blob: df6139005f1f5835f29e5bd52912f846e7c6de8a [file] [log] [blame]
/* SPDX-License-Identifier: LGPL-2.1-or-later */
#include <malloc.h>
#include <stdint.h>
#include "alloc-util.h"
#include "macro.h"
#include "memory-util.h"
#include "random-util.h"
#include "tests.h"
TEST(alloca) {
static const uint8_t zero[997] = { };
char *t;
t = alloca_align(17, 512);
assert_se(!((uintptr_t)t & 0xff));
memzero(t, 17);
t = alloca0_align(997, 1024);
assert_se(!((uintptr_t)t & 0x1ff));
assert_se(!memcmp(t, zero, 997));
}
TEST(GREEDY_REALLOC) {
_cleanup_free_ int *a = NULL, *b = NULL;
size_t i, j;
/* Give valgrind a chance to verify our realloc() operations */
for (i = 0; i < 20480; i++) {
assert_se(GREEDY_REALLOC(a, i + 1));
assert_se(MALLOC_ELEMENTSOF(a) >= i + 1);
assert_se(MALLOC_SIZEOF_SAFE(a) >= (i + 1) * sizeof(int));
a[i] = (int) i;
assert_se(GREEDY_REALLOC(a, i / 2));
assert_se(MALLOC_ELEMENTSOF(a) >= i / 2);
assert_se(MALLOC_SIZEOF_SAFE(a) >= (i / 2) * sizeof(int));
}
for (j = 0; j < i / 2; j++)
assert_se(a[j] == (int) j);
for (i = 30; i < 20480; i += 7) {
assert_se(GREEDY_REALLOC(b, i + 1));
assert_se(MALLOC_ELEMENTSOF(b) >= i + 1);
assert_se(MALLOC_SIZEOF_SAFE(b) >= (i + 1) * sizeof(int));
b[i] = (int) i;
assert_se(GREEDY_REALLOC(b, i / 2));
assert_se(MALLOC_ELEMENTSOF(b) >= i / 2);
assert_se(MALLOC_SIZEOF_SAFE(b) >= (i / 2) * sizeof(int));
}
for (j = 30; j < i / 2; j += 7)
assert_se(b[j] == (int) j);
}
TEST(memdup_multiply_and_greedy_realloc) {
static const int org[] = { 1, 2, 3 };
_cleanup_free_ int *dup;
size_t i;
int *p;
dup = memdup_suffix0_multiply(org, sizeof(int), 3);
assert_se(dup);
assert_se(dup[0] == 1);
assert_se(dup[1] == 2);
assert_se(dup[2] == 3);
assert_se(((uint8_t*) dup)[sizeof(int) * 3] == 0);
free(dup);
dup = memdup_multiply(org, sizeof(int), 3);
assert_se(dup);
assert_se(dup[0] == 1);
assert_se(dup[1] == 2);
assert_se(dup[2] == 3);
memzero(dup + 3, malloc_usable_size(dup) - sizeof(int) * 3);
p = dup;
assert_se(GREEDY_REALLOC0(dup, 2) == p);
p = GREEDY_REALLOC0(dup, 10);
assert_se(p == dup);
assert_se(MALLOC_ELEMENTSOF(p) >= 10);
assert_se(p[0] == 1);
assert_se(p[1] == 2);
assert_se(p[2] == 3);
for (i = 3; i < MALLOC_ELEMENTSOF(p); i++)
assert_se(p[i] == 0);
}
TEST(bool_assign) {
bool b, c, *cp = &c, d, e, f, g, h;
b = 123;
*cp = -11;
d = 0xF & 0xFF;
e = b & d;
f = 0x0;
g = cp; /* cast from pointer */
h = NULL; /* cast from pointer */
assert_se(b);
assert_se(c);
assert_se(d);
assert_se(e);
assert_se(!f);
assert_se(g);
assert_se(!h);
}
static int cleanup_counter = 0;
static void cleanup1(void *a) {
log_info("%s(%p)", __func__, a);
assert_se(++cleanup_counter == *(int*) a);
}
static void cleanup2(void *a) {
log_info("%s(%p)", __func__, a);
assert_se(++cleanup_counter == *(int*) a);
}
static void cleanup3(void *a) {
log_info("%s(%p)", __func__, a);
assert_se(++cleanup_counter == *(int*) a);
}
TEST(cleanup_order) {
_cleanup_(cleanup1) int x1 = 4, x2 = 3;
_cleanup_(cleanup3) int z = 2;
_cleanup_(cleanup2) int y = 1;
log_debug("x1: %p", &x1);
log_debug("x2: %p", &x2);
log_debug("y: %p", &y);
log_debug("z: %p", &z);
}
TEST(auto_erase_memory) {
_cleanup_(erase_and_freep) uint8_t *p1, *p2;
/* print address of p2, else e.g. clang-11 will optimize it out */
log_debug("p1: %p p2: %p", &p1, &p2);
assert_se(p1 = new(uint8_t, 4703)); /* use prime size, to ensure that there will be free space at the
* end of the allocation, since malloc() enforces alignment */
assert_se(p2 = new(uint8_t, 4703));
assert_se(crypto_random_bytes(p1, 4703) == 0);
/* before we exit the scope, do something with this data, so that the compiler won't optimize this away */
memcpy(p2, p1, 4703);
for (size_t i = 0; i < 4703; i++)
assert_se(p1[i] == p2[i]);
}
#define TEST_SIZES(f, n) \
do { \
log_debug("requested=%zu vs. malloc_size=%zu vs. gcc_size=%zu", \
n * sizeof(*f), \
malloc_usable_size(f), \
__builtin_object_size(f, 0)); \
assert_se(MALLOC_ELEMENTSOF(f) >= n); \
assert_se(MALLOC_SIZEOF_SAFE(f) >= sizeof(*f) * n); \
assert_se(malloc_usable_size(f) >= sizeof(*f) * n); \
assert_se(__builtin_object_size(f, 0) >= sizeof(*f) * n); \
} while (false)
TEST(malloc_size_safe) {
_cleanup_free_ uint32_t *f = NULL;
size_t n = 4711;
/* Let's check the macros and built-ins work on NULL and return the expected values */
assert_se(MALLOC_ELEMENTSOF((float*) NULL) == 0);
assert_se(MALLOC_SIZEOF_SAFE((float*) NULL) == 0);
assert_se(malloc_usable_size(NULL) == 0); /* as per man page, this is safe and defined */
assert_se(__builtin_object_size(NULL, 0) == SIZE_MAX); /* as per docs SIZE_MAX is returned for pointers where the size isn't known */
/* Then, let's try these macros once with constant size values, so that __builtin_object_size()
* definitely can work (as long as -O2 is used when compiling) */
assert_se(f = new(uint32_t, n));
TEST_SIZES(f, n);
/* Finally, let's use some dynamically sized allocations, to make sure this doesn't deteriorate */
for (unsigned i = 0; i < 50; i++) {
_cleanup_free_ uint64_t *g = NULL;
size_t m;
m = random_u64_range(16*1024);
assert_se(g = new(uint64_t, m));
TEST_SIZES(g, m);
}
}
DEFINE_TEST_MAIN(LOG_DEBUG);