| from __future__ import absolute_import, division |
| |
| from copy import copy |
| from functools import partial |
| |
| from .auto import tqdm as tqdm_auto |
| |
| try: |
| import keras |
| except (ImportError, AttributeError) as e: |
| try: |
| from tensorflow import keras |
| except ImportError: |
| raise e |
| __author__ = {"github.com/": ["casperdcl"]} |
| __all__ = ['TqdmCallback'] |
| |
| |
| class TqdmCallback(keras.callbacks.Callback): |
| """Keras callback for epoch and batch progress.""" |
| @staticmethod |
| def bar2callback(bar, pop=None, delta=(lambda logs: 1)): |
| def callback(_, logs=None): |
| n = delta(logs) |
| if logs: |
| if pop: |
| logs = copy(logs) |
| [logs.pop(i, 0) for i in pop] |
| bar.set_postfix(logs, refresh=False) |
| bar.update(n) |
| |
| return callback |
| |
| def __init__(self, epochs=None, data_size=None, batch_size=None, verbose=1, |
| tqdm_class=tqdm_auto, **tqdm_kwargs): |
| """ |
| Parameters |
| ---------- |
| epochs : int, optional |
| data_size : int, optional |
| Number of training pairs. |
| batch_size : int, optional |
| Number of training pairs per batch. |
| verbose : int |
| 0: epoch, 1: batch (transient), 2: batch. [default: 1]. |
| Will be set to `0` unless both `data_size` and `batch_size` |
| are given. |
| tqdm_class : optional |
| `tqdm` class to use for bars [default: `tqdm.auto.tqdm`]. |
| tqdm_kwargs : optional |
| Any other arguments used for all bars. |
| """ |
| if tqdm_kwargs: |
| tqdm_class = partial(tqdm_class, **tqdm_kwargs) |
| self.tqdm_class = tqdm_class |
| self.epoch_bar = tqdm_class(total=epochs, unit='epoch') |
| self.on_epoch_end = self.bar2callback(self.epoch_bar) |
| if data_size and batch_size: |
| self.batches = batches = (data_size + batch_size - 1) // batch_size |
| else: |
| self.batches = batches = None |
| self.verbose = verbose |
| if verbose == 1: |
| self.batch_bar = tqdm_class(total=batches, unit='batch', leave=False) |
| self.on_batch_end = self.bar2callback( |
| self.batch_bar, pop=['batch', 'size'], |
| delta=lambda logs: logs.get('size', 1)) |
| |
| def on_train_begin(self, *_, **__): |
| params = self.params.get |
| auto_total = params('epochs', params('nb_epoch', None)) |
| if auto_total is not None and auto_total != self.epoch_bar.total: |
| self.epoch_bar.reset(total=auto_total) |
| |
| def on_epoch_begin(self, epoch, *_, **__): |
| if self.epoch_bar.n < epoch: |
| ebar = self.epoch_bar |
| ebar.n = ebar.last_print_n = ebar.initial = epoch |
| if self.verbose: |
| params = self.params.get |
| total = params('samples', params( |
| 'nb_sample', params('steps', None))) or self.batches |
| if self.verbose == 2: |
| if hasattr(self, 'batch_bar'): |
| self.batch_bar.close() |
| self.batch_bar = self.tqdm_class( |
| total=total, unit='batch', leave=True, |
| unit_scale=1 / (params('batch_size', 1) or 1)) |
| self.on_batch_end = self.bar2callback( |
| self.batch_bar, pop=['batch', 'size'], |
| delta=lambda logs: logs.get('size', 1)) |
| elif self.verbose == 1: |
| self.batch_bar.unit_scale = 1 / (params('batch_size', 1) or 1) |
| self.batch_bar.reset(total=total) |
| else: |
| raise KeyError('Unknown verbosity') |
| |
| def on_train_end(self, *_, **__): |
| if self.verbose: |
| self.batch_bar.close() |
| self.epoch_bar.close() |
| |
| def display(self): |
| """Displays in the current cell in Notebooks.""" |
| container = getattr(self.epoch_bar, 'container', None) |
| if container is None: |
| return |
| from .notebook import display |
| display(container) |
| batch_bar = getattr(self, 'batch_bar', None) |
| if batch_bar is not None: |
| display(batch_bar.container) |
| |
| @staticmethod |
| def _implements_train_batch_hooks(): |
| return True |
| |
| @staticmethod |
| def _implements_test_batch_hooks(): |
| return True |
| |
| @staticmethod |
| def _implements_predict_batch_hooks(): |
| return True |