blob: 79841df715137b32a6e37bf474d09ce55be4be44 [file] [log] [blame]
// Copyright (c) HashiCorp, Inc.
// SPDX-License-Identifier: MPL-2.0
// ----------------------------------------------------------------------------
//
// *** AUTO GENERATED CODE *** Type: MMv1 ***
//
// ----------------------------------------------------------------------------
//
// This file is automatically generated by Magic Modules and manual
// changes will be clobbered when the file is regenerated.
//
// Please read more about how to change this file in
// .github/CONTRIBUTING.md.
//
// ----------------------------------------------------------------------------
package vertexai
import (
"fmt"
"log"
"reflect"
"strings"
"time"
"github.com/hashicorp/terraform-plugin-sdk/v2/helper/customdiff"
"github.com/hashicorp/terraform-plugin-sdk/v2/helper/schema"
"github.com/hashicorp/terraform-provider-google-beta/google-beta/tpgresource"
transport_tpg "github.com/hashicorp/terraform-provider-google-beta/google-beta/transport"
)
func ResourceVertexAITensorboard() *schema.Resource {
return &schema.Resource{
Create: resourceVertexAITensorboardCreate,
Read: resourceVertexAITensorboardRead,
Update: resourceVertexAITensorboardUpdate,
Delete: resourceVertexAITensorboardDelete,
Importer: &schema.ResourceImporter{
State: resourceVertexAITensorboardImport,
},
Timeouts: &schema.ResourceTimeout{
Create: schema.DefaultTimeout(20 * time.Minute),
Update: schema.DefaultTimeout(20 * time.Minute),
Delete: schema.DefaultTimeout(20 * time.Minute),
},
CustomizeDiff: customdiff.All(
tpgresource.SetLabelsDiff,
tpgresource.DefaultProviderProject,
),
Schema: map[string]*schema.Schema{
"display_name": {
Type: schema.TypeString,
Required: true,
Description: `User provided name of this Tensorboard.`,
},
"description": {
Type: schema.TypeString,
Optional: true,
Description: `Description of this Tensorboard.`,
},
"encryption_spec": {
Type: schema.TypeList,
Optional: true,
ForceNew: true,
Description: `Customer-managed encryption key spec for a Tensorboard. If set, this Tensorboard and all sub-resources of this Tensorboard will be secured by this key.`,
MaxItems: 1,
Elem: &schema.Resource{
Schema: map[string]*schema.Schema{
"kms_key_name": {
Type: schema.TypeString,
Required: true,
ForceNew: true,
Description: `The Cloud KMS resource identifier of the customer managed encryption key used to protect a resource.
Has the form: projects/my-project/locations/my-region/keyRings/my-kr/cryptoKeys/my-key. The key needs to be in the same region as where the resource is created.`,
},
},
},
},
"labels": {
Type: schema.TypeMap,
Optional: true,
Description: `The labels with user-defined metadata to organize your Tensorboards.
**Note**: This field is non-authoritative, and will only manage the labels present in your configuration.
Please refer to the field 'effective_labels' for all of the labels present on the resource.`,
Elem: &schema.Schema{Type: schema.TypeString},
},
"region": {
Type: schema.TypeString,
Computed: true,
Optional: true,
ForceNew: true,
Description: `The region of the tensorboard. eg us-central1`,
},
"blob_storage_path_prefix": {
Type: schema.TypeString,
Computed: true,
Description: `Consumer project Cloud Storage path prefix used to store blob data, which can either be a bucket or directory. Does not end with a '/'.`,
},
"create_time": {
Type: schema.TypeString,
Computed: true,
Description: `The timestamp of when the Tensorboard was created in RFC3339 UTC "Zulu" format, with nanosecond resolution and up to nine fractional digits.`,
},
"effective_labels": {
Type: schema.TypeMap,
Computed: true,
Description: `All of labels (key/value pairs) present on the resource in GCP, including the labels configured through Terraform, other clients and services.`,
Elem: &schema.Schema{Type: schema.TypeString},
},
"name": {
Type: schema.TypeString,
Computed: true,
Description: `Name of the Tensorboard.`,
},
"run_count": {
Type: schema.TypeString,
Computed: true,
Description: `The number of Runs stored in this Tensorboard.`,
},
"terraform_labels": {
Type: schema.TypeMap,
Computed: true,
Description: `The combination of labels configured directly on the resource
and default labels configured on the provider.`,
Elem: &schema.Schema{Type: schema.TypeString},
},
"update_time": {
Type: schema.TypeString,
Computed: true,
Description: `The timestamp of when the Tensorboard was last updated in RFC3339 UTC "Zulu" format, with nanosecond resolution and up to nine fractional digits.`,
},
"project": {
Type: schema.TypeString,
Optional: true,
Computed: true,
ForceNew: true,
},
},
UseJSONNumber: true,
}
}
func resourceVertexAITensorboardCreate(d *schema.ResourceData, meta interface{}) error {
config := meta.(*transport_tpg.Config)
userAgent, err := tpgresource.GenerateUserAgentString(d, config.UserAgent)
if err != nil {
return err
}
obj := make(map[string]interface{})
displayNameProp, err := expandVertexAITensorboardDisplayName(d.Get("display_name"), d, config)
if err != nil {
return err
} else if v, ok := d.GetOkExists("display_name"); !tpgresource.IsEmptyValue(reflect.ValueOf(displayNameProp)) && (ok || !reflect.DeepEqual(v, displayNameProp)) {
obj["displayName"] = displayNameProp
}
descriptionProp, err := expandVertexAITensorboardDescription(d.Get("description"), d, config)
if err != nil {
return err
} else if v, ok := d.GetOkExists("description"); !tpgresource.IsEmptyValue(reflect.ValueOf(descriptionProp)) && (ok || !reflect.DeepEqual(v, descriptionProp)) {
obj["description"] = descriptionProp
}
encryptionSpecProp, err := expandVertexAITensorboardEncryptionSpec(d.Get("encryption_spec"), d, config)
if err != nil {
return err
} else if v, ok := d.GetOkExists("encryption_spec"); !tpgresource.IsEmptyValue(reflect.ValueOf(encryptionSpecProp)) && (ok || !reflect.DeepEqual(v, encryptionSpecProp)) {
obj["encryptionSpec"] = encryptionSpecProp
}
labelsProp, err := expandVertexAITensorboardEffectiveLabels(d.Get("effective_labels"), d, config)
if err != nil {
return err
} else if v, ok := d.GetOkExists("effective_labels"); !tpgresource.IsEmptyValue(reflect.ValueOf(labelsProp)) && (ok || !reflect.DeepEqual(v, labelsProp)) {
obj["labels"] = labelsProp
}
url, err := tpgresource.ReplaceVars(d, config, "{{VertexAIBasePath}}projects/{{project}}/locations/{{region}}/tensorboards")
if err != nil {
return err
}
log.Printf("[DEBUG] Creating new Tensorboard: %#v", obj)
billingProject := ""
project, err := tpgresource.GetProject(d, config)
if err != nil {
return fmt.Errorf("Error fetching project for Tensorboard: %s", err)
}
billingProject = project
// err == nil indicates that the billing_project value was found
if bp, err := tpgresource.GetBillingProject(d, config); err == nil {
billingProject = bp
}
res, err := transport_tpg.SendRequest(transport_tpg.SendRequestOptions{
Config: config,
Method: "POST",
Project: billingProject,
RawURL: url,
UserAgent: userAgent,
Body: obj,
Timeout: d.Timeout(schema.TimeoutCreate),
})
if err != nil {
return fmt.Errorf("Error creating Tensorboard: %s", err)
}
// Store the ID now
id, err := tpgresource.ReplaceVars(d, config, "{{name}}")
if err != nil {
return fmt.Errorf("Error constructing id: %s", err)
}
d.SetId(id)
// Use the resource in the operation response to populate
// identity fields and d.Id() before read
var opRes map[string]interface{}
err = VertexAIOperationWaitTimeWithResponse(
config, res, &opRes, project, "Creating Tensorboard", userAgent,
d.Timeout(schema.TimeoutCreate))
if err != nil {
// The resource didn't actually create
d.SetId("")
return fmt.Errorf("Error waiting to create Tensorboard: %s", err)
}
if err := d.Set("name", flattenVertexAITensorboardName(opRes["name"], d, config)); err != nil {
return err
}
// This may have caused the ID to update - update it if so.
id, err = tpgresource.ReplaceVars(d, config, "{{name}}")
if err != nil {
return fmt.Errorf("Error constructing id: %s", err)
}
d.SetId(id)
log.Printf("[DEBUG] Finished creating Tensorboard %q: %#v", d.Id(), res)
return resourceVertexAITensorboardRead(d, meta)
}
func resourceVertexAITensorboardRead(d *schema.ResourceData, meta interface{}) error {
config := meta.(*transport_tpg.Config)
userAgent, err := tpgresource.GenerateUserAgentString(d, config.UserAgent)
if err != nil {
return err
}
url, err := tpgresource.ReplaceVars(d, config, "{{VertexAIBasePath}}{{name}}")
if err != nil {
return err
}
billingProject := ""
project, err := tpgresource.GetProject(d, config)
if err != nil {
return fmt.Errorf("Error fetching project for Tensorboard: %s", err)
}
billingProject = project
// err == nil indicates that the billing_project value was found
if bp, err := tpgresource.GetBillingProject(d, config); err == nil {
billingProject = bp
}
res, err := transport_tpg.SendRequest(transport_tpg.SendRequestOptions{
Config: config,
Method: "GET",
Project: billingProject,
RawURL: url,
UserAgent: userAgent,
})
if err != nil {
return transport_tpg.HandleNotFoundError(err, d, fmt.Sprintf("VertexAITensorboard %q", d.Id()))
}
if err := d.Set("project", project); err != nil {
return fmt.Errorf("Error reading Tensorboard: %s", err)
}
if err := d.Set("name", flattenVertexAITensorboardName(res["name"], d, config)); err != nil {
return fmt.Errorf("Error reading Tensorboard: %s", err)
}
if err := d.Set("display_name", flattenVertexAITensorboardDisplayName(res["displayName"], d, config)); err != nil {
return fmt.Errorf("Error reading Tensorboard: %s", err)
}
if err := d.Set("description", flattenVertexAITensorboardDescription(res["description"], d, config)); err != nil {
return fmt.Errorf("Error reading Tensorboard: %s", err)
}
if err := d.Set("encryption_spec", flattenVertexAITensorboardEncryptionSpec(res["encryptionSpec"], d, config)); err != nil {
return fmt.Errorf("Error reading Tensorboard: %s", err)
}
if err := d.Set("blob_storage_path_prefix", flattenVertexAITensorboardBlobStoragePathPrefix(res["blobStoragePathPrefix"], d, config)); err != nil {
return fmt.Errorf("Error reading Tensorboard: %s", err)
}
if err := d.Set("run_count", flattenVertexAITensorboardRunCount(res["runCount"], d, config)); err != nil {
return fmt.Errorf("Error reading Tensorboard: %s", err)
}
if err := d.Set("create_time", flattenVertexAITensorboardCreateTime(res["createTime"], d, config)); err != nil {
return fmt.Errorf("Error reading Tensorboard: %s", err)
}
if err := d.Set("update_time", flattenVertexAITensorboardUpdateTime(res["updateTime"], d, config)); err != nil {
return fmt.Errorf("Error reading Tensorboard: %s", err)
}
if err := d.Set("labels", flattenVertexAITensorboardLabels(res["labels"], d, config)); err != nil {
return fmt.Errorf("Error reading Tensorboard: %s", err)
}
if err := d.Set("terraform_labels", flattenVertexAITensorboardTerraformLabels(res["labels"], d, config)); err != nil {
return fmt.Errorf("Error reading Tensorboard: %s", err)
}
if err := d.Set("effective_labels", flattenVertexAITensorboardEffectiveLabels(res["labels"], d, config)); err != nil {
return fmt.Errorf("Error reading Tensorboard: %s", err)
}
return nil
}
func resourceVertexAITensorboardUpdate(d *schema.ResourceData, meta interface{}) error {
config := meta.(*transport_tpg.Config)
userAgent, err := tpgresource.GenerateUserAgentString(d, config.UserAgent)
if err != nil {
return err
}
billingProject := ""
project, err := tpgresource.GetProject(d, config)
if err != nil {
return fmt.Errorf("Error fetching project for Tensorboard: %s", err)
}
billingProject = project
obj := make(map[string]interface{})
displayNameProp, err := expandVertexAITensorboardDisplayName(d.Get("display_name"), d, config)
if err != nil {
return err
} else if v, ok := d.GetOkExists("display_name"); !tpgresource.IsEmptyValue(reflect.ValueOf(v)) && (ok || !reflect.DeepEqual(v, displayNameProp)) {
obj["displayName"] = displayNameProp
}
descriptionProp, err := expandVertexAITensorboardDescription(d.Get("description"), d, config)
if err != nil {
return err
} else if v, ok := d.GetOkExists("description"); !tpgresource.IsEmptyValue(reflect.ValueOf(v)) && (ok || !reflect.DeepEqual(v, descriptionProp)) {
obj["description"] = descriptionProp
}
labelsProp, err := expandVertexAITensorboardEffectiveLabels(d.Get("effective_labels"), d, config)
if err != nil {
return err
} else if v, ok := d.GetOkExists("effective_labels"); !tpgresource.IsEmptyValue(reflect.ValueOf(v)) && (ok || !reflect.DeepEqual(v, labelsProp)) {
obj["labels"] = labelsProp
}
url, err := tpgresource.ReplaceVars(d, config, "{{VertexAIBasePath}}{{name}}")
if err != nil {
return err
}
log.Printf("[DEBUG] Updating Tensorboard %q: %#v", d.Id(), obj)
updateMask := []string{}
if d.HasChange("display_name") {
updateMask = append(updateMask, "displayName")
}
if d.HasChange("description") {
updateMask = append(updateMask, "description")
}
if d.HasChange("effective_labels") {
updateMask = append(updateMask, "labels")
}
// updateMask is a URL parameter but not present in the schema, so ReplaceVars
// won't set it
url, err = transport_tpg.AddQueryParams(url, map[string]string{"updateMask": strings.Join(updateMask, ",")})
if err != nil {
return err
}
// err == nil indicates that the billing_project value was found
if bp, err := tpgresource.GetBillingProject(d, config); err == nil {
billingProject = bp
}
// if updateMask is empty we are not updating anything so skip the post
if len(updateMask) > 0 {
res, err := transport_tpg.SendRequest(transport_tpg.SendRequestOptions{
Config: config,
Method: "PATCH",
Project: billingProject,
RawURL: url,
UserAgent: userAgent,
Body: obj,
Timeout: d.Timeout(schema.TimeoutUpdate),
})
if err != nil {
return fmt.Errorf("Error updating Tensorboard %q: %s", d.Id(), err)
} else {
log.Printf("[DEBUG] Finished updating Tensorboard %q: %#v", d.Id(), res)
}
err = VertexAIOperationWaitTime(
config, res, project, "Updating Tensorboard", userAgent,
d.Timeout(schema.TimeoutUpdate))
if err != nil {
return err
}
}
return resourceVertexAITensorboardRead(d, meta)
}
func resourceVertexAITensorboardDelete(d *schema.ResourceData, meta interface{}) error {
config := meta.(*transport_tpg.Config)
userAgent, err := tpgresource.GenerateUserAgentString(d, config.UserAgent)
if err != nil {
return err
}
billingProject := ""
project, err := tpgresource.GetProject(d, config)
if err != nil {
return fmt.Errorf("Error fetching project for Tensorboard: %s", err)
}
billingProject = project
url, err := tpgresource.ReplaceVars(d, config, "{{VertexAIBasePath}}{{name}}")
if err != nil {
return err
}
var obj map[string]interface{}
log.Printf("[DEBUG] Deleting Tensorboard %q", d.Id())
// err == nil indicates that the billing_project value was found
if bp, err := tpgresource.GetBillingProject(d, config); err == nil {
billingProject = bp
}
res, err := transport_tpg.SendRequest(transport_tpg.SendRequestOptions{
Config: config,
Method: "DELETE",
Project: billingProject,
RawURL: url,
UserAgent: userAgent,
Body: obj,
Timeout: d.Timeout(schema.TimeoutDelete),
})
if err != nil {
return transport_tpg.HandleNotFoundError(err, d, "Tensorboard")
}
err = VertexAIOperationWaitTime(
config, res, project, "Deleting Tensorboard", userAgent,
d.Timeout(schema.TimeoutDelete))
if err != nil {
return err
}
log.Printf("[DEBUG] Finished deleting Tensorboard %q: %#v", d.Id(), res)
return nil
}
func resourceVertexAITensorboardImport(d *schema.ResourceData, meta interface{}) ([]*schema.ResourceData, error) {
config := meta.(*transport_tpg.Config)
if err := tpgresource.ParseImportId([]string{
"projects/(?P<project>[^/]+)/locations/(?P<region>[^/]+)/tensorboards/(?P<name>[^/]+)",
"(?P<project>[^/]+)/(?P<region>[^/]+)/(?P<name>[^/]+)",
"(?P<region>[^/]+)/(?P<name>[^/]+)",
"(?P<name>[^/]+)",
}, d, config); err != nil {
return nil, err
}
// Replace import id for the resource id
id, err := tpgresource.ReplaceVars(d, config, "projects/{{project}}/locations/{{region}}/tensorboards/{{name}}")
if err != nil {
return nil, fmt.Errorf("Error constructing id: %s", err)
}
d.SetId(id)
if err := d.Set("name", id); err != nil {
return nil, fmt.Errorf("Error setting name for import: %s", err)
}
return []*schema.ResourceData{d}, nil
}
func flattenVertexAITensorboardName(v interface{}, d *schema.ResourceData, config *transport_tpg.Config) interface{} {
return v
}
func flattenVertexAITensorboardDisplayName(v interface{}, d *schema.ResourceData, config *transport_tpg.Config) interface{} {
return v
}
func flattenVertexAITensorboardDescription(v interface{}, d *schema.ResourceData, config *transport_tpg.Config) interface{} {
return v
}
func flattenVertexAITensorboardEncryptionSpec(v interface{}, d *schema.ResourceData, config *transport_tpg.Config) interface{} {
if v == nil {
return nil
}
original := v.(map[string]interface{})
if len(original) == 0 {
return nil
}
transformed := make(map[string]interface{})
transformed["kms_key_name"] =
flattenVertexAITensorboardEncryptionSpecKmsKeyName(original["kmsKeyName"], d, config)
return []interface{}{transformed}
}
func flattenVertexAITensorboardEncryptionSpecKmsKeyName(v interface{}, d *schema.ResourceData, config *transport_tpg.Config) interface{} {
return v
}
func flattenVertexAITensorboardBlobStoragePathPrefix(v interface{}, d *schema.ResourceData, config *transport_tpg.Config) interface{} {
return v
}
func flattenVertexAITensorboardRunCount(v interface{}, d *schema.ResourceData, config *transport_tpg.Config) interface{} {
return v
}
func flattenVertexAITensorboardCreateTime(v interface{}, d *schema.ResourceData, config *transport_tpg.Config) interface{} {
return v
}
func flattenVertexAITensorboardUpdateTime(v interface{}, d *schema.ResourceData, config *transport_tpg.Config) interface{} {
return v
}
func flattenVertexAITensorboardLabels(v interface{}, d *schema.ResourceData, config *transport_tpg.Config) interface{} {
if v == nil {
return v
}
transformed := make(map[string]interface{})
if l, ok := d.GetOkExists("labels"); ok {
for k := range l.(map[string]interface{}) {
transformed[k] = v.(map[string]interface{})[k]
}
}
return transformed
}
func flattenVertexAITensorboardTerraformLabels(v interface{}, d *schema.ResourceData, config *transport_tpg.Config) interface{} {
if v == nil {
return v
}
transformed := make(map[string]interface{})
if l, ok := d.GetOkExists("terraform_labels"); ok {
for k := range l.(map[string]interface{}) {
transformed[k] = v.(map[string]interface{})[k]
}
}
return transformed
}
func flattenVertexAITensorboardEffectiveLabels(v interface{}, d *schema.ResourceData, config *transport_tpg.Config) interface{} {
return v
}
func expandVertexAITensorboardDisplayName(v interface{}, d tpgresource.TerraformResourceData, config *transport_tpg.Config) (interface{}, error) {
return v, nil
}
func expandVertexAITensorboardDescription(v interface{}, d tpgresource.TerraformResourceData, config *transport_tpg.Config) (interface{}, error) {
return v, nil
}
func expandVertexAITensorboardEncryptionSpec(v interface{}, d tpgresource.TerraformResourceData, config *transport_tpg.Config) (interface{}, error) {
l := v.([]interface{})
if len(l) == 0 || l[0] == nil {
return nil, nil
}
raw := l[0]
original := raw.(map[string]interface{})
transformed := make(map[string]interface{})
transformedKmsKeyName, err := expandVertexAITensorboardEncryptionSpecKmsKeyName(original["kms_key_name"], d, config)
if err != nil {
return nil, err
} else if val := reflect.ValueOf(transformedKmsKeyName); val.IsValid() && !tpgresource.IsEmptyValue(val) {
transformed["kmsKeyName"] = transformedKmsKeyName
}
return transformed, nil
}
func expandVertexAITensorboardEncryptionSpecKmsKeyName(v interface{}, d tpgresource.TerraformResourceData, config *transport_tpg.Config) (interface{}, error) {
return v, nil
}
func expandVertexAITensorboardEffectiveLabels(v interface{}, d tpgresource.TerraformResourceData, config *transport_tpg.Config) (map[string]string, error) {
if v == nil {
return map[string]string{}, nil
}
m := make(map[string]string)
for k, val := range v.(map[string]interface{}) {
m[k] = val.(string)
}
return m, nil
}