
int manager_override_watchdog_pretimeout_governor(Manager *m, const char *governor) {
_cleanup_free_ char *p = NULL;
int r;
assert(m);
if (MANAGER_IS_USER(m))
return 0;
if (streq_ptr(m->watchdog_pretimeout_governor_overridden, governor))
return 0;
p = strdup(governor);
if (!p)
return -ENOMEM;
r = watchdog_setup_pretimeout_governor(governor);
if (r < 0)
return r;
return free_and_replace(m->watchdog_pretimeout_governor_overridden, p);
}
int manager_reload(Manager *m) {
_unused_ _cleanup_(manager_reloading_stopp) Manager *reloading = NULL;
_cleanup_fdset_free_ FDSet *fds = NULL;
_cleanup_fclose_ FILE *f = NULL;
int r;
assert(m);
r = manager_open_serialization(m, &f);
if (r < 0)
return log_error_errno(r, "Failed to create serialization file: %m");
fds = fdset_new();
if (!fds)
return log_oom();
/* We are officially in reload mode from here on. */
reloading = manager_reloading_start(m);
r = manager_serialize(m, f, fds, false);
if (r < 0)
return r;
if (fseeko(f, 0, SEEK_SET) < 0)
return log_error_errno(errno, "Failed to seek to beginning of serialization: %m");
/* 💀 This is the point of no return, from here on there is no way back. 💀 */
reloading = NULL;
bus_manager_send_reloading(m, true);
/* Start by flushing out all jobs and units, all generated units, all runtime environments, all dynamic users
* and everything else that is worth flushing out. We'll get it all back from the serialization — if we need
* it. */
manager_clear_jobs_and_units(m);
lookup_paths_flush_generator(&m->lookup_paths);
lookup_paths_free(&m->lookup_paths);
exec_runtime_vacuum(m);
dynamic_user_vacuum(m, false);
m->uid_refs = hashmap_free(m->uid_refs);
m->gid_refs = hashmap_free(m->gid_refs);
r = lookup_paths_init_or_warn(&m->lookup_paths, m->unit_file_scope, 0, NULL);
if (r < 0)
return r;
(void) manager_run_environment_generators(m);
(void) manager_run_generators(m);
lookup_paths_log(&m->lookup_paths);
/* We flushed out generated files, for which we don't watch mtime, so we should flush the old map. */
manager_free_unit_name_maps(m);
/* First, enumerate what we can from kernel and suchlike */
manager_enumerate_perpetual(m);
manager_enumerate(m);
/* Second, deserialize our stored data */
r = manager_deserialize(m, f, fds);
if (r < 0)
log_warning_errno(r, "Deserialization failed, proceeding anyway: %m");
/* We don't need the serialization anymore */
f = safe_fclose(f);
/* Re-register notify_fd as event source, and set up other sockets/communication channels we might need */
(void) manager_setup_notify(m);
(void) manager_setup_cgroups_agent(m);
(void) manager_setup_user_lookup_fd(m);
/* Third, fire things up! */
manager_coldplug(m);
/* Clean up runtime objects no longer referenced */
manager_vacuum(m);
/* Clean up deserialized tracked clients */
m->deserialized_subscribed = strv_free(m->deserialized_subscribed);
/* Consider the reload process complete now. */
assert(m->n_reloading > 0);
m->n_reloading--;
manager_ready(m);
m->send_reloading_done = true;
return 0;
}
void manager_reset_failed(Manager *m) {
Unit *u;
assert(m);
HASHMAP_FOREACH(u, m->units)
unit_reset_failed(u);
}
bool manager_unit_inactive_or_pending(Manager *m, const char *name) {
Unit *u;
assert(m);
assert(name);
/* Returns true if the unit is inactive or going down */
u = manager_get_unit(m, name);
if (!u)
return true;
return unit_inactive_or_pending(u);
}
static void log_taint_string(Manager *m) {
_cleanup_free_ char *taint = NULL;
assert(m);
if (MANAGER_IS_USER(m) || m->taint_logged)
return;
m->taint_logged = true; /* only check for taint once */
taint = manager_taint_string(m);
if (isempty(taint))
return;
log_struct(LOG_NOTICE,
LOG_MESSAGE("System is tainted: %s", taint),
"TAINT=%s", taint,
"MESSAGE_ID=" SD_MESSAGE_TAINTED_STR);
}
static void manager_notify_finished(Manager *m) {
usec_t firmware_usec, loader_usec, kernel_usec, initrd_usec, userspace_usec, total_usec;
if (MANAGER_IS_TEST_RUN(m))
return;
if (MANAGER_IS_SYSTEM(m) && detect_container() <= 0) {
char buf[FORMAT_TIMESPAN_MAX + STRLEN(" (firmware) + ") + FORMAT_TIMESPAN_MAX + STRLEN(" (loader) + ")]
= {};
char *p = buf;
size_t size = sizeof buf;
/* Note that MANAGER_TIMESTAMP_KERNEL's monotonic value is always at 0, and
* MANAGER_TIMESTAMP_FIRMWARE's and MANAGER_TIMESTAMP_LOADER's monotonic value should be considered
* negative values. */
firmware_usec = m->timestamps[MANAGER_TIMESTAMP_FIRMWARE].monotonic - m->timestamps[MANAGER_TIMESTAMP_LOADER].monotonic;
loader_usec = m->timestamps[MANAGER_TIMESTAMP_LOADER].monotonic - m->timestamps[MANAGER_TIMESTAMP_KERNEL].monotonic;
userspace_usec = m->timestamps[MANAGER_TIMESTAMP_FINISH].monotonic - m->timestamps[MANAGER_TIMESTAMP_USERSPACE].monotonic;
total_usec = m->timestamps[MANAGER_TIMESTAMP_FIRMWARE].monotonic + m->timestamps[MANAGER_TIMESTAMP_FINISH].monotonic;
if (firmware_usec > 0)
size = strpcpyf(&p, size, "%s (firmware) + ", FORMAT_TIMESPAN(firmware_usec, USEC_PER_MSEC));
if (loader_usec > 0)
size = strpcpyf(&p, size, "%s (loader) + ", FORMAT_TIMESPAN(loader_usec, USEC_PER_MSEC));
if (dual_timestamp_is_set(&m->timestamps[MANAGER_TIMESTAMP_INITRD])) {
/* The initrd case on bare-metal */
kernel_usec = m->timestamps[MANAGER_TIMESTAMP_INITRD].monotonic - m->timestamps[MANAGER_TIMESTAMP_KERNEL].monotonic;
initrd_usec = m->timestamps[MANAGER_TIMESTAMP_USERSPACE].monotonic - m->timestamps[MANAGER_TIMESTAMP_INITRD].monotonic;
log_struct(LOG_INFO,
"MESSAGE_ID=" SD_MESSAGE_STARTUP_FINISHED_STR,
"KERNEL_USEC="USEC_FMT, kernel_usec,
"INITRD_USEC="USEC_FMT, initrd_usec,
"USERSPACE_USEC="USEC_FMT, userspace_usec,
LOG_MESSAGE("Startup finished in %s%s (kernel) + %s (initrd) + %s (userspace) = %s.",
buf,
FORMAT_TIMESPAN(kernel_usec, USEC_PER_MSEC),
FORMAT_TIMESPAN(initrd_usec, USEC_PER_MSEC),
FORMAT_TIMESPAN(userspace_usec, USEC_PER_MSEC),
FORMAT_TIMESPAN(total_usec, USEC_PER_MSEC)));
} else {
/* The initrd-less case on bare-metal */
kernel_usec = m->timestamps[MANAGER_TIMESTAMP_USERSPACE].monotonic - m->timestamps[MANAGER_TIMESTAMP_KERNEL].monotonic;
initrd_usec = 0;
log_struct(LOG_INFO,
"MESSAGE_ID=" SD_MESSAGE_STARTUP_FINISHED_STR,
"KERNEL_USEC="USEC_FMT, kernel_usec,
"USERSPACE_USEC="USEC_FMT, userspace_usec,
LOG_MESSAGE("Startup finished in %s%s (kernel) + %s (userspace) = %s.",
buf,
FORMAT_TIMESPAN(kernel_usec, USEC_PER_MSEC),
FORMAT_TIMESPAN(userspace_usec, USEC_PER_MSEC),
FORMAT_TIMESPAN(total_usec, USEC_PER_MSEC)));
}
} else {
/* The container and --user case */
firmware_usec = loader_usec = initrd_usec = kernel_usec = 0;
total_usec = userspace_usec = m->timestamps[MANAGER_TIMESTAMP_FINISH].monotonic - m->timestamps[MANAGER_TIMESTAMP_USERSPACE].monotonic;
log_struct(LOG_INFO,
"MESSAGE_ID=" SD_MESSAGE_USER_STARTUP_FINISHED_STR,
"USERSPACE_USEC="USEC_FMT, userspace_usec,
LOG_MESSAGE("Startup finished in %s.",
FORMAT_TIMESPAN(total_usec, USEC_PER_MSEC)));
}
bus_manager_send_finished(m, firmware_usec, loader_usec, kernel_usec, initrd_usec, userspace_usec, total_usec);
log_taint_string(m);
}
static void user_manager_send_ready(Manager *m) {
int r;
assert(m);
/* We send READY=1 on reaching basic.target only when running in --user mode. */
if (!MANAGER_IS_USER(m) || m->ready_sent)
return;
r = sd_notify(false,
"READY=1\n"
"STATUS=Reached " SPECIAL_BASIC_TARGET ".");
if (r < 0)
log_warning_errno(r, "Failed to send readiness notification, ignoring: %m");
m->ready_sent = true;
m->status_ready = false;
}
static void manager_send_ready(Manager *m) {
int r;
if (m->ready_sent && m->status_ready)
/* Skip the notification if nothing changed. */
return;
r = sd_notify(false,
"READY=1\n"
"STATUS=Ready.");
if (r < 0)
log_full_errno(m->ready_sent ? LOG_DEBUG : LOG_WARNING, r,
"Failed to send readiness notification, ignoring: %m");
m->ready_sent = m->status_ready = true;
}
static void manager_check_basic_target(Manager *m) {
Unit *u;
assert(m);
/* Small shortcut */
if (m->ready_sent && m->taint_logged)
return;
u = manager_get_unit(m, SPECIAL_BASIC_TARGET);
if (!u || !UNIT_IS_ACTIVE_OR_RELOADING(unit_active_state(u)))
return;
/* For user managers, send out READY=1 as soon as we reach basic.target */
user_manager_send_ready(m);
/* Log the taint string as soon as we reach basic.target */
log_taint_string(m);
}
void manager_check_finished(Manager *m) {
assert(m);
if (MANAGER_IS_RELOADING(m))
return;
/* Verify that we have entered the event loop already, and not left it again. */
if (!MANAGER_IS_RUNNING(m))
return;
manager_check_basic_target(m);
if (hashmap_size(m->jobs) > 0) {
if (m->jobs_in_progress_event_source)
/* Ignore any failure, this is only for feedback */
(void) sd_event_source_set_time(m->jobs_in_progress_event_source,
manager_watch_jobs_next_time(m));
return;
}
/* The jobs hashmap tends to grow a lot during boot, and then it's not reused until shutdown. Let's
kill the hashmap if it is relatively large. */
if (hashmap_buckets(m->jobs) > hashmap_size(m->units) / 10)
m->jobs = hashmap_free(m->jobs);
manager_send_ready(m);
/* Notify Type=idle units that we are done now */
manager_close_idle_pipe(m);
if (MANAGER_IS_FINISHED(m))
return;
manager_flip_auto_status(m, false, "boot finished");
/* Turn off confirm spawn now */
m->confirm_spawn = NULL;
/* No need to update ask password status when we're going non-interactive */
manager_close_ask_password(m);
/* This is no longer the first boot */
manager_set_first_boot(m, false);
dual_timestamp_get(m->timestamps + MANAGER_TIMESTAMP_FINISH);
manager_notify_finished(m);
manager_invalidate_startup_units(m);
}
void manager_send_reloading(Manager *m) {
assert(m);
/* Let whoever invoked us know that we are now reloading */
(void) sd_notifyf(/* unset= */ false,
"RELOADING=1\n"
"MONOTONIC_USEC=" USEC_FMT "\n", now(CLOCK_MONOTONIC));
/* And ensure that we'll send READY=1 again as soon as we are ready again */
m->ready_sent = false;
}
static bool generator_path_any(const char* const* paths) {
bool found = false;
/* Optimize by skipping the whole process by not creating output directories
* if no generators are found. */
STRV_FOREACH(path, paths)
if (access(*path, F_OK) == 0)
found = true;
else if (errno != ENOENT)
log_warning_errno(errno, "Failed to open generator directory %s: %m", *path);
return found;
}
static int manager_run_environment_generators(Manager *m) {
char **tmp = NULL; /* this is only used in the forked process, no cleanup here */
_cleanup_strv_free_ char **paths = NULL;
void* args[] = {
[STDOUT_GENERATE] = &tmp,
[STDOUT_COLLECT] = &tmp,
[STDOUT_CONSUME] = &m->transient_environment,
};
int r;
if (MANAGER_IS_TEST_RUN(m) && !(m->test_run_flags & MANAGER_TEST_RUN_ENV_GENERATORS))
return 0;
paths = env_generator_binary_paths(MANAGER_IS_SYSTEM(m));
if (!paths)
return log_oom();
if (!generator_path_any((const char* const*) paths))
return 0;
WITH_UMASK(0022)
r = execute_directories((const char* const*) paths, DEFAULT_TIMEOUT_USEC, gather_environment,
args, NULL, m->transient_environment,
EXEC_DIR_PARALLEL | EXEC_DIR_IGNORE_ERRORS | EXEC_DIR_SET_SYSTEMD_EXEC_PID);
return r;
}
static int build_generator_environment(Manager *m, char ***ret) {
_cleanup_strv_free_ char **nl = NULL;
Virtualization v;
int r;
assert(m);
assert(ret);
/* Generators oftentimes want to know some basic facts about the environment they run in, in order to
* adjust generated units to that. Let's pass down some bits of information that are easy for us to
* determine (but a bit harder for generator scripts to determine), as environment variables. */
nl = strv_copy(m->transient_environment);
if (!nl)
return -ENOMEM;
r = strv_env_assign(&nl, "SYSTEMD_SCOPE", MANAGER_IS_SYSTEM(m) ? "system" : "user");
if (r < 0)
return r;
if (MANAGER_IS_SYSTEM(m)) {
/* Note that $SYSTEMD_IN_INITRD may be used to override the initrd detection in much of our
* codebase. This is hence more than purely informational. It will shortcut detection of the
* initrd state if generators invoke our own tools. But that's OK, as it would come to the
* same results (hopefully). */
r = strv_env_assign(&nl, "SYSTEMD_IN_INITRD", one_zero(in_initrd()));
if (r < 0)
return r;
if (m->first_boot >= 0) {
r = strv_env_assign(&nl, "SYSTEMD_FIRST_BOOT", one_zero(m->first_boot));
if (r < 0)
return r;
}
}
v = detect_virtualization();
if (v < 0)
log_debug_errno(v, "Failed to detect virtualization, ignoring: %m");
else if (v > 0) {
const char *s;
s = strjoina(VIRTUALIZATION_IS_VM(v) ? "vm:" :
VIRTUALIZATION_IS_CONTAINER(v) ? "container:" : ":",
virtualization_to_string(v));
r = strv_env_assign(&nl, "SYSTEMD_VIRTUALIZATION", s);
if (r < 0)
return r;
}
r = strv_env_assign(&nl, "SYSTEMD_ARCHITECTURE", architecture_to_string(uname_architecture()));
if (r < 0)
return r;
*ret = TAKE_PTR(nl);
return 0;
}
static int manager_execute_generators(Manager *m, char **paths, bool remount_ro) {
_cleanup_strv_free_ char **ge = NULL;
const char *argv[] = {
NULL, /* Leave this empty, execute_directory() will fill something in */
m->lookup_paths.generator,
m->lookup_paths.generator_early,
m->lookup_paths.generator_late,
NULL,
};
int r;
r = build_generator_environment(m, &ge);
if (r < 0)
return log_error_errno(r, "Failed to build generator environment: %m");
if (remount_ro) {
/* Remount most of the filesystem tree read-only. We leave /sys/ as-is, because our code
* checks whether it is read-only to detect containerized execution environments. We leave
* /run/ as-is too, because that's where our output goes. We also leave /proc/ and /dev/shm/
* because they're API, and /tmp/ that safe_fork() mounted for us.
*/
r = bind_remount_recursive("/", MS_RDONLY, MS_RDONLY,
STRV_MAKE("/sys", "/run", "/proc", "/dev/shm", "/tmp"));
if (r < 0)
log_warning_errno(r, "Read-only bind remount failed, ignoring: %m");
}
BLOCK_WITH_UMASK(0022);
return execute_directories(
(const char* const*) paths,
DEFAULT_TIMEOUT_USEC,
/* callbacks= */ NULL, /* callback_args= */ NULL,
(char**) argv,
ge,
EXEC_DIR_PARALLEL | EXEC_DIR_IGNORE_ERRORS | EXEC_DIR_SET_SYSTEMD_EXEC_PID);
}
static int manager_run_generators(Manager *m) {
_cleanup_strv_free_ char **paths = NULL;
int r;
assert(m);
if (MANAGER_IS_TEST_RUN(m) && !(m->test_run_flags & MANAGER_TEST_RUN_GENERATORS))
return 0;
paths = generator_binary_paths(m->unit_file_scope);
if (!paths)
return log_oom();
if (!generator_path_any((const char* const*) paths))
return 0;
r = lookup_paths_mkdir_generator(&m->lookup_paths);
if (r < 0) {
log_error_errno(r, "Failed to create generator directories: %m");
goto finish;
}
/* If we are the system manager, we fork and invoke the generators in a sanitized mount namespace. If
* we are the user manager, let's just execute the generators directly. We might not have the
* necessary privileges, and the system manager has already mounted /tmp/ and everything else for us.
*/
if (MANAGER_IS_USER(m)) {
r = manager_execute_generators(m, paths, /* remount_ro= */ false);
goto finish;
}
r = safe_fork("(sd-gens)",
FORK_RESET_SIGNALS | FORK_WAIT | FORK_NEW_MOUNTNS | FORK_MOUNTNS_SLAVE | FORK_PRIVATE_TMP,
NULL);
if (r == 0) {
r = manager_execute_generators(m, paths, /* remount_ro= */ true);
_exit(r >= 0 ? EXIT_SUCCESS : EXIT_FAILURE);
}
if (r < 0) {
if (!ERRNO_IS_PRIVILEGE(r)) {
log_error_errno(r, "Failed to fork off sandboxing environment for executing generators: %m");
goto finish;
}
/* Failed to fork with new mount namespace? Maybe, running in a container environment with
* seccomp or without capability. */
log_debug_errno(r,
"Failed to fork off sandboxing environment for executing generators. "
"Falling back to execute generators without sandboxing: %m");
r = manager_execute_generators(m, paths, /* remount_ro= */ false);
}
finish:
lookup_paths_trim_generator(&m->lookup_paths);
return r;
}
int manager_transient_environment_add(Manager *m, char **plus) {
char **a;
assert(m);
if (strv_isempty(plus))
return 0;
a = strv_env_merge(m->transient_environment, plus);
if (!a)
return log_oom();
sanitize_environment(a);
return strv_free_and_replace(m->transient_environment, a);
}
int manager_client_environment_modify(
Manager *m,
char **minus,
char **plus) {
char **a = NULL, **b = NULL, **l;
assert(m);
if (strv_isempty(minus) && strv_isempty(plus))
return 0;
l = m->client_environment;
if (!strv_isempty(minus)) {
a = strv_env_delete(l, 1, minus);
if (!a)
return -ENOMEM;
l = a;
}
if (!strv_isempty(plus)) {
b = strv_env_merge(l, plus);
if (!b) {
strv_free(a);
return -ENOMEM;
}
l = b;
}
if (m->client_environment != l)
strv_free(m->client_environment);
if (a != l)
strv_free(a);
if (b != l)
strv_free(b);
m->client_environment = sanitize_environment(l);
return 0;
}
int manager_get_effective_environment(Manager *m, char ***ret) {
char **l;
assert(m);
assert(ret);
l = strv_env_merge(m->transient_environment, m->client_environment);
if (!l)
return -ENOMEM;
*ret = l;
return 0;
}
int manager_set_default_smack_process_label(Manager *m, const char *label) {
assert(m);
#ifdef SMACK_DEFAULT_PROCESS_LABEL
if (!label)
return free_and_strdup(&m->default_smack_process_label, SMACK_DEFAULT_PROCESS_LABEL);
#endif
if (streq_ptr(label, "/"))
return free_and_strdup(&m->default_smack_process_label, NULL);
return free_and_strdup(&m->default_smack_process_label, label);
}
int manager_set_default_rlimits(Manager *m, struct rlimit **default_rlimit) {
assert(m);
for (unsigned i = 0; i < _RLIMIT_MAX; i++) {
m->rlimit[i] = mfree(m->rlimit[i]);
if (!default_rlimit[i])
continue;
m->rlimit[i] = newdup(struct rlimit, default_rlimit[i], 1);
if (!m->rlimit[i])
return log_oom();
}
return 0;
}
void manager_recheck_dbus(Manager *m) {
assert(m);
/* Connects to the bus if the dbus service and socket are running. If we are running in user mode
* this is all it does. In system mode we'll also connect to the system bus (which will most likely
* just reuse the connection of the API bus). That's because the system bus after all runs as service
* of the system instance, while in the user instance we can assume it's already there. */
if (MANAGER_IS_RELOADING(m))
return; /* don't check while we are reloading… */
if (manager_dbus_is_running(m, false)) {
(void) bus_init_api(m);
if (MANAGER_IS_SYSTEM(m))
(void) bus_init_system(m);
} else {
(void) bus_done_api(m);
if (MANAGER_IS_SYSTEM(m))
(void) bus_done_system(m);
}
}
static bool manager_journal_is_running(Manager *m) {
Unit *u;
assert(m);
if (MANAGER_IS_TEST_RUN(m))
return false;
/* If we are the user manager we can safely assume that the journal is up */
if (!MANAGER_IS_SYSTEM(m))
return true;
/* Check that the socket is not only up, but in RUNNING state */
u = manager_get_unit(m, SPECIAL_JOURNALD_SOCKET);
if (!u)
return false;
if (SOCKET(u)->state != SOCKET_RUNNING)
return false;
/* Similar, check if the daemon itself is fully up, too */
u = manager_get_unit(m, SPECIAL_JOURNALD_SERVICE);
if (!u)
return false;
if (!IN_SET(SERVICE(u)->state, SERVICE_RELOAD, SERVICE_RUNNING))
return false;
return true;
}
void disable_printk_ratelimit(void) {
/* Disable kernel's printk ratelimit.
*
* Logging to /dev/kmsg is most useful during early boot and shutdown, where normal logging
* mechanisms are not available. The semantics of this sysctl are such that any kernel command-line
* setting takes precedence. */
int r;
r = sysctl_write("kernel/printk_devkmsg", "on");
if (r < 0)
log_debug_errno(r, "Failed to set sysctl kernel.printk_devkmsg=on: %m");
}
void manager_recheck_journal(Manager *m) {
assert(m);
/* Don't bother with this unless we are in the special situation of being PID 1 */
if (getpid_cached() != 1)
return;
/* Don't check this while we are reloading, things might still change */
if (MANAGER_IS_RELOADING(m))
return;
/* The journal is fully and entirely up? If so, let's permit logging to it, if that's configured. If
* the journal is down, don't ever log to it, otherwise we might end up deadlocking ourselves as we
* might trigger an activation ourselves we can't fulfill. */
log_set_prohibit_ipc(!manager_journal_is_running(m));
log_open();
}
static ShowStatus manager_get_show_status(Manager *m) {
assert(m);
if (MANAGER_IS_USER(m))
return _SHOW_STATUS_INVALID;
if (m->show_status_overridden != _SHOW_STATUS_INVALID)
return m->show_status_overridden;
return m->show_status;
}
bool manager_get_show_status_on(Manager *m) {
assert(m);
return show_status_on(manager_get_show_status(m));
}
static void set_show_status_marker(bool b) {
if (b)
(void) touch("/run/systemd/show-status");
else
(void) unlink("/run/systemd/show-status");
}
void manager_set_show_status(Manager *m, ShowStatus mode, const char *reason) {
assert(m);
assert(reason);
assert(mode >= 0 && mode < _SHOW_STATUS_MAX);
if (MANAGER_IS_USER(m))
return;
if (mode == m->show_status)
return;
if (m->show_status_overridden == _SHOW_STATUS_INVALID) {
bool enabled;
enabled = show_status_on(mode);
log_debug("%s (%s) showing of status (%s).",
enabled ? "Enabling" : "Disabling",
strna(show_status_to_string(mode)),
reason);
set_show_status_marker(enabled);
}
m->show_status = mode;
}
void manager_override_show_status(Manager *m, ShowStatus mode, const char *reason) {
assert(m);
assert(mode < _SHOW_STATUS_MAX);
if (MANAGER_IS_USER(m))
return;
if (mode == m->show_status_overridden)
return;
m->show_status_overridden = mode;
if (mode == _SHOW_STATUS_INVALID)
mode = m->show_status;
log_debug("%s (%s) showing of status (%s).",
m->show_status_overridden != _SHOW_STATUS_INVALID ? "Overriding" : "Restoring",
strna(show_status_to_string(mode)),
reason);
set_show_status_marker(show_status_on(mode));
}
const char *manager_get_confirm_spawn(Manager *m) {
static int last_errno = 0;
struct stat st;
int r;
assert(m);
/* Here's the deal: we want to test the validity of the console but don't want
* PID1 to go through the whole console process which might block. But we also
* want to warn the user only once if something is wrong with the console so we
* cannot do the sanity checks after spawning our children. So here we simply do
* really basic tests to hopefully trap common errors.
*
* If the console suddenly disappear at the time our children will really it
* then they will simply fail to acquire it and a positive answer will be
* assumed. New children will fall back to /dev/console though.
*
* Note: TTYs are devices that can come and go any time, and frequently aren't
* available yet during early boot (consider a USB rs232 dongle...). If for any
* reason the configured console is not ready, we fall back to the default
* console. */
if (!m->confirm_spawn || path_equal(m->confirm_spawn, "/dev/console"))
return m->confirm_spawn;
if (stat(m->confirm_spawn, &st) < 0) {
r = -errno;
goto fail;
}
if (!S_ISCHR(st.st_mode)) {
r = -ENOTTY;
goto fail;
}
last_errno = 0;
return m->confirm_spawn;
fail:
if (last_errno != r)
last_errno = log_warning_errno(r, "Failed to open %s, using default console: %m", m->confirm_spawn);
return "/dev/console";
}
void manager_set_first_boot(Manager *m, bool b) {
assert(m);
if (!MANAGER_IS_SYSTEM(m))
return;
if (m->first_boot != (int) b) {
if (b)
(void) touch("/run/systemd/first-boot");
else
(void) unlink("/run/systemd/first-boot");
}
m->first_boot = b;
}
void manager_disable_confirm_spawn(void) {
(void) touch("/run/systemd/confirm_spawn_disabled");
}
bool manager_is_confirm_spawn_disabled(Manager *m) {
if (!m->confirm_spawn)
return true;
return access("/run/systemd/confirm_spawn_disabled", F_OK) >= 0;
}
static bool manager_should_show_status(Manager *m, StatusType type) {
assert(m);
if (!MANAGER_IS_SYSTEM(m))
return false;
if (m->no_console_output)
return false;
if (!IN_SET(manager_state(m), MANAGER_INITIALIZING, MANAGER_STARTING, MANAGER_STOPPING))
return false;
/* If we cannot find out the status properly, just proceed. */
if (type != STATUS_TYPE_EMERGENCY && manager_check_ask_password(m) > 0)
return false;
if (type == STATUS_TYPE_NOTICE && m->show_status != SHOW_STATUS_NO)
return true;
return manager_get_show_status_on(m);
}
void manager_status_printf(Manager *m, StatusType type, const char *status, const char *format, ...) {
va_list ap;
/* If m is NULL, assume we're after shutdown and let the messages through. */
if (m && !manager_should_show_status(m, type))
return;
/* XXX We should totally drop the check for ephemeral here
* and thus effectively make 'Type=idle' pointless. */
if (type == STATUS_TYPE_EPHEMERAL && m && m->n_on_console > 0)
return;
va_start(ap, format);
status_vprintf(status, SHOW_STATUS_ELLIPSIZE|(type == STATUS_TYPE_EPHEMERAL ? SHOW_STATUS_EPHEMERAL : 0), format, ap);
va_end(ap);
}
Set* manager_get_units_requiring_mounts_for(Manager *m, const char *path) {
assert(m);
assert(path);
if (path_equal(path, "/"))
path = "";
return hashmap_get(m->units_requiring_mounts_for, path);
}
int manager_update_failed_units(Manager *m, Unit *u, bool failed) {
unsigned size;
int r;
assert(m);
assert(u->manager == m);
size = set_size(m->failed_units);
if (failed) {
r = set_ensure_put(&m->failed_units, NULL, u);
if (r < 0)
return log_oom();
} else
(void) set_remove(m->failed_units, u);
if (set_size(m->failed_units) != size)
bus_manager_send_change_signal(m);
return 0;
}
ManagerState manager_state(Manager *m) {
Unit *u;
assert(m);
/* Is the special shutdown target active or queued? If so, we are in shutdown state */
u = manager_get_unit(m, SPECIAL_SHUTDOWN_TARGET);
if (u && unit_active_or_pending(u))
return MANAGER_STOPPING;
/* Did we ever finish booting? If not then we are still starting up */
if (!MANAGER_IS_FINISHED(m)) {
u = manager_get_unit(m, SPECIAL_BASIC_TARGET);
if (!u || !UNIT_IS_ACTIVE_OR_RELOADING(unit_active_state(u)))
return MANAGER_INITIALIZING;
return MANAGER_STARTING;
}
if (MANAGER_IS_SYSTEM(m)) {
/* Are the rescue or emergency targets active or queued? If so we are in maintenance state */
u = manager_get_unit(m, SPECIAL_RESCUE_TARGET);
if (u && unit_active_or_pending(u))
return MANAGER_MAINTENANCE;
u = manager_get_unit(m, SPECIAL_EMERGENCY_TARGET);
if (u && unit_active_or_pending(u))
return MANAGER_MAINTENANCE;
}
/* Are there any failed units? If so, we are in degraded mode */
if (set_size(m->failed_units) > 0)
return MANAGER_DEGRADED;
return MANAGER_RUNNING;
}
static void manager_unref_uid_internal(
Hashmap *uid_refs,
uid_t uid,
bool destroy_now,
int (*_clean_ipc)(uid_t uid)) {
uint32_t c, n;
assert(uid_is_valid(uid));
assert(_clean_ipc);
/* A generic implementation, covering both manager_unref_uid() and manager_unref_gid(), under the
* assumption that uid_t and gid_t are actually defined the same way, with the same validity rules.
*
* We store a hashmap where the key is the UID/GID and the value is a 32bit reference counter, whose
* highest bit is used as flag for marking UIDs/GIDs whose IPC objects to remove when the last
* reference to the UID/GID is dropped. The flag is set to on, once at least one reference from a
* unit where RemoveIPC= is set is added on a UID/GID. It is reset when the UID's/GID's reference
* counter drops to 0 again. */
assert_cc(sizeof(uid_t) == sizeof(gid_t));
assert_cc(UID_INVALID == (uid_t) GID_INVALID);
if (uid == 0) /* We don't keep track of root, and will never destroy it */
return;
c = PTR_TO_UINT32(hashmap_get(uid_refs, UID_TO_PTR(uid)));
n = c & ~DESTROY_IPC_FLAG;
assert(n > 0);
n--;
if (destroy_now && n == 0) {
hashmap_remove(uid_refs, UID_TO_PTR(uid));
if (c & DESTROY_IPC_FLAG) {
log_debug("%s " UID_FMT " is no longer referenced, cleaning up its IPC.",
_clean_ipc == clean_ipc_by_uid ? "UID" : "GID",
uid);
(void) _clean_ipc(uid);
}
} else {
c = n | (c & DESTROY_IPC_FLAG);
assert_se(hashmap_update(uid_refs, UID_TO_PTR(uid), UINT32_TO_PTR(c)) >= 0);
}
}
void manager_unref_uid(Manager *m, uid_t uid, bool destroy_now) {
manager_unref_uid_internal(m->uid_refs, uid, destroy_now, clean_ipc_by_uid);
}
void manager_unref_gid(Manager *m, gid_t gid, bool destroy_now) {
manager_unref_uid_internal(m->gid_refs, (uid_t) gid, destroy_now, clean_ipc_by_gid);
}
static int manager_ref_uid_internal(
Hashmap **uid_refs,
uid_t uid,
bool clean_ipc) {
uint32_t c, n;
int r;
assert(uid_refs);
assert(uid_is_valid(uid));
/* A generic implementation, covering both manager_ref_uid() and manager_ref_gid(), under the
* assumption that uid_t and gid_t are actually defined the same way, with the same validity
* rules. */
assert_cc(sizeof(uid_t) == sizeof(gid_t));
assert_cc(UID_INVALID == (uid_t) GID_INVALID);
if (uid == 0) /* We don't keep track of root, and will never destroy it */
return 0;
r = hashmap_ensure_allocated(uid_refs, &trivial_hash_ops);
if (r < 0)
return r;
c = PTR_TO_UINT32(hashmap_get(*uid_refs, UID_TO_PTR(uid)));
n = c & ~DESTROY_IPC_FLAG;
n++;
if (n & DESTROY_IPC_FLAG) /* check for overflow */
return -EOVERFLOW;
c = n | (c & DESTROY_IPC_FLAG) | (clean_ipc ? DESTROY_IPC_FLAG : 0);
return hashmap_replace(*uid_refs, UID_TO_PTR(uid), UINT32_TO_PTR(c));
}
int manager_ref_uid(Manager *m, uid_t uid, bool clean_ipc) {
return manager_ref_uid_internal(&m->uid_refs, uid, clean_ipc);
}
int manager_ref_gid(Manager *m, gid_t gid, bool clean_ipc) {
return manager_ref_uid_internal(&m->gid_refs, (uid_t) gid, clean_ipc);
}
static void manager_vacuum_uid_refs_internal(
Hashmap *uid_refs,
int (*_clean_ipc)(uid_t uid)) {
void *p, *k;
assert(_clean_ipc);
HASHMAP_FOREACH_KEY(p, k, uid_refs) {
uint32_t c, n;
uid_t uid;
uid = PTR_TO_UID(k);
c = PTR_TO_UINT32(p);
n = c & ~DESTROY_IPC_FLAG;
if (n > 0)
continue;
if (c & DESTROY_IPC_FLAG) {
log_debug("Found unreferenced %s " UID_FMT " after reload/reexec. Cleaning up.",
_clean_ipc == clean_ipc_by_uid ? "UID" : "GID",
uid);
(void) _clean_ipc(uid);
}
assert_se(hashmap_remove(uid_refs, k) == p);
}
}
static void manager_vacuum_uid_refs(Manager *m) {
manager_vacuum_uid_refs_internal(m->uid_refs, clean_ipc_by_uid);
}
static void manager_vacuum_gid_refs(Manager *m) {
manager_vacuum_uid_refs_internal(m->gid_refs, clean_ipc_by_gid);
}
static void manager_vacuum(Manager *m) {
assert(m);
/* Release any dynamic users no longer referenced */
dynamic_user_vacuum(m, true);
/* Release any references to UIDs/GIDs no longer referenced, and destroy any IPC owned by them */
manager_vacuum_uid_refs(m);
manager_vacuum_gid_refs(m);
/* Release any runtimes no longer referenced */
exec_runtime_vacuum(m);
}
int manager_dispatch_user_lookup_fd(sd_event_source *source, int fd, uint32_t revents, void *userdata) {
struct buffer {
uid_t uid;
gid_t gid;
char unit_name[UNIT_NAME_MAX+1];
} _packed_ buffer;
Manager *m = userdata;
ssize_t l;
size_t n;
Unit *u;
assert_se(source);
assert_se(m);
/* Invoked whenever a child process succeeded resolving its user/group to use and sent us the
* resulting UID/GID in a datagram. We parse the datagram here and pass it off to the unit, so that
* it can add a reference to the UID/GID so that it can destroy the UID/GID's IPC objects when the
* reference counter drops to 0. */
l = recv(fd, &buffer, sizeof(buffer), MSG_DONTWAIT);
if (l < 0) {
if (ERRNO_IS_TRANSIENT(errno))
return 0;
return log_error_errno(errno, "Failed to read from user lookup fd: %m");
}
if ((size_t) l <= offsetof(struct buffer, unit_name)) {
log_warning("Received too short user lookup message, ignoring.");
return 0;
}
if ((size_t) l > offsetof(struct buffer, unit_name) + UNIT_NAME_MAX) {
log_warning("Received too long user lookup message, ignoring.");
return 0;
}
if (!uid_is_valid(buffer.uid) && !gid_is_valid(buffer.gid)) {
log_warning("Got user lookup message with invalid UID/GID pair, ignoring.");
return 0;
}
n = (size_t) l - offsetof(struct buffer, unit_name);
if (memchr(buffer.unit_name, 0, n)) {
log_warning("Received lookup message with embedded NUL character, ignoring.");
return 0;
}
buffer.unit_name[n] = 0;
u = manager_get_unit(m, buffer.unit_name);
if (!u) {
log_debug("Got user lookup message but unit doesn't exist, ignoring.");
return 0;
}
log_unit_debug(u, "User lookup succeeded: uid=" UID_FMT " gid=" GID_FMT, buffer.uid, buffer.gid);
unit_notify_user_lookup(u, buffer.uid, buffer.gid);
return 0;
}
static int short_uid_range(const char *path) {
_cleanup_(uid_range_freep) UidRange *p = NULL;
int r;
assert(path);
/* Taint systemd if we the UID range assigned to this environment doesn't at least cover 0…65534,
* i.e. from root to nobody. */
r = uid_range_load_userns(&p, path);
if (r < 0) {
if (ERRNO_IS_NOT_SUPPORTED(r))
return false;
return log_debug_errno(r, "Failed to load %s: %m", path);
}
return !uid_range_covers(p, 0, 65535);
}
char* manager_taint_string(const Manager *m) {
/* Returns a "taint string", e.g. "local-hwclock:var-run-bad". Only things that are detected at
* runtime should be tagged here. For stuff that is known during compilation, emit a warning in the
* configuration phase. */
assert(m);
const char* stage[13] = {};
size_t n = 0;
if (m->taint_usr)
stage[n++] = "split-usr";
_cleanup_free_ char *usrbin = NULL;
if (readlink_malloc("/bin", &usrbin) < 0 || !PATH_IN_SET(usrbin, "usr/bin", "/usr/bin"))
stage[n++] = "unmerged-usr";
if (access("/proc/cgroups", F_OK) < 0)
stage[n++] = "cgroups-missing";
if (cg_all_unified() == 0)
stage[n++] = "cgroupsv1";
if (clock_is_localtime(NULL) > 0)
stage[n++] = "local-hwclock";
if (os_release_support_ended(NULL, /* quiet= */ true, NULL) > 0)
stage[n++] = "support-ended";
_cleanup_free_ char *destination = NULL;
if (readlink_malloc("/var/run", &destination) < 0 ||
!PATH_IN_SET(destination, "../run", "/run"))
stage[n++] = "var-run-bad";
_cleanup_free_ char *overflowuid = NULL, *overflowgid = NULL;
if (read_one_line_file("/proc/sys/kernel/overflowuid", &overflowuid) >= 0 &&
!streq(overflowuid, "65534"))
stage[n++] = "overflowuid-not-65534";
if (read_one_line_file("/proc/sys/kernel/overflowgid", &overflowgid) >= 0 &&
!streq(overflowgid, "65534"))
stage[n++] = "overflowgid-not-65534";
struct utsname uts;
assert_se(uname(&uts) >= 0);
if (strverscmp_improved(uts.release, KERNEL_BASELINE_VERSION) < 0)
stage[n++] = "old-kernel";
if (short_uid_range("/proc/self/uid_map") > 0)
stage[n++] = "short-uid-range";
if (short_uid_range("/proc/self/gid_map") > 0)
stage[n++] = "short-gid-range";
assert(n < ELEMENTSOF(stage) - 1); /* One extra for NULL terminator */
return strv_join((char**) stage, ":");
}
void manager_ref_console(Manager *m) {
assert(m);
m->n_on_console++;
}
void manager_unref_console(Manager *m) {
assert(m->n_on_console > 0);
m->n_on_console--;
if (m->n_on_console == 0)
m->no_console_output = false; /* unset no_console_output flag, since the console is definitely free now */
}
void manager_override_log_level(Manager *m, int level) {
_cleanup_free_ char *s = NULL;
assert(m);
if (!m->log_level_overridden) {
m->original_log_level = log_get_max_level();
m->log_level_overridden = true;
}
(void) log_level_to_string_alloc(level, &s);
log_info("Setting log level to %s.", strna(s));
log_set_max_level(level);
}
void manager_restore_original_log_level(Manager *m) {
_cleanup_free_ char *s = NULL;
assert(m);
if (!m->log_level_overridden)
return;
(void) log_level_to_string_alloc(m->original_log_level, &s);
log_info("Restoring log level to original (%s).", strna(s));
log_set_max_level(m->original_log_level);
m->log_level_overridden = false;
}
void manager_override_log_target(Manager *m, LogTarget target) {
assert(m);
if (!m->log_target_overridden) {
m->original_log_target = log_get_target();
m->log_target_overridden = true;
}
log_info("Setting log target to %s.", log_target_to_string(target));
log_set_target(target);
}
void manager_restore_original_log_target(Manager *m) {
assert(m);
if (!m->log_target_overridden)
return;
log_info("Restoring log target to original %s.", log_target_to_string(m->original_log_target));
log_set_target(m->original_log_target);
m->log_target_overridden = false;
}
ManagerTimestamp manager_timestamp_initrd_mangle(ManagerTimestamp s) {
if (in_initrd() &&
s >= MANAGER_TIMESTAMP_SECURITY_START &&
s <= MANAGER_TIMESTAMP_UNITS_LOAD_FINISH)
return s - MANAGER_TIMESTAMP_SECURITY_START + MANAGER_TIMESTAMP_INITRD_SECURITY_START;
return s;
}
static const char *const manager_state_table[_MANAGER_STATE_MAX] = {
[MANAGER_INITIALIZING] = "initializing",
[MANAGER_STARTING] = "starting",
[MANAGER_RUNNING] = "running",
[MANAGER_DEGRADED] = "degraded",
[MANAGER_MAINTENANCE] = "maintenance",
[MANAGER_STOPPING] = "stopping",
};
DEFINE_STRING_TABLE_LOOKUP(manager_state, ManagerState);
static const char *const manager_timestamp_table[_MANAGER_TIMESTAMP_MAX] = {
[MANAGER_TIMESTAMP_FIRMWARE] = "firmware",
[MANAGER_TIMESTAMP_LOADER] = "loader",
[MANAGER_TIMESTAMP_KERNEL] = "kernel",
[MANAGER_TIMESTAMP_INITRD] = "initrd",
[MANAGER_TIMESTAMP_USERSPACE] = "userspace",
[MANAGER_TIMESTAMP_FINISH] = "finish",
[MANAGER_TIMESTAMP_SECURITY_START] = "security-start",
[MANAGER_TIMESTAMP_SECURITY_FINISH] = "security-finish",
[MANAGER_TIMESTAMP_GENERATORS_START] = "generators-start",
[MANAGER_TIMESTAMP_GENERATORS_FINISH] = "generators-finish",
[MANAGER_TIMESTAMP_UNITS_LOAD_START] = "units-load-start",
[MANAGER_TIMESTAMP_UNITS_LOAD_FINISH] = "units-load-finish",
[MANAGER_TIMESTAMP_UNITS_LOAD] = "units-load",
[MANAGER_TIMESTAMP_INITRD_SECURITY_START] = "initrd-security-start",
[MANAGER_TIMESTAMP_INITRD_SECURITY_FINISH] = "initrd-security-finish",
[MANAGER_TIMESTAMP_INITRD_GENERATORS_START] = "initrd-generators-start",
[MANAGER_TIMESTAMP_INITRD_GENERATORS_FINISH] = "initrd-generators-finish",
[MANAGER_TIMESTAMP_INITRD_UNITS_LOAD_START] = "initrd-units-load-start",
[MANAGER_TIMESTAMP_INITRD_UNITS_LOAD_FINISH] = "initrd-units-load-finish",
};
DEFINE_STRING_TABLE_LOOKUP(manager_timestamp, ManagerTimestamp);
static const char* const oom_policy_table[_OOM_POLICY_MAX] = {
[OOM_CONTINUE] = "continue",
[OOM_STOP] = "stop",
[OOM_KILL] = "kill",
};
DEFINE_STRING_TABLE_LOOKUP(oom_policy, OOMPolicy);