|  | /************************************************************************** | 
|  | Inter Pro 1000 for ppcboot/das-u-boot | 
|  | Drivers are port from Intel's Linux driver e1000-4.3.15 | 
|  | and from Etherboot pro 1000 driver by mrakes at vivato dot net | 
|  | tested on both gig copper and gig fiber boards | 
|  | ***************************************************************************/ | 
|  | /******************************************************************************* | 
|  |  | 
|  |  | 
|  | Copyright(c) 1999 - 2002 Intel Corporation. All rights reserved. | 
|  |  | 
|  | This program is free software; you can redistribute it and/or modify it | 
|  | under the terms of the GNU General Public License as published by the Free | 
|  | Software Foundation; either version 2 of the License, or (at your option) | 
|  | any later version. | 
|  |  | 
|  | This program is distributed in the hope that it will be useful, but WITHOUT | 
|  | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
|  | FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for | 
|  | more details. | 
|  |  | 
|  | You should have received a copy of the GNU General Public License along with | 
|  | this program; if not, write to the Free Software Foundation, Inc., 59 | 
|  | Temple Place - Suite 330, Boston, MA  02111-1307, USA. | 
|  |  | 
|  | The full GNU General Public License is included in this distribution in the | 
|  | file called LICENSE. | 
|  |  | 
|  | Contact Information: | 
|  | Linux NICS <linux.nics@intel.com> | 
|  | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | 
|  |  | 
|  | *******************************************************************************/ | 
|  | /* | 
|  | *  Copyright (C) Archway Digital Solutions. | 
|  | * | 
|  | *  written by Chrsitopher Li <cli at arcyway dot com> or <chrisl at gnuchina dot org> | 
|  | *  2/9/2002 | 
|  | * | 
|  | *  Copyright (C) Linux Networx. | 
|  | *  Massive upgrade to work with the new intel gigabit NICs. | 
|  | *  <ebiederman at lnxi dot com> | 
|  | */ | 
|  |  | 
|  | #include "e1000.h" | 
|  |  | 
|  | #if (CONFIG_COMMANDS & CFG_CMD_NET) && defined(CONFIG_NET_MULTI) && \ | 
|  | defined(CONFIG_E1000) | 
|  |  | 
|  | #define TOUT_LOOP   100000 | 
|  |  | 
|  | #undef	virt_to_bus | 
|  | #define	virt_to_bus(x)	((unsigned long)x) | 
|  | #define bus_to_phys(devno, a)	pci_mem_to_phys(devno, a) | 
|  | #define mdelay(n)       udelay((n)*1000) | 
|  |  | 
|  | #define E1000_DEFAULT_PBA    0x00000030 | 
|  |  | 
|  | /* NIC specific static variables go here */ | 
|  |  | 
|  | static char tx_pool[128 + 16]; | 
|  | static char rx_pool[128 + 16]; | 
|  | static char packet[2096]; | 
|  |  | 
|  | static struct e1000_tx_desc *tx_base; | 
|  | static struct e1000_rx_desc *rx_base; | 
|  |  | 
|  | static int tx_tail; | 
|  | static int rx_tail, rx_last; | 
|  |  | 
|  | static struct pci_device_id supported[] = { | 
|  | {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82542}, | 
|  | {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_FIBER}, | 
|  | {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82543GC_COPPER}, | 
|  | {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_COPPER}, | 
|  | {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544EI_FIBER}, | 
|  | {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_COPPER}, | 
|  | {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82544GC_LOM}, | 
|  | {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM}, | 
|  | {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_COPPER}, | 
|  | {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_COPPER}, | 
|  | {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82545EM_FIBER}, | 
|  | {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82546EB_FIBER}, | 
|  | {PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_82540EM_LOM}, | 
|  | }; | 
|  |  | 
|  | /* Function forward declarations */ | 
|  | static int e1000_setup_link(struct eth_device *nic); | 
|  | static int e1000_setup_fiber_link(struct eth_device *nic); | 
|  | static int e1000_setup_copper_link(struct eth_device *nic); | 
|  | static int e1000_phy_setup_autoneg(struct e1000_hw *hw); | 
|  | static void e1000_config_collision_dist(struct e1000_hw *hw); | 
|  | static int e1000_config_mac_to_phy(struct e1000_hw *hw); | 
|  | static int e1000_config_fc_after_link_up(struct e1000_hw *hw); | 
|  | static int e1000_check_for_link(struct eth_device *nic); | 
|  | static int e1000_wait_autoneg(struct e1000_hw *hw); | 
|  | static void e1000_get_speed_and_duplex(struct e1000_hw *hw, uint16_t * speed, | 
|  | uint16_t * duplex); | 
|  | static int e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, | 
|  | uint16_t * phy_data); | 
|  | static int e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, | 
|  | uint16_t phy_data); | 
|  | static void e1000_phy_hw_reset(struct e1000_hw *hw); | 
|  | static int e1000_phy_reset(struct e1000_hw *hw); | 
|  | static int e1000_detect_gig_phy(struct e1000_hw *hw); | 
|  |  | 
|  | #define E1000_WRITE_REG(a, reg, value) (writel((value), ((a)->hw_addr + E1000_##reg))) | 
|  | #define E1000_READ_REG(a, reg) (readl((a)->hw_addr + E1000_##reg)) | 
|  | #define E1000_WRITE_REG_ARRAY(a, reg, offset, value) (\ | 
|  | writel((value), ((a)->hw_addr + E1000_##reg + ((offset) << 2)))) | 
|  | #define E1000_READ_REG_ARRAY(a, reg, offset) ( \ | 
|  | readl((a)->hw_addr + E1000_##reg + ((offset) << 2))) | 
|  | #define E1000_WRITE_FLUSH(a) {uint32_t x; x = E1000_READ_REG(a, STATUS);} | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Raises the EEPROM's clock input. | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | * eecd - EECD's current value | 
|  | *****************************************************************************/ | 
|  | static void | 
|  | e1000_raise_ee_clk(struct e1000_hw *hw, uint32_t * eecd) | 
|  | { | 
|  | /* Raise the clock input to the EEPROM (by setting the SK bit), and then | 
|  | * wait 50 microseconds. | 
|  | */ | 
|  | *eecd = *eecd | E1000_EECD_SK; | 
|  | E1000_WRITE_REG(hw, EECD, *eecd); | 
|  | E1000_WRITE_FLUSH(hw); | 
|  | udelay(50); | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Lowers the EEPROM's clock input. | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | * eecd - EECD's current value | 
|  | *****************************************************************************/ | 
|  | static void | 
|  | e1000_lower_ee_clk(struct e1000_hw *hw, uint32_t * eecd) | 
|  | { | 
|  | /* Lower the clock input to the EEPROM (by clearing the SK bit), and then | 
|  | * wait 50 microseconds. | 
|  | */ | 
|  | *eecd = *eecd & ~E1000_EECD_SK; | 
|  | E1000_WRITE_REG(hw, EECD, *eecd); | 
|  | E1000_WRITE_FLUSH(hw); | 
|  | udelay(50); | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Shift data bits out to the EEPROM. | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | * data - data to send to the EEPROM | 
|  | * count - number of bits to shift out | 
|  | *****************************************************************************/ | 
|  | static void | 
|  | e1000_shift_out_ee_bits(struct e1000_hw *hw, uint16_t data, uint16_t count) | 
|  | { | 
|  | uint32_t eecd; | 
|  | uint32_t mask; | 
|  |  | 
|  | /* We need to shift "count" bits out to the EEPROM. So, value in the | 
|  | * "data" parameter will be shifted out to the EEPROM one bit at a time. | 
|  | * In order to do this, "data" must be broken down into bits. | 
|  | */ | 
|  | mask = 0x01 << (count - 1); | 
|  | eecd = E1000_READ_REG(hw, EECD); | 
|  | eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); | 
|  | do { | 
|  | /* A "1" is shifted out to the EEPROM by setting bit "DI" to a "1", | 
|  | * and then raising and then lowering the clock (the SK bit controls | 
|  | * the clock input to the EEPROM).  A "0" is shifted out to the EEPROM | 
|  | * by setting "DI" to "0" and then raising and then lowering the clock. | 
|  | */ | 
|  | eecd &= ~E1000_EECD_DI; | 
|  |  | 
|  | if (data & mask) | 
|  | eecd |= E1000_EECD_DI; | 
|  |  | 
|  | E1000_WRITE_REG(hw, EECD, eecd); | 
|  | E1000_WRITE_FLUSH(hw); | 
|  |  | 
|  | udelay(50); | 
|  |  | 
|  | e1000_raise_ee_clk(hw, &eecd); | 
|  | e1000_lower_ee_clk(hw, &eecd); | 
|  |  | 
|  | mask = mask >> 1; | 
|  |  | 
|  | } while (mask); | 
|  |  | 
|  | /* We leave the "DI" bit set to "0" when we leave this routine. */ | 
|  | eecd &= ~E1000_EECD_DI; | 
|  | E1000_WRITE_REG(hw, EECD, eecd); | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Shift data bits in from the EEPROM | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | *****************************************************************************/ | 
|  | static uint16_t | 
|  | e1000_shift_in_ee_bits(struct e1000_hw *hw) | 
|  | { | 
|  | uint32_t eecd; | 
|  | uint32_t i; | 
|  | uint16_t data; | 
|  |  | 
|  | /* In order to read a register from the EEPROM, we need to shift 16 bits | 
|  | * in from the EEPROM. Bits are "shifted in" by raising the clock input to | 
|  | * the EEPROM (setting the SK bit), and then reading the value of the "DO" | 
|  | * bit.  During this "shifting in" process the "DI" bit should always be | 
|  | * clear.. | 
|  | */ | 
|  |  | 
|  | eecd = E1000_READ_REG(hw, EECD); | 
|  |  | 
|  | eecd &= ~(E1000_EECD_DO | E1000_EECD_DI); | 
|  | data = 0; | 
|  |  | 
|  | for (i = 0; i < 16; i++) { | 
|  | data = data << 1; | 
|  | e1000_raise_ee_clk(hw, &eecd); | 
|  |  | 
|  | eecd = E1000_READ_REG(hw, EECD); | 
|  |  | 
|  | eecd &= ~(E1000_EECD_DI); | 
|  | if (eecd & E1000_EECD_DO) | 
|  | data |= 1; | 
|  |  | 
|  | e1000_lower_ee_clk(hw, &eecd); | 
|  | } | 
|  |  | 
|  | return data; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Prepares EEPROM for access | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | * | 
|  | * Lowers EEPROM clock. Clears input pin. Sets the chip select pin. This | 
|  | * function should be called before issuing a command to the EEPROM. | 
|  | *****************************************************************************/ | 
|  | static void | 
|  | e1000_setup_eeprom(struct e1000_hw *hw) | 
|  | { | 
|  | uint32_t eecd; | 
|  |  | 
|  | eecd = E1000_READ_REG(hw, EECD); | 
|  |  | 
|  | /* Clear SK and DI */ | 
|  | eecd &= ~(E1000_EECD_SK | E1000_EECD_DI); | 
|  | E1000_WRITE_REG(hw, EECD, eecd); | 
|  |  | 
|  | /* Set CS */ | 
|  | eecd |= E1000_EECD_CS; | 
|  | E1000_WRITE_REG(hw, EECD, eecd); | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Returns EEPROM to a "standby" state | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | *****************************************************************************/ | 
|  | static void | 
|  | e1000_standby_eeprom(struct e1000_hw *hw) | 
|  | { | 
|  | uint32_t eecd; | 
|  |  | 
|  | eecd = E1000_READ_REG(hw, EECD); | 
|  |  | 
|  | /* Deselct EEPROM */ | 
|  | eecd &= ~(E1000_EECD_CS | E1000_EECD_SK); | 
|  | E1000_WRITE_REG(hw, EECD, eecd); | 
|  | E1000_WRITE_FLUSH(hw); | 
|  | udelay(50); | 
|  |  | 
|  | /* Clock high */ | 
|  | eecd |= E1000_EECD_SK; | 
|  | E1000_WRITE_REG(hw, EECD, eecd); | 
|  | E1000_WRITE_FLUSH(hw); | 
|  | udelay(50); | 
|  |  | 
|  | /* Select EEPROM */ | 
|  | eecd |= E1000_EECD_CS; | 
|  | E1000_WRITE_REG(hw, EECD, eecd); | 
|  | E1000_WRITE_FLUSH(hw); | 
|  | udelay(50); | 
|  |  | 
|  | /* Clock low */ | 
|  | eecd &= ~E1000_EECD_SK; | 
|  | E1000_WRITE_REG(hw, EECD, eecd); | 
|  | E1000_WRITE_FLUSH(hw); | 
|  | udelay(50); | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Reads a 16 bit word from the EEPROM. | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | * offset - offset of  word in the EEPROM to read | 
|  | * data - word read from the EEPROM | 
|  | *****************************************************************************/ | 
|  | static int | 
|  | e1000_read_eeprom(struct e1000_hw *hw, uint16_t offset, uint16_t * data) | 
|  | { | 
|  | uint32_t eecd; | 
|  | uint32_t i = 0; | 
|  | int large_eeprom = FALSE; | 
|  |  | 
|  | /* Request EEPROM Access */ | 
|  | if (hw->mac_type > e1000_82544) { | 
|  | eecd = E1000_READ_REG(hw, EECD); | 
|  | if (eecd & E1000_EECD_SIZE) | 
|  | large_eeprom = TRUE; | 
|  | eecd |= E1000_EECD_REQ; | 
|  | E1000_WRITE_REG(hw, EECD, eecd); | 
|  | eecd = E1000_READ_REG(hw, EECD); | 
|  | while ((!(eecd & E1000_EECD_GNT)) && (i < 100)) { | 
|  | i++; | 
|  | udelay(10); | 
|  | eecd = E1000_READ_REG(hw, EECD); | 
|  | } | 
|  | if (!(eecd & E1000_EECD_GNT)) { | 
|  | eecd &= ~E1000_EECD_REQ; | 
|  | E1000_WRITE_REG(hw, EECD, eecd); | 
|  | DEBUGOUT("Could not acquire EEPROM grant\n"); | 
|  | return -E1000_ERR_EEPROM; | 
|  | } | 
|  | } | 
|  |  | 
|  | /*  Prepare the EEPROM for reading  */ | 
|  | e1000_setup_eeprom(hw); | 
|  |  | 
|  | /*  Send the READ command (opcode + addr)  */ | 
|  | e1000_shift_out_ee_bits(hw, EEPROM_READ_OPCODE, 3); | 
|  | e1000_shift_out_ee_bits(hw, offset, (large_eeprom) ? 8 : 6); | 
|  |  | 
|  | /* Read the data */ | 
|  | *data = e1000_shift_in_ee_bits(hw); | 
|  |  | 
|  | /* End this read operation */ | 
|  | e1000_standby_eeprom(hw); | 
|  |  | 
|  | /* Stop requesting EEPROM access */ | 
|  | if (hw->mac_type > e1000_82544) { | 
|  | eecd = E1000_READ_REG(hw, EECD); | 
|  | eecd &= ~E1000_EECD_REQ; | 
|  | E1000_WRITE_REG(hw, EECD, eecd); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #if 0 | 
|  | static void | 
|  | e1000_eeprom_cleanup(struct e1000_hw *hw) | 
|  | { | 
|  | uint32_t eecd; | 
|  |  | 
|  | eecd = E1000_READ_REG(hw, EECD); | 
|  | eecd &= ~(E1000_EECD_CS | E1000_EECD_DI); | 
|  | E1000_WRITE_REG(hw, EECD, eecd); | 
|  | e1000_raise_ee_clk(hw, &eecd); | 
|  | e1000_lower_ee_clk(hw, &eecd); | 
|  | } | 
|  |  | 
|  | static uint16_t | 
|  | e1000_wait_eeprom_done(struct e1000_hw *hw) | 
|  | { | 
|  | uint32_t eecd; | 
|  | uint32_t i; | 
|  |  | 
|  | e1000_standby_eeprom(hw); | 
|  | for (i = 0; i < 200; i++) { | 
|  | eecd = E1000_READ_REG(hw, EECD); | 
|  | if (eecd & E1000_EECD_DO) | 
|  | return (TRUE); | 
|  | udelay(5); | 
|  | } | 
|  | return (FALSE); | 
|  | } | 
|  |  | 
|  | static int | 
|  | e1000_write_eeprom(struct e1000_hw *hw, uint16_t Reg, uint16_t Data) | 
|  | { | 
|  | uint32_t eecd; | 
|  | int large_eeprom = FALSE; | 
|  | int i = 0; | 
|  |  | 
|  | /* Request EEPROM Access */ | 
|  | if (hw->mac_type > e1000_82544) { | 
|  | eecd = E1000_READ_REG(hw, EECD); | 
|  | if (eecd & E1000_EECD_SIZE) | 
|  | large_eeprom = TRUE; | 
|  | eecd |= E1000_EECD_REQ; | 
|  | E1000_WRITE_REG(hw, EECD, eecd); | 
|  | eecd = E1000_READ_REG(hw, EECD); | 
|  | while ((!(eecd & E1000_EECD_GNT)) && (i < 100)) { | 
|  | i++; | 
|  | udelay(5); | 
|  | eecd = E1000_READ_REG(hw, EECD); | 
|  | } | 
|  | if (!(eecd & E1000_EECD_GNT)) { | 
|  | eecd &= ~E1000_EECD_REQ; | 
|  | E1000_WRITE_REG(hw, EECD, eecd); | 
|  | DEBUGOUT("Could not acquire EEPROM grant\n"); | 
|  | return FALSE; | 
|  | } | 
|  | } | 
|  | e1000_setup_eeprom(hw); | 
|  | e1000_shift_out_ee_bits(hw, EEPROM_EWEN_OPCODE, 5); | 
|  | e1000_shift_out_ee_bits(hw, Reg, (large_eeprom) ? 6 : 4); | 
|  | e1000_standby_eeprom(hw); | 
|  | e1000_shift_out_ee_bits(hw, EEPROM_WRITE_OPCODE, 3); | 
|  | e1000_shift_out_ee_bits(hw, Reg, (large_eeprom) ? 8 : 6); | 
|  | e1000_shift_out_ee_bits(hw, Data, 16); | 
|  | if (!e1000_wait_eeprom_done(hw)) { | 
|  | return FALSE; | 
|  | } | 
|  | e1000_shift_out_ee_bits(hw, EEPROM_EWDS_OPCODE, 5); | 
|  | e1000_shift_out_ee_bits(hw, Reg, (large_eeprom) ? 6 : 4); | 
|  | e1000_eeprom_cleanup(hw); | 
|  |  | 
|  | /* Stop requesting EEPROM access */ | 
|  | if (hw->mac_type > e1000_82544) { | 
|  | eecd = E1000_READ_REG(hw, EECD); | 
|  | eecd &= ~E1000_EECD_REQ; | 
|  | E1000_WRITE_REG(hw, EECD, eecd); | 
|  | } | 
|  | i = 0; | 
|  | eecd = E1000_READ_REG(hw, EECD); | 
|  | while (((eecd & E1000_EECD_GNT)) && (i < 500)) { | 
|  | i++; | 
|  | udelay(10); | 
|  | eecd = E1000_READ_REG(hw, EECD); | 
|  | } | 
|  | if ((eecd & E1000_EECD_GNT)) { | 
|  | DEBUGOUT("Could not release EEPROM grant\n"); | 
|  | } | 
|  | return TRUE; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Verifies that the EEPROM has a valid checksum | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | * | 
|  | * Reads the first 64 16 bit words of the EEPROM and sums the values read. | 
|  | * If the the sum of the 64 16 bit words is 0xBABA, the EEPROM's checksum is | 
|  | * valid. | 
|  | *****************************************************************************/ | 
|  | static int | 
|  | e1000_validate_eeprom_checksum(struct eth_device *nic) | 
|  | { | 
|  | struct e1000_hw *hw = nic->priv; | 
|  | uint16_t checksum = 0; | 
|  | uint16_t i, eeprom_data; | 
|  |  | 
|  | DEBUGFUNC(); | 
|  |  | 
|  | for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) { | 
|  | if (e1000_read_eeprom(hw, i, &eeprom_data) < 0) { | 
|  | DEBUGOUT("EEPROM Read Error\n"); | 
|  | return -E1000_ERR_EEPROM; | 
|  | } | 
|  | checksum += eeprom_data; | 
|  | } | 
|  |  | 
|  | if (checksum == (uint16_t) EEPROM_SUM) { | 
|  | return 0; | 
|  | } else { | 
|  | DEBUGOUT("EEPROM Checksum Invalid\n"); | 
|  | return -E1000_ERR_EEPROM; | 
|  | } | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Reads the adapter's MAC address from the EEPROM and inverts the LSB for the | 
|  | * second function of dual function devices | 
|  | * | 
|  | * nic - Struct containing variables accessed by shared code | 
|  | *****************************************************************************/ | 
|  | static int | 
|  | e1000_read_mac_addr(struct eth_device *nic) | 
|  | { | 
|  | struct e1000_hw *hw = nic->priv; | 
|  | uint16_t offset; | 
|  | uint16_t eeprom_data; | 
|  | int i; | 
|  |  | 
|  | DEBUGFUNC(); | 
|  |  | 
|  | for (i = 0; i < NODE_ADDRESS_SIZE; i += 2) { | 
|  | offset = i >> 1; | 
|  | if (e1000_read_eeprom(hw, offset, &eeprom_data) < 0) { | 
|  | DEBUGOUT("EEPROM Read Error\n"); | 
|  | return -E1000_ERR_EEPROM; | 
|  | } | 
|  | nic->enetaddr[i] = eeprom_data & 0xff; | 
|  | nic->enetaddr[i + 1] = (eeprom_data >> 8) & 0xff; | 
|  | } | 
|  | if ((hw->mac_type == e1000_82546) && | 
|  | (E1000_READ_REG(hw, STATUS) & E1000_STATUS_FUNC_1)) { | 
|  | /* Invert the last bit if this is the second device */ | 
|  | nic->enetaddr[5] += 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Initializes receive address filters. | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | * | 
|  | * Places the MAC address in receive address register 0 and clears the rest | 
|  | * of the receive addresss registers. Clears the multicast table. Assumes | 
|  | * the receiver is in reset when the routine is called. | 
|  | *****************************************************************************/ | 
|  | static void | 
|  | e1000_init_rx_addrs(struct eth_device *nic) | 
|  | { | 
|  | struct e1000_hw *hw = nic->priv; | 
|  | uint32_t i; | 
|  | uint32_t addr_low; | 
|  | uint32_t addr_high; | 
|  |  | 
|  | DEBUGFUNC(); | 
|  |  | 
|  | /* Setup the receive address. */ | 
|  | DEBUGOUT("Programming MAC Address into RAR[0]\n"); | 
|  | addr_low = (nic->enetaddr[0] | | 
|  | (nic->enetaddr[1] << 8) | | 
|  | (nic->enetaddr[2] << 16) | (nic->enetaddr[3] << 24)); | 
|  |  | 
|  | addr_high = (nic->enetaddr[4] | (nic->enetaddr[5] << 8) | E1000_RAH_AV); | 
|  |  | 
|  | E1000_WRITE_REG_ARRAY(hw, RA, 0, addr_low); | 
|  | E1000_WRITE_REG_ARRAY(hw, RA, 1, addr_high); | 
|  |  | 
|  | /* Zero out the other 15 receive addresses. */ | 
|  | DEBUGOUT("Clearing RAR[1-15]\n"); | 
|  | for (i = 1; i < E1000_RAR_ENTRIES; i++) { | 
|  | E1000_WRITE_REG_ARRAY(hw, RA, (i << 1), 0); | 
|  | E1000_WRITE_REG_ARRAY(hw, RA, ((i << 1) + 1), 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Clears the VLAN filer table | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | *****************************************************************************/ | 
|  | static void | 
|  | e1000_clear_vfta(struct e1000_hw *hw) | 
|  | { | 
|  | uint32_t offset; | 
|  |  | 
|  | for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) | 
|  | E1000_WRITE_REG_ARRAY(hw, VFTA, offset, 0); | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Set the mac type member in the hw struct. | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | *****************************************************************************/ | 
|  | static int | 
|  | e1000_set_mac_type(struct e1000_hw *hw) | 
|  | { | 
|  | DEBUGFUNC(); | 
|  |  | 
|  | switch (hw->device_id) { | 
|  | case E1000_DEV_ID_82542: | 
|  | switch (hw->revision_id) { | 
|  | case E1000_82542_2_0_REV_ID: | 
|  | hw->mac_type = e1000_82542_rev2_0; | 
|  | break; | 
|  | case E1000_82542_2_1_REV_ID: | 
|  | hw->mac_type = e1000_82542_rev2_1; | 
|  | break; | 
|  | default: | 
|  | /* Invalid 82542 revision ID */ | 
|  | return -E1000_ERR_MAC_TYPE; | 
|  | } | 
|  | break; | 
|  | case E1000_DEV_ID_82543GC_FIBER: | 
|  | case E1000_DEV_ID_82543GC_COPPER: | 
|  | hw->mac_type = e1000_82543; | 
|  | break; | 
|  | case E1000_DEV_ID_82544EI_COPPER: | 
|  | case E1000_DEV_ID_82544EI_FIBER: | 
|  | case E1000_DEV_ID_82544GC_COPPER: | 
|  | case E1000_DEV_ID_82544GC_LOM: | 
|  | hw->mac_type = e1000_82544; | 
|  | break; | 
|  | case E1000_DEV_ID_82540EM: | 
|  | case E1000_DEV_ID_82540EM_LOM: | 
|  | hw->mac_type = e1000_82540; | 
|  | break; | 
|  | case E1000_DEV_ID_82545EM_COPPER: | 
|  | case E1000_DEV_ID_82545EM_FIBER: | 
|  | hw->mac_type = e1000_82545; | 
|  | break; | 
|  | case E1000_DEV_ID_82546EB_COPPER: | 
|  | case E1000_DEV_ID_82546EB_FIBER: | 
|  | hw->mac_type = e1000_82546; | 
|  | break; | 
|  | default: | 
|  | /* Should never have loaded on this device */ | 
|  | return -E1000_ERR_MAC_TYPE; | 
|  | } | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Reset the transmit and receive units; mask and clear all interrupts. | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | *****************************************************************************/ | 
|  | void | 
|  | e1000_reset_hw(struct e1000_hw *hw) | 
|  | { | 
|  | uint32_t ctrl; | 
|  | uint32_t ctrl_ext; | 
|  | uint32_t icr; | 
|  | uint32_t manc; | 
|  |  | 
|  | DEBUGFUNC(); | 
|  |  | 
|  | /* For 82542 (rev 2.0), disable MWI before issuing a device reset */ | 
|  | if (hw->mac_type == e1000_82542_rev2_0) { | 
|  | DEBUGOUT("Disabling MWI on 82542 rev 2.0\n"); | 
|  | pci_write_config_word(hw->pdev, PCI_COMMAND, | 
|  | hw-> | 
|  | pci_cmd_word & ~PCI_COMMAND_INVALIDATE); | 
|  | } | 
|  |  | 
|  | /* Clear interrupt mask to stop board from generating interrupts */ | 
|  | DEBUGOUT("Masking off all interrupts\n"); | 
|  | E1000_WRITE_REG(hw, IMC, 0xffffffff); | 
|  |  | 
|  | /* Disable the Transmit and Receive units.  Then delay to allow | 
|  | * any pending transactions to complete before we hit the MAC with | 
|  | * the global reset. | 
|  | */ | 
|  | E1000_WRITE_REG(hw, RCTL, 0); | 
|  | E1000_WRITE_REG(hw, TCTL, E1000_TCTL_PSP); | 
|  | E1000_WRITE_FLUSH(hw); | 
|  |  | 
|  | /* The tbi_compatibility_on Flag must be cleared when Rctl is cleared. */ | 
|  | hw->tbi_compatibility_on = FALSE; | 
|  |  | 
|  | /* Delay to allow any outstanding PCI transactions to complete before | 
|  | * resetting the device | 
|  | */ | 
|  | mdelay(10); | 
|  |  | 
|  | /* Issue a global reset to the MAC.  This will reset the chip's | 
|  | * transmit, receive, DMA, and link units.  It will not effect | 
|  | * the current PCI configuration.  The global reset bit is self- | 
|  | * clearing, and should clear within a microsecond. | 
|  | */ | 
|  | DEBUGOUT("Issuing a global reset to MAC\n"); | 
|  | ctrl = E1000_READ_REG(hw, CTRL); | 
|  |  | 
|  | #if 0 | 
|  | if (hw->mac_type > e1000_82543) | 
|  | E1000_WRITE_REG_IO(hw, CTRL, (ctrl | E1000_CTRL_RST)); | 
|  | else | 
|  | #endif | 
|  | E1000_WRITE_REG(hw, CTRL, (ctrl | E1000_CTRL_RST)); | 
|  |  | 
|  | /* Force a reload from the EEPROM if necessary */ | 
|  | if (hw->mac_type < e1000_82540) { | 
|  | /* Wait for reset to complete */ | 
|  | udelay(10); | 
|  | ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); | 
|  | ctrl_ext |= E1000_CTRL_EXT_EE_RST; | 
|  | E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); | 
|  | E1000_WRITE_FLUSH(hw); | 
|  | /* Wait for EEPROM reload */ | 
|  | mdelay(2); | 
|  | } else { | 
|  | /* Wait for EEPROM reload (it happens automatically) */ | 
|  | mdelay(4); | 
|  | /* Dissable HW ARPs on ASF enabled adapters */ | 
|  | manc = E1000_READ_REG(hw, MANC); | 
|  | manc &= ~(E1000_MANC_ARP_EN); | 
|  | E1000_WRITE_REG(hw, MANC, manc); | 
|  | } | 
|  |  | 
|  | /* Clear interrupt mask to stop board from generating interrupts */ | 
|  | DEBUGOUT("Masking off all interrupts\n"); | 
|  | E1000_WRITE_REG(hw, IMC, 0xffffffff); | 
|  |  | 
|  | /* Clear any pending interrupt events. */ | 
|  | icr = E1000_READ_REG(hw, ICR); | 
|  |  | 
|  | /* If MWI was previously enabled, reenable it. */ | 
|  | if (hw->mac_type == e1000_82542_rev2_0) { | 
|  | pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word); | 
|  | } | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Performs basic configuration of the adapter. | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | * | 
|  | * Assumes that the controller has previously been reset and is in a | 
|  | * post-reset uninitialized state. Initializes the receive address registers, | 
|  | * multicast table, and VLAN filter table. Calls routines to setup link | 
|  | * configuration and flow control settings. Clears all on-chip counters. Leaves | 
|  | * the transmit and receive units disabled and uninitialized. | 
|  | *****************************************************************************/ | 
|  | static int | 
|  | e1000_init_hw(struct eth_device *nic) | 
|  | { | 
|  | struct e1000_hw *hw = nic->priv; | 
|  | uint32_t ctrl, status; | 
|  | uint32_t i; | 
|  | int32_t ret_val; | 
|  | uint16_t pcix_cmd_word; | 
|  | uint16_t pcix_stat_hi_word; | 
|  | uint16_t cmd_mmrbc; | 
|  | uint16_t stat_mmrbc; | 
|  | e1000_bus_type bus_type = e1000_bus_type_unknown; | 
|  |  | 
|  | DEBUGFUNC(); | 
|  | #if 0 | 
|  | /* Initialize Identification LED */ | 
|  | ret_val = e1000_id_led_init(hw); | 
|  | if (ret_val < 0) { | 
|  | DEBUGOUT("Error Initializing Identification LED\n"); | 
|  | return ret_val; | 
|  | } | 
|  | #endif | 
|  | /* Set the Media Type and exit with error if it is not valid. */ | 
|  | if (hw->mac_type != e1000_82543) { | 
|  | /* tbi_compatibility is only valid on 82543 */ | 
|  | hw->tbi_compatibility_en = FALSE; | 
|  | } | 
|  |  | 
|  | if (hw->mac_type >= e1000_82543) { | 
|  | status = E1000_READ_REG(hw, STATUS); | 
|  | if (status & E1000_STATUS_TBIMODE) { | 
|  | hw->media_type = e1000_media_type_fiber; | 
|  | /* tbi_compatibility not valid on fiber */ | 
|  | hw->tbi_compatibility_en = FALSE; | 
|  | } else { | 
|  | hw->media_type = e1000_media_type_copper; | 
|  | } | 
|  | } else { | 
|  | /* This is an 82542 (fiber only) */ | 
|  | hw->media_type = e1000_media_type_fiber; | 
|  | } | 
|  |  | 
|  | /* Disabling VLAN filtering. */ | 
|  | DEBUGOUT("Initializing the IEEE VLAN\n"); | 
|  | E1000_WRITE_REG(hw, VET, 0); | 
|  |  | 
|  | e1000_clear_vfta(hw); | 
|  |  | 
|  | /* For 82542 (rev 2.0), disable MWI and put the receiver into reset */ | 
|  | if (hw->mac_type == e1000_82542_rev2_0) { | 
|  | DEBUGOUT("Disabling MWI on 82542 rev 2.0\n"); | 
|  | pci_write_config_word(hw->pdev, PCI_COMMAND, | 
|  | hw-> | 
|  | pci_cmd_word & ~PCI_COMMAND_INVALIDATE); | 
|  | E1000_WRITE_REG(hw, RCTL, E1000_RCTL_RST); | 
|  | E1000_WRITE_FLUSH(hw); | 
|  | mdelay(5); | 
|  | } | 
|  |  | 
|  | /* Setup the receive address. This involves initializing all of the Receive | 
|  | * Address Registers (RARs 0 - 15). | 
|  | */ | 
|  | e1000_init_rx_addrs(nic); | 
|  |  | 
|  | /* For 82542 (rev 2.0), take the receiver out of reset and enable MWI */ | 
|  | if (hw->mac_type == e1000_82542_rev2_0) { | 
|  | E1000_WRITE_REG(hw, RCTL, 0); | 
|  | E1000_WRITE_FLUSH(hw); | 
|  | mdelay(1); | 
|  | pci_write_config_word(hw->pdev, PCI_COMMAND, hw->pci_cmd_word); | 
|  | } | 
|  |  | 
|  | /* Zero out the Multicast HASH table */ | 
|  | DEBUGOUT("Zeroing the MTA\n"); | 
|  | for (i = 0; i < E1000_MC_TBL_SIZE; i++) | 
|  | E1000_WRITE_REG_ARRAY(hw, MTA, i, 0); | 
|  |  | 
|  | #if 0 | 
|  | /* Set the PCI priority bit correctly in the CTRL register.  This | 
|  | * determines if the adapter gives priority to receives, or if it | 
|  | * gives equal priority to transmits and receives. | 
|  | */ | 
|  | if (hw->dma_fairness) { | 
|  | ctrl = E1000_READ_REG(hw, CTRL); | 
|  | E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PRIOR); | 
|  | } | 
|  | #endif | 
|  | if (hw->mac_type >= e1000_82543) { | 
|  | status = E1000_READ_REG(hw, STATUS); | 
|  | bus_type = (status & E1000_STATUS_PCIX_MODE) ? | 
|  | e1000_bus_type_pcix : e1000_bus_type_pci; | 
|  | } | 
|  | /* Workaround for PCI-X problem when BIOS sets MMRBC incorrectly. */ | 
|  | if (bus_type == e1000_bus_type_pcix) { | 
|  | pci_read_config_word(hw->pdev, PCIX_COMMAND_REGISTER, | 
|  | &pcix_cmd_word); | 
|  | pci_read_config_word(hw->pdev, PCIX_STATUS_REGISTER_HI, | 
|  | &pcix_stat_hi_word); | 
|  | cmd_mmrbc = | 
|  | (pcix_cmd_word & PCIX_COMMAND_MMRBC_MASK) >> | 
|  | PCIX_COMMAND_MMRBC_SHIFT; | 
|  | stat_mmrbc = | 
|  | (pcix_stat_hi_word & PCIX_STATUS_HI_MMRBC_MASK) >> | 
|  | PCIX_STATUS_HI_MMRBC_SHIFT; | 
|  | if (stat_mmrbc == PCIX_STATUS_HI_MMRBC_4K) | 
|  | stat_mmrbc = PCIX_STATUS_HI_MMRBC_2K; | 
|  | if (cmd_mmrbc > stat_mmrbc) { | 
|  | pcix_cmd_word &= ~PCIX_COMMAND_MMRBC_MASK; | 
|  | pcix_cmd_word |= stat_mmrbc << PCIX_COMMAND_MMRBC_SHIFT; | 
|  | pci_write_config_word(hw->pdev, PCIX_COMMAND_REGISTER, | 
|  | pcix_cmd_word); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Call a subroutine to configure the link and setup flow control. */ | 
|  | ret_val = e1000_setup_link(nic); | 
|  |  | 
|  | /* Set the transmit descriptor write-back policy */ | 
|  | if (hw->mac_type > e1000_82544) { | 
|  | ctrl = E1000_READ_REG(hw, TXDCTL); | 
|  | ctrl = | 
|  | (ctrl & ~E1000_TXDCTL_WTHRESH) | | 
|  | E1000_TXDCTL_FULL_TX_DESC_WB; | 
|  | E1000_WRITE_REG(hw, TXDCTL, ctrl); | 
|  | } | 
|  | #if 0 | 
|  | /* Clear all of the statistics registers (clear on read).  It is | 
|  | * important that we do this after we have tried to establish link | 
|  | * because the symbol error count will increment wildly if there | 
|  | * is no link. | 
|  | */ | 
|  | e1000_clear_hw_cntrs(hw); | 
|  | #endif | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Configures flow control and link settings. | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | * | 
|  | * Determines which flow control settings to use. Calls the apropriate media- | 
|  | * specific link configuration function. Configures the flow control settings. | 
|  | * Assuming the adapter has a valid link partner, a valid link should be | 
|  | * established. Assumes the hardware has previously been reset and the | 
|  | * transmitter and receiver are not enabled. | 
|  | *****************************************************************************/ | 
|  | static int | 
|  | e1000_setup_link(struct eth_device *nic) | 
|  | { | 
|  | struct e1000_hw *hw = nic->priv; | 
|  | uint32_t ctrl_ext; | 
|  | int32_t ret_val; | 
|  | uint16_t eeprom_data; | 
|  |  | 
|  | DEBUGFUNC(); | 
|  |  | 
|  | /* Read and store word 0x0F of the EEPROM. This word contains bits | 
|  | * that determine the hardware's default PAUSE (flow control) mode, | 
|  | * a bit that determines whether the HW defaults to enabling or | 
|  | * disabling auto-negotiation, and the direction of the | 
|  | * SW defined pins. If there is no SW over-ride of the flow | 
|  | * control setting, then the variable hw->fc will | 
|  | * be initialized based on a value in the EEPROM. | 
|  | */ | 
|  | if (e1000_read_eeprom(hw, EEPROM_INIT_CONTROL2_REG, &eeprom_data) < 0) { | 
|  | DEBUGOUT("EEPROM Read Error\n"); | 
|  | return -E1000_ERR_EEPROM; | 
|  | } | 
|  |  | 
|  | if (hw->fc == e1000_fc_default) { | 
|  | if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == 0) | 
|  | hw->fc = e1000_fc_none; | 
|  | else if ((eeprom_data & EEPROM_WORD0F_PAUSE_MASK) == | 
|  | EEPROM_WORD0F_ASM_DIR) | 
|  | hw->fc = e1000_fc_tx_pause; | 
|  | else | 
|  | hw->fc = e1000_fc_full; | 
|  | } | 
|  |  | 
|  | /* We want to save off the original Flow Control configuration just | 
|  | * in case we get disconnected and then reconnected into a different | 
|  | * hub or switch with different Flow Control capabilities. | 
|  | */ | 
|  | if (hw->mac_type == e1000_82542_rev2_0) | 
|  | hw->fc &= (~e1000_fc_tx_pause); | 
|  |  | 
|  | if ((hw->mac_type < e1000_82543) && (hw->report_tx_early == 1)) | 
|  | hw->fc &= (~e1000_fc_rx_pause); | 
|  |  | 
|  | hw->original_fc = hw->fc; | 
|  |  | 
|  | DEBUGOUT("After fix-ups FlowControl is now = %x\n", hw->fc); | 
|  |  | 
|  | /* Take the 4 bits from EEPROM word 0x0F that determine the initial | 
|  | * polarity value for the SW controlled pins, and setup the | 
|  | * Extended Device Control reg with that info. | 
|  | * This is needed because one of the SW controlled pins is used for | 
|  | * signal detection.  So this should be done before e1000_setup_pcs_link() | 
|  | * or e1000_phy_setup() is called. | 
|  | */ | 
|  | if (hw->mac_type == e1000_82543) { | 
|  | ctrl_ext = ((eeprom_data & EEPROM_WORD0F_SWPDIO_EXT) << | 
|  | SWDPIO__EXT_SHIFT); | 
|  | E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); | 
|  | } | 
|  |  | 
|  | /* Call the necessary subroutine to configure the link. */ | 
|  | ret_val = (hw->media_type == e1000_media_type_fiber) ? | 
|  | e1000_setup_fiber_link(nic) : e1000_setup_copper_link(nic); | 
|  | if (ret_val < 0) { | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /* Initialize the flow control address, type, and PAUSE timer | 
|  | * registers to their default values.  This is done even if flow | 
|  | * control is disabled, because it does not hurt anything to | 
|  | * initialize these registers. | 
|  | */ | 
|  | DEBUGOUT | 
|  | ("Initializing the Flow Control address, type and timer regs\n"); | 
|  |  | 
|  | E1000_WRITE_REG(hw, FCAL, FLOW_CONTROL_ADDRESS_LOW); | 
|  | E1000_WRITE_REG(hw, FCAH, FLOW_CONTROL_ADDRESS_HIGH); | 
|  | E1000_WRITE_REG(hw, FCT, FLOW_CONTROL_TYPE); | 
|  | E1000_WRITE_REG(hw, FCTTV, hw->fc_pause_time); | 
|  |  | 
|  | /* Set the flow control receive threshold registers.  Normally, | 
|  | * these registers will be set to a default threshold that may be | 
|  | * adjusted later by the driver's runtime code.  However, if the | 
|  | * ability to transmit pause frames in not enabled, then these | 
|  | * registers will be set to 0. | 
|  | */ | 
|  | if (!(hw->fc & e1000_fc_tx_pause)) { | 
|  | E1000_WRITE_REG(hw, FCRTL, 0); | 
|  | E1000_WRITE_REG(hw, FCRTH, 0); | 
|  | } else { | 
|  | /* We need to set up the Receive Threshold high and low water marks | 
|  | * as well as (optionally) enabling the transmission of XON frames. | 
|  | */ | 
|  | if (hw->fc_send_xon) { | 
|  | E1000_WRITE_REG(hw, FCRTL, | 
|  | (hw->fc_low_water | E1000_FCRTL_XONE)); | 
|  | E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water); | 
|  | } else { | 
|  | E1000_WRITE_REG(hw, FCRTL, hw->fc_low_water); | 
|  | E1000_WRITE_REG(hw, FCRTH, hw->fc_high_water); | 
|  | } | 
|  | } | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Sets up link for a fiber based adapter | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | * | 
|  | * Manipulates Physical Coding Sublayer functions in order to configure | 
|  | * link. Assumes the hardware has been previously reset and the transmitter | 
|  | * and receiver are not enabled. | 
|  | *****************************************************************************/ | 
|  | static int | 
|  | e1000_setup_fiber_link(struct eth_device *nic) | 
|  | { | 
|  | struct e1000_hw *hw = nic->priv; | 
|  | uint32_t ctrl; | 
|  | uint32_t status; | 
|  | uint32_t txcw = 0; | 
|  | uint32_t i; | 
|  | uint32_t signal; | 
|  | int32_t ret_val; | 
|  |  | 
|  | DEBUGFUNC(); | 
|  | /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be | 
|  | * set when the optics detect a signal. On older adapters, it will be | 
|  | * cleared when there is a signal | 
|  | */ | 
|  | ctrl = E1000_READ_REG(hw, CTRL); | 
|  | if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS)) | 
|  | signal = E1000_CTRL_SWDPIN1; | 
|  | else | 
|  | signal = 0; | 
|  |  | 
|  | printf("signal for %s is %x (ctrl %08x)!!!!\n", nic->name, signal, | 
|  | ctrl); | 
|  | /* Take the link out of reset */ | 
|  | ctrl &= ~(E1000_CTRL_LRST); | 
|  |  | 
|  | e1000_config_collision_dist(hw); | 
|  |  | 
|  | /* Check for a software override of the flow control settings, and setup | 
|  | * the device accordingly.  If auto-negotiation is enabled, then software | 
|  | * will have to set the "PAUSE" bits to the correct value in the Tranmsit | 
|  | * Config Word Register (TXCW) and re-start auto-negotiation.  However, if | 
|  | * auto-negotiation is disabled, then software will have to manually | 
|  | * configure the two flow control enable bits in the CTRL register. | 
|  | * | 
|  | * The possible values of the "fc" parameter are: | 
|  | *      0:  Flow control is completely disabled | 
|  | *      1:  Rx flow control is enabled (we can receive pause frames, but | 
|  | *          not send pause frames). | 
|  | *      2:  Tx flow control is enabled (we can send pause frames but we do | 
|  | *          not support receiving pause frames). | 
|  | *      3:  Both Rx and TX flow control (symmetric) are enabled. | 
|  | */ | 
|  | switch (hw->fc) { | 
|  | case e1000_fc_none: | 
|  | /* Flow control is completely disabled by a software over-ride. */ | 
|  | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD); | 
|  | break; | 
|  | case e1000_fc_rx_pause: | 
|  | /* RX Flow control is enabled and TX Flow control is disabled by a | 
|  | * software over-ride. Since there really isn't a way to advertise | 
|  | * that we are capable of RX Pause ONLY, we will advertise that we | 
|  | * support both symmetric and asymmetric RX PAUSE. Later, we will | 
|  | *  disable the adapter's ability to send PAUSE frames. | 
|  | */ | 
|  | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); | 
|  | break; | 
|  | case e1000_fc_tx_pause: | 
|  | /* TX Flow control is enabled, and RX Flow control is disabled, by a | 
|  | * software over-ride. | 
|  | */ | 
|  | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_ASM_DIR); | 
|  | break; | 
|  | case e1000_fc_full: | 
|  | /* Flow control (both RX and TX) is enabled by a software over-ride. */ | 
|  | txcw = (E1000_TXCW_ANE | E1000_TXCW_FD | E1000_TXCW_PAUSE_MASK); | 
|  | break; | 
|  | default: | 
|  | DEBUGOUT("Flow control param set incorrectly\n"); | 
|  | return -E1000_ERR_CONFIG; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Since auto-negotiation is enabled, take the link out of reset (the link | 
|  | * will be in reset, because we previously reset the chip). This will | 
|  | * restart auto-negotiation.  If auto-neogtiation is successful then the | 
|  | * link-up status bit will be set and the flow control enable bits (RFCE | 
|  | * and TFCE) will be set according to their negotiated value. | 
|  | */ | 
|  | DEBUGOUT("Auto-negotiation enabled (%#x)\n", txcw); | 
|  |  | 
|  | E1000_WRITE_REG(hw, TXCW, txcw); | 
|  | E1000_WRITE_REG(hw, CTRL, ctrl); | 
|  | E1000_WRITE_FLUSH(hw); | 
|  |  | 
|  | hw->txcw = txcw; | 
|  | mdelay(1); | 
|  |  | 
|  | /* If we have a signal (the cable is plugged in) then poll for a "Link-Up" | 
|  | * indication in the Device Status Register.  Time-out if a link isn't | 
|  | * seen in 500 milliseconds seconds (Auto-negotiation should complete in | 
|  | * less than 500 milliseconds even if the other end is doing it in SW). | 
|  | */ | 
|  | if ((E1000_READ_REG(hw, CTRL) & E1000_CTRL_SWDPIN1) == signal) { | 
|  | DEBUGOUT("Looking for Link\n"); | 
|  | for (i = 0; i < (LINK_UP_TIMEOUT / 10); i++) { | 
|  | mdelay(10); | 
|  | status = E1000_READ_REG(hw, STATUS); | 
|  | if (status & E1000_STATUS_LU) | 
|  | break; | 
|  | } | 
|  | if (i == (LINK_UP_TIMEOUT / 10)) { | 
|  | /* AutoNeg failed to achieve a link, so we'll call | 
|  | * e1000_check_for_link. This routine will force the link up if we | 
|  | * detect a signal. This will allow us to communicate with | 
|  | * non-autonegotiating link partners. | 
|  | */ | 
|  | DEBUGOUT("Never got a valid link from auto-neg!!!\n"); | 
|  | hw->autoneg_failed = 1; | 
|  | ret_val = e1000_check_for_link(nic); | 
|  | if (ret_val < 0) { | 
|  | DEBUGOUT("Error while checking for link\n"); | 
|  | return ret_val; | 
|  | } | 
|  | hw->autoneg_failed = 0; | 
|  | } else { | 
|  | hw->autoneg_failed = 0; | 
|  | DEBUGOUT("Valid Link Found\n"); | 
|  | } | 
|  | } else { | 
|  | DEBUGOUT("No Signal Detected\n"); | 
|  | return -E1000_ERR_NOLINK; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Detects which PHY is present and the speed and duplex | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | ******************************************************************************/ | 
|  | static int | 
|  | e1000_setup_copper_link(struct eth_device *nic) | 
|  | { | 
|  | struct e1000_hw *hw = nic->priv; | 
|  | uint32_t ctrl; | 
|  | int32_t ret_val; | 
|  | uint16_t i; | 
|  | uint16_t phy_data; | 
|  |  | 
|  | DEBUGFUNC(); | 
|  |  | 
|  | ctrl = E1000_READ_REG(hw, CTRL); | 
|  | /* With 82543, we need to force speed and duplex on the MAC equal to what | 
|  | * the PHY speed and duplex configuration is. In addition, we need to | 
|  | * perform a hardware reset on the PHY to take it out of reset. | 
|  | */ | 
|  | if (hw->mac_type > e1000_82543) { | 
|  | ctrl |= E1000_CTRL_SLU; | 
|  | ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); | 
|  | E1000_WRITE_REG(hw, CTRL, ctrl); | 
|  | } else { | 
|  | ctrl |= | 
|  | (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX | E1000_CTRL_SLU); | 
|  | E1000_WRITE_REG(hw, CTRL, ctrl); | 
|  | e1000_phy_hw_reset(hw); | 
|  | } | 
|  |  | 
|  | /* Make sure we have a valid PHY */ | 
|  | ret_val = e1000_detect_gig_phy(hw); | 
|  | if (ret_val < 0) { | 
|  | DEBUGOUT("Error, did not detect valid phy.\n"); | 
|  | return ret_val; | 
|  | } | 
|  | DEBUGOUT("Phy ID = %x \n", hw->phy_id); | 
|  |  | 
|  | /* Enable CRS on TX. This must be set for half-duplex operation. */ | 
|  | if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data) < 0) { | 
|  | DEBUGOUT("PHY Read Error\n"); | 
|  | return -E1000_ERR_PHY; | 
|  | } | 
|  | phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX; | 
|  |  | 
|  | #if 0 | 
|  | /* Options: | 
|  | *   MDI/MDI-X = 0 (default) | 
|  | *   0 - Auto for all speeds | 
|  | *   1 - MDI mode | 
|  | *   2 - MDI-X mode | 
|  | *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes) | 
|  | */ | 
|  | phy_data &= ~M88E1000_PSCR_AUTO_X_MODE; | 
|  | switch (hw->mdix) { | 
|  | case 1: | 
|  | phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE; | 
|  | break; | 
|  | case 2: | 
|  | phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE; | 
|  | break; | 
|  | case 3: | 
|  | phy_data |= M88E1000_PSCR_AUTO_X_1000T; | 
|  | break; | 
|  | case 0: | 
|  | default: | 
|  | phy_data |= M88E1000_PSCR_AUTO_X_MODE; | 
|  | break; | 
|  | } | 
|  | #else | 
|  | phy_data |= M88E1000_PSCR_AUTO_X_MODE; | 
|  | #endif | 
|  |  | 
|  | #if 0 | 
|  | /* Options: | 
|  | *   disable_polarity_correction = 0 (default) | 
|  | *       Automatic Correction for Reversed Cable Polarity | 
|  | *   0 - Disabled | 
|  | *   1 - Enabled | 
|  | */ | 
|  | phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; | 
|  | if (hw->disable_polarity_correction == 1) | 
|  | phy_data |= M88E1000_PSCR_POLARITY_REVERSAL; | 
|  | #else | 
|  | phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL; | 
|  | #endif | 
|  | if (e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data) < 0) { | 
|  | DEBUGOUT("PHY Write Error\n"); | 
|  | return -E1000_ERR_PHY; | 
|  | } | 
|  |  | 
|  | /* Force TX_CLK in the Extended PHY Specific Control Register | 
|  | * to 25MHz clock. | 
|  | */ | 
|  | if (e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data) < 0) { | 
|  | DEBUGOUT("PHY Read Error\n"); | 
|  | return -E1000_ERR_PHY; | 
|  | } | 
|  | phy_data |= M88E1000_EPSCR_TX_CLK_25; | 
|  | /* Configure Master and Slave downshift values */ | 
|  | phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK | | 
|  | M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK); | 
|  | phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X | | 
|  | M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X); | 
|  | if (e1000_write_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data) < 0) { | 
|  | DEBUGOUT("PHY Write Error\n"); | 
|  | return -E1000_ERR_PHY; | 
|  | } | 
|  |  | 
|  | /* SW Reset the PHY so all changes take effect */ | 
|  | ret_val = e1000_phy_reset(hw); | 
|  | if (ret_val < 0) { | 
|  | DEBUGOUT("Error Resetting the PHY\n"); | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /* Options: | 
|  | *   autoneg = 1 (default) | 
|  | *      PHY will advertise value(s) parsed from | 
|  | *      autoneg_advertised and fc | 
|  | *   autoneg = 0 | 
|  | *      PHY will be set to 10H, 10F, 100H, or 100F | 
|  | *      depending on value parsed from forced_speed_duplex. | 
|  | */ | 
|  |  | 
|  | /* Is autoneg enabled?  This is enabled by default or by software override. | 
|  | * If so, call e1000_phy_setup_autoneg routine to parse the | 
|  | * autoneg_advertised and fc options. If autoneg is NOT enabled, then the | 
|  | * user should have provided a speed/duplex override.  If so, then call | 
|  | * e1000_phy_force_speed_duplex to parse and set this up. | 
|  | */ | 
|  | /* Perform some bounds checking on the hw->autoneg_advertised | 
|  | * parameter.  If this variable is zero, then set it to the default. | 
|  | */ | 
|  | hw->autoneg_advertised &= AUTONEG_ADVERTISE_SPEED_DEFAULT; | 
|  |  | 
|  | /* If autoneg_advertised is zero, we assume it was not defaulted | 
|  | * by the calling code so we set to advertise full capability. | 
|  | */ | 
|  | if (hw->autoneg_advertised == 0) | 
|  | hw->autoneg_advertised = AUTONEG_ADVERTISE_SPEED_DEFAULT; | 
|  |  | 
|  | DEBUGOUT("Reconfiguring auto-neg advertisement params\n"); | 
|  | ret_val = e1000_phy_setup_autoneg(hw); | 
|  | if (ret_val < 0) { | 
|  | DEBUGOUT("Error Setting up Auto-Negotiation\n"); | 
|  | return ret_val; | 
|  | } | 
|  | DEBUGOUT("Restarting Auto-Neg\n"); | 
|  |  | 
|  | /* Restart auto-negotiation by setting the Auto Neg Enable bit and | 
|  | * the Auto Neg Restart bit in the PHY control register. | 
|  | */ | 
|  | if (e1000_read_phy_reg(hw, PHY_CTRL, &phy_data) < 0) { | 
|  | DEBUGOUT("PHY Read Error\n"); | 
|  | return -E1000_ERR_PHY; | 
|  | } | 
|  | phy_data |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG); | 
|  | if (e1000_write_phy_reg(hw, PHY_CTRL, phy_data) < 0) { | 
|  | DEBUGOUT("PHY Write Error\n"); | 
|  | return -E1000_ERR_PHY; | 
|  | } | 
|  | #if 0 | 
|  | /* Does the user want to wait for Auto-Neg to complete here, or | 
|  | * check at a later time (for example, callback routine). | 
|  | */ | 
|  | if (hw->wait_autoneg_complete) { | 
|  | ret_val = e1000_wait_autoneg(hw); | 
|  | if (ret_val < 0) { | 
|  | DEBUGOUT | 
|  | ("Error while waiting for autoneg to complete\n"); | 
|  | return ret_val; | 
|  | } | 
|  | } | 
|  | #else | 
|  | /* If we do not wait for autonegtation to complete I | 
|  | * do not see a valid link status. | 
|  | */ | 
|  | ret_val = e1000_wait_autoneg(hw); | 
|  | if (ret_val < 0) { | 
|  | DEBUGOUT("Error while waiting for autoneg to complete\n"); | 
|  | return ret_val; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* Check link status. Wait up to 100 microseconds for link to become | 
|  | * valid. | 
|  | */ | 
|  | for (i = 0; i < 10; i++) { | 
|  | if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) { | 
|  | DEBUGOUT("PHY Read Error\n"); | 
|  | return -E1000_ERR_PHY; | 
|  | } | 
|  | if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) { | 
|  | DEBUGOUT("PHY Read Error\n"); | 
|  | return -E1000_ERR_PHY; | 
|  | } | 
|  | if (phy_data & MII_SR_LINK_STATUS) { | 
|  | /* We have link, so we need to finish the config process: | 
|  | *   1) Set up the MAC to the current PHY speed/duplex | 
|  | *      if we are on 82543.  If we | 
|  | *      are on newer silicon, we only need to configure | 
|  | *      collision distance in the Transmit Control Register. | 
|  | *   2) Set up flow control on the MAC to that established with | 
|  | *      the link partner. | 
|  | */ | 
|  | if (hw->mac_type >= e1000_82544) { | 
|  | e1000_config_collision_dist(hw); | 
|  | } else { | 
|  | ret_val = e1000_config_mac_to_phy(hw); | 
|  | if (ret_val < 0) { | 
|  | DEBUGOUT | 
|  | ("Error configuring MAC to PHY settings\n"); | 
|  | return ret_val; | 
|  | } | 
|  | } | 
|  | ret_val = e1000_config_fc_after_link_up(hw); | 
|  | if (ret_val < 0) { | 
|  | DEBUGOUT("Error Configuring Flow Control\n"); | 
|  | return ret_val; | 
|  | } | 
|  | DEBUGOUT("Valid link established!!!\n"); | 
|  | return 0; | 
|  | } | 
|  | udelay(10); | 
|  | } | 
|  |  | 
|  | DEBUGOUT("Unable to establish link!!!\n"); | 
|  | return -E1000_ERR_NOLINK; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Configures PHY autoneg and flow control advertisement settings | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | ******************************************************************************/ | 
|  | static int | 
|  | e1000_phy_setup_autoneg(struct e1000_hw *hw) | 
|  | { | 
|  | uint16_t mii_autoneg_adv_reg; | 
|  | uint16_t mii_1000t_ctrl_reg; | 
|  |  | 
|  | DEBUGFUNC(); | 
|  |  | 
|  | /* Read the MII Auto-Neg Advertisement Register (Address 4). */ | 
|  | if (e1000_read_phy_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg) < 0) { | 
|  | DEBUGOUT("PHY Read Error\n"); | 
|  | return -E1000_ERR_PHY; | 
|  | } | 
|  |  | 
|  | /* Read the MII 1000Base-T Control Register (Address 9). */ | 
|  | if (e1000_read_phy_reg(hw, PHY_1000T_CTRL, &mii_1000t_ctrl_reg) < 0) { | 
|  | DEBUGOUT("PHY Read Error\n"); | 
|  | return -E1000_ERR_PHY; | 
|  | } | 
|  |  | 
|  | /* Need to parse both autoneg_advertised and fc and set up | 
|  | * the appropriate PHY registers.  First we will parse for | 
|  | * autoneg_advertised software override.  Since we can advertise | 
|  | * a plethora of combinations, we need to check each bit | 
|  | * individually. | 
|  | */ | 
|  |  | 
|  | /* First we clear all the 10/100 mb speed bits in the Auto-Neg | 
|  | * Advertisement Register (Address 4) and the 1000 mb speed bits in | 
|  | * the  1000Base-T Control Register (Address 9). | 
|  | */ | 
|  | mii_autoneg_adv_reg &= ~REG4_SPEED_MASK; | 
|  | mii_1000t_ctrl_reg &= ~REG9_SPEED_MASK; | 
|  |  | 
|  | DEBUGOUT("autoneg_advertised %x\n", hw->autoneg_advertised); | 
|  |  | 
|  | /* Do we want to advertise 10 Mb Half Duplex? */ | 
|  | if (hw->autoneg_advertised & ADVERTISE_10_HALF) { | 
|  | DEBUGOUT("Advertise 10mb Half duplex\n"); | 
|  | mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS; | 
|  | } | 
|  |  | 
|  | /* Do we want to advertise 10 Mb Full Duplex? */ | 
|  | if (hw->autoneg_advertised & ADVERTISE_10_FULL) { | 
|  | DEBUGOUT("Advertise 10mb Full duplex\n"); | 
|  | mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS; | 
|  | } | 
|  |  | 
|  | /* Do we want to advertise 100 Mb Half Duplex? */ | 
|  | if (hw->autoneg_advertised & ADVERTISE_100_HALF) { | 
|  | DEBUGOUT("Advertise 100mb Half duplex\n"); | 
|  | mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS; | 
|  | } | 
|  |  | 
|  | /* Do we want to advertise 100 Mb Full Duplex? */ | 
|  | if (hw->autoneg_advertised & ADVERTISE_100_FULL) { | 
|  | DEBUGOUT("Advertise 100mb Full duplex\n"); | 
|  | mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS; | 
|  | } | 
|  |  | 
|  | /* We do not allow the Phy to advertise 1000 Mb Half Duplex */ | 
|  | if (hw->autoneg_advertised & ADVERTISE_1000_HALF) { | 
|  | DEBUGOUT | 
|  | ("Advertise 1000mb Half duplex requested, request denied!\n"); | 
|  | } | 
|  |  | 
|  | /* Do we want to advertise 1000 Mb Full Duplex? */ | 
|  | if (hw->autoneg_advertised & ADVERTISE_1000_FULL) { | 
|  | DEBUGOUT("Advertise 1000mb Full duplex\n"); | 
|  | mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS; | 
|  | } | 
|  |  | 
|  | /* Check for a software override of the flow control settings, and | 
|  | * setup the PHY advertisement registers accordingly.  If | 
|  | * auto-negotiation is enabled, then software will have to set the | 
|  | * "PAUSE" bits to the correct value in the Auto-Negotiation | 
|  | * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-negotiation. | 
|  | * | 
|  | * The possible values of the "fc" parameter are: | 
|  | *      0:  Flow control is completely disabled | 
|  | *      1:  Rx flow control is enabled (we can receive pause frames | 
|  | *          but not send pause frames). | 
|  | *      2:  Tx flow control is enabled (we can send pause frames | 
|  | *          but we do not support receiving pause frames). | 
|  | *      3:  Both Rx and TX flow control (symmetric) are enabled. | 
|  | *  other:  No software override.  The flow control configuration | 
|  | *          in the EEPROM is used. | 
|  | */ | 
|  | switch (hw->fc) { | 
|  | case e1000_fc_none:	/* 0 */ | 
|  | /* Flow control (RX & TX) is completely disabled by a | 
|  | * software over-ride. | 
|  | */ | 
|  | mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); | 
|  | break; | 
|  | case e1000_fc_rx_pause:	/* 1 */ | 
|  | /* RX Flow control is enabled, and TX Flow control is | 
|  | * disabled, by a software over-ride. | 
|  | */ | 
|  | /* Since there really isn't a way to advertise that we are | 
|  | * capable of RX Pause ONLY, we will advertise that we | 
|  | * support both symmetric and asymmetric RX PAUSE.  Later | 
|  | * (in e1000_config_fc_after_link_up) we will disable the | 
|  | *hw's ability to send PAUSE frames. | 
|  | */ | 
|  | mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); | 
|  | break; | 
|  | case e1000_fc_tx_pause:	/* 2 */ | 
|  | /* TX Flow control is enabled, and RX Flow control is | 
|  | * disabled, by a software over-ride. | 
|  | */ | 
|  | mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR; | 
|  | mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE; | 
|  | break; | 
|  | case e1000_fc_full:	/* 3 */ | 
|  | /* Flow control (both RX and TX) is enabled by a software | 
|  | * over-ride. | 
|  | */ | 
|  | mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE); | 
|  | break; | 
|  | default: | 
|  | DEBUGOUT("Flow control param set incorrectly\n"); | 
|  | return -E1000_ERR_CONFIG; | 
|  | } | 
|  |  | 
|  | if (e1000_write_phy_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg) < 0) { | 
|  | DEBUGOUT("PHY Write Error\n"); | 
|  | return -E1000_ERR_PHY; | 
|  | } | 
|  |  | 
|  | DEBUGOUT("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg); | 
|  |  | 
|  | if (e1000_write_phy_reg(hw, PHY_1000T_CTRL, mii_1000t_ctrl_reg) < 0) { | 
|  | DEBUGOUT("PHY Write Error\n"); | 
|  | return -E1000_ERR_PHY; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Sets the collision distance in the Transmit Control register | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | * | 
|  | * Link should have been established previously. Reads the speed and duplex | 
|  | * information from the Device Status register. | 
|  | ******************************************************************************/ | 
|  | static void | 
|  | e1000_config_collision_dist(struct e1000_hw *hw) | 
|  | { | 
|  | uint32_t tctl; | 
|  |  | 
|  | tctl = E1000_READ_REG(hw, TCTL); | 
|  |  | 
|  | tctl &= ~E1000_TCTL_COLD; | 
|  | tctl |= E1000_COLLISION_DISTANCE << E1000_COLD_SHIFT; | 
|  |  | 
|  | E1000_WRITE_REG(hw, TCTL, tctl); | 
|  | E1000_WRITE_FLUSH(hw); | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Sets MAC speed and duplex settings to reflect the those in the PHY | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | * mii_reg - data to write to the MII control register | 
|  | * | 
|  | * The contents of the PHY register containing the needed information need to | 
|  | * be passed in. | 
|  | ******************************************************************************/ | 
|  | static int | 
|  | e1000_config_mac_to_phy(struct e1000_hw *hw) | 
|  | { | 
|  | uint32_t ctrl; | 
|  | uint16_t phy_data; | 
|  |  | 
|  | DEBUGFUNC(); | 
|  |  | 
|  | /* Read the Device Control Register and set the bits to Force Speed | 
|  | * and Duplex. | 
|  | */ | 
|  | ctrl = E1000_READ_REG(hw, CTRL); | 
|  | ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); | 
|  | ctrl &= ~(E1000_CTRL_SPD_SEL | E1000_CTRL_ILOS); | 
|  |  | 
|  | /* Set up duplex in the Device Control and Transmit Control | 
|  | * registers depending on negotiated values. | 
|  | */ | 
|  | if (e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data) < 0) { | 
|  | DEBUGOUT("PHY Read Error\n"); | 
|  | return -E1000_ERR_PHY; | 
|  | } | 
|  | if (phy_data & M88E1000_PSSR_DPLX) | 
|  | ctrl |= E1000_CTRL_FD; | 
|  | else | 
|  | ctrl &= ~E1000_CTRL_FD; | 
|  |  | 
|  | e1000_config_collision_dist(hw); | 
|  |  | 
|  | /* Set up speed in the Device Control register depending on | 
|  | * negotiated values. | 
|  | */ | 
|  | if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) | 
|  | ctrl |= E1000_CTRL_SPD_1000; | 
|  | else if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_100MBS) | 
|  | ctrl |= E1000_CTRL_SPD_100; | 
|  | /* Write the configured values back to the Device Control Reg. */ | 
|  | E1000_WRITE_REG(hw, CTRL, ctrl); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Forces the MAC's flow control settings. | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | * | 
|  | * Sets the TFCE and RFCE bits in the device control register to reflect | 
|  | * the adapter settings. TFCE and RFCE need to be explicitly set by | 
|  | * software when a Copper PHY is used because autonegotiation is managed | 
|  | * by the PHY rather than the MAC. Software must also configure these | 
|  | * bits when link is forced on a fiber connection. | 
|  | *****************************************************************************/ | 
|  | static int | 
|  | e1000_force_mac_fc(struct e1000_hw *hw) | 
|  | { | 
|  | uint32_t ctrl; | 
|  |  | 
|  | DEBUGFUNC(); | 
|  |  | 
|  | /* Get the current configuration of the Device Control Register */ | 
|  | ctrl = E1000_READ_REG(hw, CTRL); | 
|  |  | 
|  | /* Because we didn't get link via the internal auto-negotiation | 
|  | * mechanism (we either forced link or we got link via PHY | 
|  | * auto-neg), we have to manually enable/disable transmit an | 
|  | * receive flow control. | 
|  | * | 
|  | * The "Case" statement below enables/disable flow control | 
|  | * according to the "hw->fc" parameter. | 
|  | * | 
|  | * The possible values of the "fc" parameter are: | 
|  | *      0:  Flow control is completely disabled | 
|  | *      1:  Rx flow control is enabled (we can receive pause | 
|  | *          frames but not send pause frames). | 
|  | *      2:  Tx flow control is enabled (we can send pause frames | 
|  | *          frames but we do not receive pause frames). | 
|  | *      3:  Both Rx and TX flow control (symmetric) is enabled. | 
|  | *  other:  No other values should be possible at this point. | 
|  | */ | 
|  |  | 
|  | switch (hw->fc) { | 
|  | case e1000_fc_none: | 
|  | ctrl &= (~(E1000_CTRL_TFCE | E1000_CTRL_RFCE)); | 
|  | break; | 
|  | case e1000_fc_rx_pause: | 
|  | ctrl &= (~E1000_CTRL_TFCE); | 
|  | ctrl |= E1000_CTRL_RFCE; | 
|  | break; | 
|  | case e1000_fc_tx_pause: | 
|  | ctrl &= (~E1000_CTRL_RFCE); | 
|  | ctrl |= E1000_CTRL_TFCE; | 
|  | break; | 
|  | case e1000_fc_full: | 
|  | ctrl |= (E1000_CTRL_TFCE | E1000_CTRL_RFCE); | 
|  | break; | 
|  | default: | 
|  | DEBUGOUT("Flow control param set incorrectly\n"); | 
|  | return -E1000_ERR_CONFIG; | 
|  | } | 
|  |  | 
|  | /* Disable TX Flow Control for 82542 (rev 2.0) */ | 
|  | if (hw->mac_type == e1000_82542_rev2_0) | 
|  | ctrl &= (~E1000_CTRL_TFCE); | 
|  |  | 
|  | E1000_WRITE_REG(hw, CTRL, ctrl); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Configures flow control settings after link is established | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | * | 
|  | * Should be called immediately after a valid link has been established. | 
|  | * Forces MAC flow control settings if link was forced. When in MII/GMII mode | 
|  | * and autonegotiation is enabled, the MAC flow control settings will be set | 
|  | * based on the flow control negotiated by the PHY. In TBI mode, the TFCE | 
|  | * and RFCE bits will be automaticaly set to the negotiated flow control mode. | 
|  | *****************************************************************************/ | 
|  | static int | 
|  | e1000_config_fc_after_link_up(struct e1000_hw *hw) | 
|  | { | 
|  | int32_t ret_val; | 
|  | uint16_t mii_status_reg; | 
|  | uint16_t mii_nway_adv_reg; | 
|  | uint16_t mii_nway_lp_ability_reg; | 
|  | uint16_t speed; | 
|  | uint16_t duplex; | 
|  |  | 
|  | DEBUGFUNC(); | 
|  |  | 
|  | /* Check for the case where we have fiber media and auto-neg failed | 
|  | * so we had to force link.  In this case, we need to force the | 
|  | * configuration of the MAC to match the "fc" parameter. | 
|  | */ | 
|  | if ((hw->media_type == e1000_media_type_fiber) && (hw->autoneg_failed)) { | 
|  | ret_val = e1000_force_mac_fc(hw); | 
|  | if (ret_val < 0) { | 
|  | DEBUGOUT("Error forcing flow control settings\n"); | 
|  | return ret_val; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Check for the case where we have copper media and auto-neg is | 
|  | * enabled.  In this case, we need to check and see if Auto-Neg | 
|  | * has completed, and if so, how the PHY and link partner has | 
|  | * flow control configured. | 
|  | */ | 
|  | if (hw->media_type == e1000_media_type_copper) { | 
|  | /* Read the MII Status Register and check to see if AutoNeg | 
|  | * has completed.  We read this twice because this reg has | 
|  | * some "sticky" (latched) bits. | 
|  | */ | 
|  | if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) { | 
|  | DEBUGOUT("PHY Read Error \n"); | 
|  | return -E1000_ERR_PHY; | 
|  | } | 
|  | if (e1000_read_phy_reg(hw, PHY_STATUS, &mii_status_reg) < 0) { | 
|  | DEBUGOUT("PHY Read Error \n"); | 
|  | return -E1000_ERR_PHY; | 
|  | } | 
|  |  | 
|  | if (mii_status_reg & MII_SR_AUTONEG_COMPLETE) { | 
|  | /* The AutoNeg process has completed, so we now need to | 
|  | * read both the Auto Negotiation Advertisement Register | 
|  | * (Address 4) and the Auto_Negotiation Base Page Ability | 
|  | * Register (Address 5) to determine how flow control was | 
|  | * negotiated. | 
|  | */ | 
|  | if (e1000_read_phy_reg | 
|  | (hw, PHY_AUTONEG_ADV, &mii_nway_adv_reg) < 0) { | 
|  | DEBUGOUT("PHY Read Error\n"); | 
|  | return -E1000_ERR_PHY; | 
|  | } | 
|  | if (e1000_read_phy_reg | 
|  | (hw, PHY_LP_ABILITY, | 
|  | &mii_nway_lp_ability_reg) < 0) { | 
|  | DEBUGOUT("PHY Read Error\n"); | 
|  | return -E1000_ERR_PHY; | 
|  | } | 
|  |  | 
|  | /* Two bits in the Auto Negotiation Advertisement Register | 
|  | * (Address 4) and two bits in the Auto Negotiation Base | 
|  | * Page Ability Register (Address 5) determine flow control | 
|  | * for both the PHY and the link partner.  The following | 
|  | * table, taken out of the IEEE 802.3ab/D6.0 dated March 25, | 
|  | * 1999, describes these PAUSE resolution bits and how flow | 
|  | * control is determined based upon these settings. | 
|  | * NOTE:  DC = Don't Care | 
|  | * | 
|  | *   LOCAL DEVICE  |   LINK PARTNER | 
|  | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | NIC Resolution | 
|  | *-------|---------|-------|---------|-------------------- | 
|  | *   0   |    0    |  DC   |   DC    | e1000_fc_none | 
|  | *   0   |    1    |   0   |   DC    | e1000_fc_none | 
|  | *   0   |    1    |   1   |    0    | e1000_fc_none | 
|  | *   0   |    1    |   1   |    1    | e1000_fc_tx_pause | 
|  | *   1   |    0    |   0   |   DC    | e1000_fc_none | 
|  | *   1   |   DC    |   1   |   DC    | e1000_fc_full | 
|  | *   1   |    1    |   0   |    0    | e1000_fc_none | 
|  | *   1   |    1    |   0   |    1    | e1000_fc_rx_pause | 
|  | * | 
|  | */ | 
|  | /* Are both PAUSE bits set to 1?  If so, this implies | 
|  | * Symmetric Flow Control is enabled at both ends.  The | 
|  | * ASM_DIR bits are irrelevant per the spec. | 
|  | * | 
|  | * For Symmetric Flow Control: | 
|  | * | 
|  | *   LOCAL DEVICE  |   LINK PARTNER | 
|  | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result | 
|  | *-------|---------|-------|---------|-------------------- | 
|  | *   1   |   DC    |   1   |   DC    | e1000_fc_full | 
|  | * | 
|  | */ | 
|  | if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && | 
|  | (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE)) { | 
|  | /* Now we need to check if the user selected RX ONLY | 
|  | * of pause frames.  In this case, we had to advertise | 
|  | * FULL flow control because we could not advertise RX | 
|  | * ONLY. Hence, we must now check to see if we need to | 
|  | * turn OFF  the TRANSMISSION of PAUSE frames. | 
|  | */ | 
|  | if (hw->original_fc == e1000_fc_full) { | 
|  | hw->fc = e1000_fc_full; | 
|  | DEBUGOUT("Flow Control = FULL.\r\n"); | 
|  | } else { | 
|  | hw->fc = e1000_fc_rx_pause; | 
|  | DEBUGOUT | 
|  | ("Flow Control = RX PAUSE frames only.\r\n"); | 
|  | } | 
|  | } | 
|  | /* For receiving PAUSE frames ONLY. | 
|  | * | 
|  | *   LOCAL DEVICE  |   LINK PARTNER | 
|  | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result | 
|  | *-------|---------|-------|---------|-------------------- | 
|  | *   0   |    1    |   1   |    1    | e1000_fc_tx_pause | 
|  | * | 
|  | */ | 
|  | else if (!(mii_nway_adv_reg & NWAY_AR_PAUSE) && | 
|  | (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && | 
|  | (mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && | 
|  | (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) | 
|  | { | 
|  | hw->fc = e1000_fc_tx_pause; | 
|  | DEBUGOUT | 
|  | ("Flow Control = TX PAUSE frames only.\r\n"); | 
|  | } | 
|  | /* For transmitting PAUSE frames ONLY. | 
|  | * | 
|  | *   LOCAL DEVICE  |   LINK PARTNER | 
|  | * PAUSE | ASM_DIR | PAUSE | ASM_DIR | Result | 
|  | *-------|---------|-------|---------|-------------------- | 
|  | *   1   |    1    |   0   |    1    | e1000_fc_rx_pause | 
|  | * | 
|  | */ | 
|  | else if ((mii_nway_adv_reg & NWAY_AR_PAUSE) && | 
|  | (mii_nway_adv_reg & NWAY_AR_ASM_DIR) && | 
|  | !(mii_nway_lp_ability_reg & NWAY_LPAR_PAUSE) && | 
|  | (mii_nway_lp_ability_reg & NWAY_LPAR_ASM_DIR)) | 
|  | { | 
|  | hw->fc = e1000_fc_rx_pause; | 
|  | DEBUGOUT | 
|  | ("Flow Control = RX PAUSE frames only.\r\n"); | 
|  | } | 
|  | /* Per the IEEE spec, at this point flow control should be | 
|  | * disabled.  However, we want to consider that we could | 
|  | * be connected to a legacy switch that doesn't advertise | 
|  | * desired flow control, but can be forced on the link | 
|  | * partner.  So if we advertised no flow control, that is | 
|  | * what we will resolve to.  If we advertised some kind of | 
|  | * receive capability (Rx Pause Only or Full Flow Control) | 
|  | * and the link partner advertised none, we will configure | 
|  | * ourselves to enable Rx Flow Control only.  We can do | 
|  | * this safely for two reasons:  If the link partner really | 
|  | * didn't want flow control enabled, and we enable Rx, no | 
|  | * harm done since we won't be receiving any PAUSE frames | 
|  | * anyway.  If the intent on the link partner was to have | 
|  | * flow control enabled, then by us enabling RX only, we | 
|  | * can at least receive pause frames and process them. | 
|  | * This is a good idea because in most cases, since we are | 
|  | * predominantly a server NIC, more times than not we will | 
|  | * be asked to delay transmission of packets than asking | 
|  | * our link partner to pause transmission of frames. | 
|  | */ | 
|  | else if (hw->original_fc == e1000_fc_none || | 
|  | hw->original_fc == e1000_fc_tx_pause) { | 
|  | hw->fc = e1000_fc_none; | 
|  | DEBUGOUT("Flow Control = NONE.\r\n"); | 
|  | } else { | 
|  | hw->fc = e1000_fc_rx_pause; | 
|  | DEBUGOUT | 
|  | ("Flow Control = RX PAUSE frames only.\r\n"); | 
|  | } | 
|  |  | 
|  | /* Now we need to do one last check...  If we auto- | 
|  | * negotiated to HALF DUPLEX, flow control should not be | 
|  | * enabled per IEEE 802.3 spec. | 
|  | */ | 
|  | e1000_get_speed_and_duplex(hw, &speed, &duplex); | 
|  |  | 
|  | if (duplex == HALF_DUPLEX) | 
|  | hw->fc = e1000_fc_none; | 
|  |  | 
|  | /* Now we call a subroutine to actually force the MAC | 
|  | * controller to use the correct flow control settings. | 
|  | */ | 
|  | ret_val = e1000_force_mac_fc(hw); | 
|  | if (ret_val < 0) { | 
|  | DEBUGOUT | 
|  | ("Error forcing flow control settings\n"); | 
|  | return ret_val; | 
|  | } | 
|  | } else { | 
|  | DEBUGOUT | 
|  | ("Copper PHY and Auto Neg has not completed.\r\n"); | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Checks to see if the link status of the hardware has changed. | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | * | 
|  | * Called by any function that needs to check the link status of the adapter. | 
|  | *****************************************************************************/ | 
|  | static int | 
|  | e1000_check_for_link(struct eth_device *nic) | 
|  | { | 
|  | struct e1000_hw *hw = nic->priv; | 
|  | uint32_t rxcw; | 
|  | uint32_t ctrl; | 
|  | uint32_t status; | 
|  | uint32_t rctl; | 
|  | uint32_t signal; | 
|  | int32_t ret_val; | 
|  | uint16_t phy_data; | 
|  | uint16_t lp_capability; | 
|  |  | 
|  | DEBUGFUNC(); | 
|  |  | 
|  | /* On adapters with a MAC newer that 82544, SW Defineable pin 1 will be | 
|  | * set when the optics detect a signal. On older adapters, it will be | 
|  | * cleared when there is a signal | 
|  | */ | 
|  | ctrl = E1000_READ_REG(hw, CTRL); | 
|  | if ((hw->mac_type > e1000_82544) && !(ctrl & E1000_CTRL_ILOS)) | 
|  | signal = E1000_CTRL_SWDPIN1; | 
|  | else | 
|  | signal = 0; | 
|  |  | 
|  | status = E1000_READ_REG(hw, STATUS); | 
|  | rxcw = E1000_READ_REG(hw, RXCW); | 
|  | DEBUGOUT("ctrl: %#08x status %#08x rxcw %#08x\n", ctrl, status, rxcw); | 
|  |  | 
|  | /* If we have a copper PHY then we only want to go out to the PHY | 
|  | * registers to see if Auto-Neg has completed and/or if our link | 
|  | * status has changed.  The get_link_status flag will be set if we | 
|  | * receive a Link Status Change interrupt or we have Rx Sequence | 
|  | * Errors. | 
|  | */ | 
|  | if ((hw->media_type == e1000_media_type_copper) && hw->get_link_status) { | 
|  | /* First we want to see if the MII Status Register reports | 
|  | * link.  If so, then we want to get the current speed/duplex | 
|  | * of the PHY. | 
|  | * Read the register twice since the link bit is sticky. | 
|  | */ | 
|  | if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) { | 
|  | DEBUGOUT("PHY Read Error\n"); | 
|  | return -E1000_ERR_PHY; | 
|  | } | 
|  | if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) { | 
|  | DEBUGOUT("PHY Read Error\n"); | 
|  | return -E1000_ERR_PHY; | 
|  | } | 
|  |  | 
|  | if (phy_data & MII_SR_LINK_STATUS) { | 
|  | hw->get_link_status = FALSE; | 
|  | } else { | 
|  | /* No link detected */ | 
|  | return -E1000_ERR_NOLINK; | 
|  | } | 
|  |  | 
|  | /* We have a M88E1000 PHY and Auto-Neg is enabled.  If we | 
|  | * have Si on board that is 82544 or newer, Auto | 
|  | * Speed Detection takes care of MAC speed/duplex | 
|  | * configuration.  So we only need to configure Collision | 
|  | * Distance in the MAC.  Otherwise, we need to force | 
|  | * speed/duplex on the MAC to the current PHY speed/duplex | 
|  | * settings. | 
|  | */ | 
|  | if (hw->mac_type >= e1000_82544) | 
|  | e1000_config_collision_dist(hw); | 
|  | else { | 
|  | ret_val = e1000_config_mac_to_phy(hw); | 
|  | if (ret_val < 0) { | 
|  | DEBUGOUT | 
|  | ("Error configuring MAC to PHY settings\n"); | 
|  | return ret_val; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Configure Flow Control now that Auto-Neg has completed. First, we | 
|  | * need to restore the desired flow control settings because we may | 
|  | * have had to re-autoneg with a different link partner. | 
|  | */ | 
|  | ret_val = e1000_config_fc_after_link_up(hw); | 
|  | if (ret_val < 0) { | 
|  | DEBUGOUT("Error configuring flow control\n"); | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /* At this point we know that we are on copper and we have | 
|  | * auto-negotiated link.  These are conditions for checking the link | 
|  | * parter capability register.  We use the link partner capability to | 
|  | * determine if TBI Compatibility needs to be turned on or off.  If | 
|  | * the link partner advertises any speed in addition to Gigabit, then | 
|  | * we assume that they are GMII-based, and TBI compatibility is not | 
|  | * needed. If no other speeds are advertised, we assume the link | 
|  | * partner is TBI-based, and we turn on TBI Compatibility. | 
|  | */ | 
|  | if (hw->tbi_compatibility_en) { | 
|  | if (e1000_read_phy_reg | 
|  | (hw, PHY_LP_ABILITY, &lp_capability) < 0) { | 
|  | DEBUGOUT("PHY Read Error\n"); | 
|  | return -E1000_ERR_PHY; | 
|  | } | 
|  | if (lp_capability & (NWAY_LPAR_10T_HD_CAPS | | 
|  | NWAY_LPAR_10T_FD_CAPS | | 
|  | NWAY_LPAR_100TX_HD_CAPS | | 
|  | NWAY_LPAR_100TX_FD_CAPS | | 
|  | NWAY_LPAR_100T4_CAPS)) { | 
|  | /* If our link partner advertises anything in addition to | 
|  | * gigabit, we do not need to enable TBI compatibility. | 
|  | */ | 
|  | if (hw->tbi_compatibility_on) { | 
|  | /* If we previously were in the mode, turn it off. */ | 
|  | rctl = E1000_READ_REG(hw, RCTL); | 
|  | rctl &= ~E1000_RCTL_SBP; | 
|  | E1000_WRITE_REG(hw, RCTL, rctl); | 
|  | hw->tbi_compatibility_on = FALSE; | 
|  | } | 
|  | } else { | 
|  | /* If TBI compatibility is was previously off, turn it on. For | 
|  | * compatibility with a TBI link partner, we will store bad | 
|  | * packets. Some frames have an additional byte on the end and | 
|  | * will look like CRC errors to to the hardware. | 
|  | */ | 
|  | if (!hw->tbi_compatibility_on) { | 
|  | hw->tbi_compatibility_on = TRUE; | 
|  | rctl = E1000_READ_REG(hw, RCTL); | 
|  | rctl |= E1000_RCTL_SBP; | 
|  | E1000_WRITE_REG(hw, RCTL, rctl); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  | /* If we don't have link (auto-negotiation failed or link partner cannot | 
|  | * auto-negotiate), the cable is plugged in (we have signal), and our | 
|  | * link partner is not trying to auto-negotiate with us (we are receiving | 
|  | * idles or data), we need to force link up. We also need to give | 
|  | * auto-negotiation time to complete, in case the cable was just plugged | 
|  | * in. The autoneg_failed flag does this. | 
|  | */ | 
|  | else if ((hw->media_type == e1000_media_type_fiber) && | 
|  | (!(status & E1000_STATUS_LU)) && | 
|  | ((ctrl & E1000_CTRL_SWDPIN1) == signal) && | 
|  | (!(rxcw & E1000_RXCW_C))) { | 
|  | if (hw->autoneg_failed == 0) { | 
|  | hw->autoneg_failed = 1; | 
|  | return 0; | 
|  | } | 
|  | DEBUGOUT("NOT RXing /C/, disable AutoNeg and force link.\r\n"); | 
|  |  | 
|  | /* Disable auto-negotiation in the TXCW register */ | 
|  | E1000_WRITE_REG(hw, TXCW, (hw->txcw & ~E1000_TXCW_ANE)); | 
|  |  | 
|  | /* Force link-up and also force full-duplex. */ | 
|  | ctrl = E1000_READ_REG(hw, CTRL); | 
|  | ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD); | 
|  | E1000_WRITE_REG(hw, CTRL, ctrl); | 
|  |  | 
|  | /* Configure Flow Control after forcing link up. */ | 
|  | ret_val = e1000_config_fc_after_link_up(hw); | 
|  | if (ret_val < 0) { | 
|  | DEBUGOUT("Error configuring flow control\n"); | 
|  | return ret_val; | 
|  | } | 
|  | } | 
|  | /* If we are forcing link and we are receiving /C/ ordered sets, re-enable | 
|  | * auto-negotiation in the TXCW register and disable forced link in the | 
|  | * Device Control register in an attempt to auto-negotiate with our link | 
|  | * partner. | 
|  | */ | 
|  | else if ((hw->media_type == e1000_media_type_fiber) && | 
|  | (ctrl & E1000_CTRL_SLU) && (rxcw & E1000_RXCW_C)) { | 
|  | DEBUGOUT | 
|  | ("RXing /C/, enable AutoNeg and stop forcing link.\r\n"); | 
|  | E1000_WRITE_REG(hw, TXCW, hw->txcw); | 
|  | E1000_WRITE_REG(hw, CTRL, (ctrl & ~E1000_CTRL_SLU)); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Detects the current speed and duplex settings of the hardware. | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | * speed - Speed of the connection | 
|  | * duplex - Duplex setting of the connection | 
|  | *****************************************************************************/ | 
|  | static void | 
|  | e1000_get_speed_and_duplex(struct e1000_hw *hw, | 
|  | uint16_t * speed, uint16_t * duplex) | 
|  | { | 
|  | uint32_t status; | 
|  |  | 
|  | DEBUGFUNC(); | 
|  |  | 
|  | if (hw->mac_type >= e1000_82543) { | 
|  | status = E1000_READ_REG(hw, STATUS); | 
|  | if (status & E1000_STATUS_SPEED_1000) { | 
|  | *speed = SPEED_1000; | 
|  | DEBUGOUT("1000 Mbs, "); | 
|  | } else if (status & E1000_STATUS_SPEED_100) { | 
|  | *speed = SPEED_100; | 
|  | DEBUGOUT("100 Mbs, "); | 
|  | } else { | 
|  | *speed = SPEED_10; | 
|  | DEBUGOUT("10 Mbs, "); | 
|  | } | 
|  |  | 
|  | if (status & E1000_STATUS_FD) { | 
|  | *duplex = FULL_DUPLEX; | 
|  | DEBUGOUT("Full Duplex\r\n"); | 
|  | } else { | 
|  | *duplex = HALF_DUPLEX; | 
|  | DEBUGOUT(" Half Duplex\r\n"); | 
|  | } | 
|  | } else { | 
|  | DEBUGOUT("1000 Mbs, Full Duplex\r\n"); | 
|  | *speed = SPEED_1000; | 
|  | *duplex = FULL_DUPLEX; | 
|  | } | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Blocks until autoneg completes or times out (~4.5 seconds) | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | ******************************************************************************/ | 
|  | static int | 
|  | e1000_wait_autoneg(struct e1000_hw *hw) | 
|  | { | 
|  | uint16_t i; | 
|  | uint16_t phy_data; | 
|  |  | 
|  | DEBUGFUNC(); | 
|  | DEBUGOUT("Waiting for Auto-Neg to complete.\n"); | 
|  |  | 
|  | /* We will wait for autoneg to complete or 4.5 seconds to expire. */ | 
|  | for (i = PHY_AUTO_NEG_TIME; i > 0; i--) { | 
|  | /* Read the MII Status Register and wait for Auto-Neg | 
|  | * Complete bit to be set. | 
|  | */ | 
|  | if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) { | 
|  | DEBUGOUT("PHY Read Error\n"); | 
|  | return -E1000_ERR_PHY; | 
|  | } | 
|  | if (e1000_read_phy_reg(hw, PHY_STATUS, &phy_data) < 0) { | 
|  | DEBUGOUT("PHY Read Error\n"); | 
|  | return -E1000_ERR_PHY; | 
|  | } | 
|  | if (phy_data & MII_SR_AUTONEG_COMPLETE) { | 
|  | DEBUGOUT("Auto-Neg complete.\n"); | 
|  | return 0; | 
|  | } | 
|  | mdelay(100); | 
|  | } | 
|  | DEBUGOUT("Auto-Neg timedout.\n"); | 
|  | return -E1000_ERR_TIMEOUT; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Raises the Management Data Clock | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | * ctrl - Device control register's current value | 
|  | ******************************************************************************/ | 
|  | static void | 
|  | e1000_raise_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl) | 
|  | { | 
|  | /* Raise the clock input to the Management Data Clock (by setting the MDC | 
|  | * bit), and then delay 2 microseconds. | 
|  | */ | 
|  | E1000_WRITE_REG(hw, CTRL, (*ctrl | E1000_CTRL_MDC)); | 
|  | E1000_WRITE_FLUSH(hw); | 
|  | udelay(2); | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Lowers the Management Data Clock | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | * ctrl - Device control register's current value | 
|  | ******************************************************************************/ | 
|  | static void | 
|  | e1000_lower_mdi_clk(struct e1000_hw *hw, uint32_t * ctrl) | 
|  | { | 
|  | /* Lower the clock input to the Management Data Clock (by clearing the MDC | 
|  | * bit), and then delay 2 microseconds. | 
|  | */ | 
|  | E1000_WRITE_REG(hw, CTRL, (*ctrl & ~E1000_CTRL_MDC)); | 
|  | E1000_WRITE_FLUSH(hw); | 
|  | udelay(2); | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Shifts data bits out to the PHY | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | * data - Data to send out to the PHY | 
|  | * count - Number of bits to shift out | 
|  | * | 
|  | * Bits are shifted out in MSB to LSB order. | 
|  | ******************************************************************************/ | 
|  | static void | 
|  | e1000_shift_out_mdi_bits(struct e1000_hw *hw, uint32_t data, uint16_t count) | 
|  | { | 
|  | uint32_t ctrl; | 
|  | uint32_t mask; | 
|  |  | 
|  | /* We need to shift "count" number of bits out to the PHY. So, the value | 
|  | * in the "data" parameter will be shifted out to the PHY one bit at a | 
|  | * time. In order to do this, "data" must be broken down into bits. | 
|  | */ | 
|  | mask = 0x01; | 
|  | mask <<= (count - 1); | 
|  |  | 
|  | ctrl = E1000_READ_REG(hw, CTRL); | 
|  |  | 
|  | /* Set MDIO_DIR and MDC_DIR direction bits to be used as output pins. */ | 
|  | ctrl |= (E1000_CTRL_MDIO_DIR | E1000_CTRL_MDC_DIR); | 
|  |  | 
|  | while (mask) { | 
|  | /* A "1" is shifted out to the PHY by setting the MDIO bit to "1" and | 
|  | * then raising and lowering the Management Data Clock. A "0" is | 
|  | * shifted out to the PHY by setting the MDIO bit to "0" and then | 
|  | * raising and lowering the clock. | 
|  | */ | 
|  | if (data & mask) | 
|  | ctrl |= E1000_CTRL_MDIO; | 
|  | else | 
|  | ctrl &= ~E1000_CTRL_MDIO; | 
|  |  | 
|  | E1000_WRITE_REG(hw, CTRL, ctrl); | 
|  | E1000_WRITE_FLUSH(hw); | 
|  |  | 
|  | udelay(2); | 
|  |  | 
|  | e1000_raise_mdi_clk(hw, &ctrl); | 
|  | e1000_lower_mdi_clk(hw, &ctrl); | 
|  |  | 
|  | mask = mask >> 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Shifts data bits in from the PHY | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | * | 
|  | * Bits are shifted in in MSB to LSB order. | 
|  | ******************************************************************************/ | 
|  | static uint16_t | 
|  | e1000_shift_in_mdi_bits(struct e1000_hw *hw) | 
|  | { | 
|  | uint32_t ctrl; | 
|  | uint16_t data = 0; | 
|  | uint8_t i; | 
|  |  | 
|  | /* In order to read a register from the PHY, we need to shift in a total | 
|  | * of 18 bits from the PHY. The first two bit (turnaround) times are used | 
|  | * to avoid contention on the MDIO pin when a read operation is performed. | 
|  | * These two bits are ignored by us and thrown away. Bits are "shifted in" | 
|  | * by raising the input to the Management Data Clock (setting the MDC bit), | 
|  | * and then reading the value of the MDIO bit. | 
|  | */ | 
|  | ctrl = E1000_READ_REG(hw, CTRL); | 
|  |  | 
|  | /* Clear MDIO_DIR (SWDPIO1) to indicate this bit is to be used as input. */ | 
|  | ctrl &= ~E1000_CTRL_MDIO_DIR; | 
|  | ctrl &= ~E1000_CTRL_MDIO; | 
|  |  | 
|  | E1000_WRITE_REG(hw, CTRL, ctrl); | 
|  | E1000_WRITE_FLUSH(hw); | 
|  |  | 
|  | /* Raise and Lower the clock before reading in the data. This accounts for | 
|  | * the turnaround bits. The first clock occurred when we clocked out the | 
|  | * last bit of the Register Address. | 
|  | */ | 
|  | e1000_raise_mdi_clk(hw, &ctrl); | 
|  | e1000_lower_mdi_clk(hw, &ctrl); | 
|  |  | 
|  | for (data = 0, i = 0; i < 16; i++) { | 
|  | data = data << 1; | 
|  | e1000_raise_mdi_clk(hw, &ctrl); | 
|  | ctrl = E1000_READ_REG(hw, CTRL); | 
|  | /* Check to see if we shifted in a "1". */ | 
|  | if (ctrl & E1000_CTRL_MDIO) | 
|  | data |= 1; | 
|  | e1000_lower_mdi_clk(hw, &ctrl); | 
|  | } | 
|  |  | 
|  | e1000_raise_mdi_clk(hw, &ctrl); | 
|  | e1000_lower_mdi_clk(hw, &ctrl); | 
|  |  | 
|  | return data; | 
|  | } | 
|  |  | 
|  | /***************************************************************************** | 
|  | * Reads the value from a PHY register | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | * reg_addr - address of the PHY register to read | 
|  | ******************************************************************************/ | 
|  | static int | 
|  | e1000_read_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t * phy_data) | 
|  | { | 
|  | uint32_t i; | 
|  | uint32_t mdic = 0; | 
|  | const uint32_t phy_addr = 1; | 
|  |  | 
|  | if (reg_addr > MAX_PHY_REG_ADDRESS) { | 
|  | DEBUGOUT("PHY Address %d is out of range\n", reg_addr); | 
|  | return -E1000_ERR_PARAM; | 
|  | } | 
|  |  | 
|  | if (hw->mac_type > e1000_82543) { | 
|  | /* Set up Op-code, Phy Address, and register address in the MDI | 
|  | * Control register.  The MAC will take care of interfacing with the | 
|  | * PHY to retrieve the desired data. | 
|  | */ | 
|  | mdic = ((reg_addr << E1000_MDIC_REG_SHIFT) | | 
|  | (phy_addr << E1000_MDIC_PHY_SHIFT) | | 
|  | (E1000_MDIC_OP_READ)); | 
|  |  | 
|  | E1000_WRITE_REG(hw, MDIC, mdic); | 
|  |  | 
|  | /* Poll the ready bit to see if the MDI read completed */ | 
|  | for (i = 0; i < 64; i++) { | 
|  | udelay(10); | 
|  | mdic = E1000_READ_REG(hw, MDIC); | 
|  | if (mdic & E1000_MDIC_READY) | 
|  | break; | 
|  | } | 
|  | if (!(mdic & E1000_MDIC_READY)) { | 
|  | DEBUGOUT("MDI Read did not complete\n"); | 
|  | return -E1000_ERR_PHY; | 
|  | } | 
|  | if (mdic & E1000_MDIC_ERROR) { | 
|  | DEBUGOUT("MDI Error\n"); | 
|  | return -E1000_ERR_PHY; | 
|  | } | 
|  | *phy_data = (uint16_t) mdic; | 
|  | } else { | 
|  | /* We must first send a preamble through the MDIO pin to signal the | 
|  | * beginning of an MII instruction.  This is done by sending 32 | 
|  | * consecutive "1" bits. | 
|  | */ | 
|  | e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); | 
|  |  | 
|  | /* Now combine the next few fields that are required for a read | 
|  | * operation.  We use this method instead of calling the | 
|  | * e1000_shift_out_mdi_bits routine five different times. The format of | 
|  | * a MII read instruction consists of a shift out of 14 bits and is | 
|  | * defined as follows: | 
|  | *    <Preamble><SOF><Op Code><Phy Addr><Reg Addr> | 
|  | * followed by a shift in of 18 bits.  This first two bits shifted in | 
|  | * are TurnAround bits used to avoid contention on the MDIO pin when a | 
|  | * READ operation is performed.  These two bits are thrown away | 
|  | * followed by a shift in of 16 bits which contains the desired data. | 
|  | */ | 
|  | mdic = ((reg_addr) | (phy_addr << 5) | | 
|  | (PHY_OP_READ << 10) | (PHY_SOF << 12)); | 
|  |  | 
|  | e1000_shift_out_mdi_bits(hw, mdic, 14); | 
|  |  | 
|  | /* Now that we've shifted out the read command to the MII, we need to | 
|  | * "shift in" the 16-bit value (18 total bits) of the requested PHY | 
|  | * register address. | 
|  | */ | 
|  | *phy_data = e1000_shift_in_mdi_bits(hw); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Writes a value to a PHY register | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | * reg_addr - address of the PHY register to write | 
|  | * data - data to write to the PHY | 
|  | ******************************************************************************/ | 
|  | static int | 
|  | e1000_write_phy_reg(struct e1000_hw *hw, uint32_t reg_addr, uint16_t phy_data) | 
|  | { | 
|  | uint32_t i; | 
|  | uint32_t mdic = 0; | 
|  | const uint32_t phy_addr = 1; | 
|  |  | 
|  | if (reg_addr > MAX_PHY_REG_ADDRESS) { | 
|  | DEBUGOUT("PHY Address %d is out of range\n", reg_addr); | 
|  | return -E1000_ERR_PARAM; | 
|  | } | 
|  |  | 
|  | if (hw->mac_type > e1000_82543) { | 
|  | /* Set up Op-code, Phy Address, register address, and data intended | 
|  | * for the PHY register in the MDI Control register.  The MAC will take | 
|  | * care of interfacing with the PHY to send the desired data. | 
|  | */ | 
|  | mdic = (((uint32_t) phy_data) | | 
|  | (reg_addr << E1000_MDIC_REG_SHIFT) | | 
|  | (phy_addr << E1000_MDIC_PHY_SHIFT) | | 
|  | (E1000_MDIC_OP_WRITE)); | 
|  |  | 
|  | E1000_WRITE_REG(hw, MDIC, mdic); | 
|  |  | 
|  | /* Poll the ready bit to see if the MDI read completed */ | 
|  | for (i = 0; i < 64; i++) { | 
|  | udelay(10); | 
|  | mdic = E1000_READ_REG(hw, MDIC); | 
|  | if (mdic & E1000_MDIC_READY) | 
|  | break; | 
|  | } | 
|  | if (!(mdic & E1000_MDIC_READY)) { | 
|  | DEBUGOUT("MDI Write did not complete\n"); | 
|  | return -E1000_ERR_PHY; | 
|  | } | 
|  | } else { | 
|  | /* We'll need to use the SW defined pins to shift the write command | 
|  | * out to the PHY. We first send a preamble to the PHY to signal the | 
|  | * beginning of the MII instruction.  This is done by sending 32 | 
|  | * consecutive "1" bits. | 
|  | */ | 
|  | e1000_shift_out_mdi_bits(hw, PHY_PREAMBLE, PHY_PREAMBLE_SIZE); | 
|  |  | 
|  | /* Now combine the remaining required fields that will indicate a | 
|  | * write operation. We use this method instead of calling the | 
|  | * e1000_shift_out_mdi_bits routine for each field in the command. The | 
|  | * format of a MII write instruction is as follows: | 
|  | * <Preamble><SOF><Op Code><Phy Addr><Reg Addr><Turnaround><Data>. | 
|  | */ | 
|  | mdic = ((PHY_TURNAROUND) | (reg_addr << 2) | (phy_addr << 7) | | 
|  | (PHY_OP_WRITE << 12) | (PHY_SOF << 14)); | 
|  | mdic <<= 16; | 
|  | mdic |= (uint32_t) phy_data; | 
|  |  | 
|  | e1000_shift_out_mdi_bits(hw, mdic, 32); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Returns the PHY to the power-on reset state | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | ******************************************************************************/ | 
|  | static void | 
|  | e1000_phy_hw_reset(struct e1000_hw *hw) | 
|  | { | 
|  | uint32_t ctrl; | 
|  | uint32_t ctrl_ext; | 
|  |  | 
|  | DEBUGFUNC(); | 
|  |  | 
|  | DEBUGOUT("Resetting Phy...\n"); | 
|  |  | 
|  | if (hw->mac_type > e1000_82543) { | 
|  | /* Read the device control register and assert the E1000_CTRL_PHY_RST | 
|  | * bit. Then, take it out of reset. | 
|  | */ | 
|  | ctrl = E1000_READ_REG(hw, CTRL); | 
|  | E1000_WRITE_REG(hw, CTRL, ctrl | E1000_CTRL_PHY_RST); | 
|  | E1000_WRITE_FLUSH(hw); | 
|  | mdelay(10); | 
|  | E1000_WRITE_REG(hw, CTRL, ctrl); | 
|  | E1000_WRITE_FLUSH(hw); | 
|  | } else { | 
|  | /* Read the Extended Device Control Register, assert the PHY_RESET_DIR | 
|  | * bit to put the PHY into reset. Then, take it out of reset. | 
|  | */ | 
|  | ctrl_ext = E1000_READ_REG(hw, CTRL_EXT); | 
|  | ctrl_ext |= E1000_CTRL_EXT_SDP4_DIR; | 
|  | ctrl_ext &= ~E1000_CTRL_EXT_SDP4_DATA; | 
|  | E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); | 
|  | E1000_WRITE_FLUSH(hw); | 
|  | mdelay(10); | 
|  | ctrl_ext |= E1000_CTRL_EXT_SDP4_DATA; | 
|  | E1000_WRITE_REG(hw, CTRL_EXT, ctrl_ext); | 
|  | E1000_WRITE_FLUSH(hw); | 
|  | } | 
|  | udelay(150); | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Resets the PHY | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | * | 
|  | * Sets bit 15 of the MII Control regiser | 
|  | ******************************************************************************/ | 
|  | static int | 
|  | e1000_phy_reset(struct e1000_hw *hw) | 
|  | { | 
|  | uint16_t phy_data; | 
|  |  | 
|  | DEBUGFUNC(); | 
|  |  | 
|  | if (e1000_read_phy_reg(hw, PHY_CTRL, &phy_data) < 0) { | 
|  | DEBUGOUT("PHY Read Error\n"); | 
|  | return -E1000_ERR_PHY; | 
|  | } | 
|  | phy_data |= MII_CR_RESET; | 
|  | if (e1000_write_phy_reg(hw, PHY_CTRL, phy_data) < 0) { | 
|  | DEBUGOUT("PHY Write Error\n"); | 
|  | return -E1000_ERR_PHY; | 
|  | } | 
|  | udelay(1); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /****************************************************************************** | 
|  | * Probes the expected PHY address for known PHY IDs | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | ******************************************************************************/ | 
|  | static int | 
|  | e1000_detect_gig_phy(struct e1000_hw *hw) | 
|  | { | 
|  | uint16_t phy_id_high, phy_id_low; | 
|  | int match = FALSE; | 
|  |  | 
|  | DEBUGFUNC(); | 
|  |  | 
|  | /* Read the PHY ID Registers to identify which PHY is onboard. */ | 
|  | if (e1000_read_phy_reg(hw, PHY_ID1, &phy_id_high) < 0) { | 
|  | DEBUGOUT("PHY Read Error\n"); | 
|  | return -E1000_ERR_PHY; | 
|  | } | 
|  | hw->phy_id = (uint32_t) (phy_id_high << 16); | 
|  | udelay(2); | 
|  | if (e1000_read_phy_reg(hw, PHY_ID2, &phy_id_low) < 0) { | 
|  | DEBUGOUT("PHY Read Error\n"); | 
|  | return -E1000_ERR_PHY; | 
|  | } | 
|  | hw->phy_id |= (uint32_t) (phy_id_low & PHY_REVISION_MASK); | 
|  |  | 
|  | switch (hw->mac_type) { | 
|  | case e1000_82543: | 
|  | if (hw->phy_id == M88E1000_E_PHY_ID) | 
|  | match = TRUE; | 
|  | break; | 
|  | case e1000_82544: | 
|  | if (hw->phy_id == M88E1000_I_PHY_ID) | 
|  | match = TRUE; | 
|  | break; | 
|  | case e1000_82540: | 
|  | case e1000_82545: | 
|  | case e1000_82546: | 
|  | if (hw->phy_id == M88E1011_I_PHY_ID) | 
|  | match = TRUE; | 
|  | break; | 
|  | default: | 
|  | DEBUGOUT("Invalid MAC type %d\n", hw->mac_type); | 
|  | return -E1000_ERR_CONFIG; | 
|  | } | 
|  | if (match) { | 
|  | DEBUGOUT("PHY ID 0x%X detected\n", hw->phy_id); | 
|  | return 0; | 
|  | } | 
|  | DEBUGOUT("Invalid PHY ID 0x%X\n", hw->phy_id); | 
|  | return -E1000_ERR_PHY; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_sw_init - Initialize general software structures (struct e1000_adapter) | 
|  | * | 
|  | * e1000_sw_init initializes the Adapter private data structure. | 
|  | * Fields are initialized based on PCI device information and | 
|  | * OS network device settings (MTU size). | 
|  | **/ | 
|  |  | 
|  | static int | 
|  | e1000_sw_init(struct eth_device *nic, int cardnum) | 
|  | { | 
|  | struct e1000_hw *hw = (typeof(hw)) nic->priv; | 
|  | int result; | 
|  |  | 
|  | /* PCI config space info */ | 
|  | pci_read_config_word(hw->pdev, PCI_VENDOR_ID, &hw->vendor_id); | 
|  | pci_read_config_word(hw->pdev, PCI_DEVICE_ID, &hw->device_id); | 
|  | pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_VENDOR_ID, | 
|  | &hw->subsystem_vendor_id); | 
|  | pci_read_config_word(hw->pdev, PCI_SUBSYSTEM_ID, &hw->subsystem_id); | 
|  |  | 
|  | pci_read_config_byte(hw->pdev, PCI_REVISION_ID, &hw->revision_id); | 
|  | pci_read_config_word(hw->pdev, PCI_COMMAND, &hw->pci_cmd_word); | 
|  |  | 
|  | /* identify the MAC */ | 
|  | result = e1000_set_mac_type(hw); | 
|  | if (result) { | 
|  | E1000_ERR("Unknown MAC Type\n"); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /* lan a vs. lan b settings */ | 
|  | if (hw->mac_type == e1000_82546) | 
|  | /*this also works w/ multiple 82546 cards */ | 
|  | /*but not if they're intermingled /w other e1000s */ | 
|  | hw->lan_loc = (cardnum % 2) ? e1000_lan_b : e1000_lan_a; | 
|  | else | 
|  | hw->lan_loc = e1000_lan_a; | 
|  |  | 
|  | /* flow control settings */ | 
|  | hw->fc_high_water = E1000_FC_HIGH_THRESH; | 
|  | hw->fc_low_water = E1000_FC_LOW_THRESH; | 
|  | hw->fc_pause_time = E1000_FC_PAUSE_TIME; | 
|  | hw->fc_send_xon = 1; | 
|  |  | 
|  | /* Media type - copper or fiber */ | 
|  |  | 
|  | if (hw->mac_type >= e1000_82543) { | 
|  | uint32_t status = E1000_READ_REG(hw, STATUS); | 
|  |  | 
|  | if (status & E1000_STATUS_TBIMODE) { | 
|  | DEBUGOUT("fiber interface\n"); | 
|  | hw->media_type = e1000_media_type_fiber; | 
|  | } else { | 
|  | DEBUGOUT("copper interface\n"); | 
|  | hw->media_type = e1000_media_type_copper; | 
|  | } | 
|  | } else { | 
|  | hw->media_type = e1000_media_type_fiber; | 
|  | } | 
|  |  | 
|  | if (hw->mac_type < e1000_82543) | 
|  | hw->report_tx_early = 0; | 
|  | else | 
|  | hw->report_tx_early = 1; | 
|  |  | 
|  | hw->tbi_compatibility_en = TRUE; | 
|  | #if 0 | 
|  | hw->wait_autoneg_complete = FALSE; | 
|  | hw->adaptive_ifs = TRUE; | 
|  |  | 
|  | /* Copper options */ | 
|  | if (hw->media_type == e1000_media_type_copper) { | 
|  | hw->mdix = AUTO_ALL_MODES; | 
|  | hw->disable_polarity_correction = FALSE; | 
|  | } | 
|  | #endif | 
|  | return E1000_SUCCESS; | 
|  | } | 
|  |  | 
|  | void | 
|  | fill_rx(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_rx_desc *rd; | 
|  |  | 
|  | rx_last = rx_tail; | 
|  | rd = rx_base + rx_tail; | 
|  | rx_tail = (rx_tail + 1) % 8; | 
|  | memset(rd, 0, 16); | 
|  | rd->buffer_addr = cpu_to_le64((u32) & packet); | 
|  | E1000_WRITE_REG(hw, RDT, rx_tail); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_configure_tx - Configure 8254x Transmit Unit after Reset | 
|  | * @adapter: board private structure | 
|  | * | 
|  | * Configure the Tx unit of the MAC after a reset. | 
|  | **/ | 
|  |  | 
|  | static void | 
|  | e1000_configure_tx(struct e1000_hw *hw) | 
|  | { | 
|  | unsigned long ptr; | 
|  | unsigned long tctl; | 
|  | unsigned long tipg; | 
|  |  | 
|  | ptr = (u32) tx_pool; | 
|  | if (ptr & 0xf) | 
|  | ptr = (ptr + 0x10) & (~0xf); | 
|  |  | 
|  | tx_base = (typeof(tx_base)) ptr; | 
|  |  | 
|  | E1000_WRITE_REG(hw, TDBAL, (u32) tx_base); | 
|  | E1000_WRITE_REG(hw, TDBAH, 0); | 
|  |  | 
|  | E1000_WRITE_REG(hw, TDLEN, 128); | 
|  |  | 
|  | /* Setup the HW Tx Head and Tail descriptor pointers */ | 
|  | E1000_WRITE_REG(hw, TDH, 0); | 
|  | E1000_WRITE_REG(hw, TDT, 0); | 
|  | tx_tail = 0; | 
|  |  | 
|  | /* Set the default values for the Tx Inter Packet Gap timer */ | 
|  | switch (hw->mac_type) { | 
|  | case e1000_82542_rev2_0: | 
|  | case e1000_82542_rev2_1: | 
|  | tipg = DEFAULT_82542_TIPG_IPGT; | 
|  | tipg |= DEFAULT_82542_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT; | 
|  | tipg |= DEFAULT_82542_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT; | 
|  | break; | 
|  | default: | 
|  | if (hw->media_type == e1000_media_type_fiber) | 
|  | tipg = DEFAULT_82543_TIPG_IPGT_FIBER; | 
|  | else | 
|  | tipg = DEFAULT_82543_TIPG_IPGT_COPPER; | 
|  | tipg |= DEFAULT_82543_TIPG_IPGR1 << E1000_TIPG_IPGR1_SHIFT; | 
|  | tipg |= DEFAULT_82543_TIPG_IPGR2 << E1000_TIPG_IPGR2_SHIFT; | 
|  | } | 
|  | E1000_WRITE_REG(hw, TIPG, tipg); | 
|  | #if 0 | 
|  | /* Set the Tx Interrupt Delay register */ | 
|  | E1000_WRITE_REG(hw, TIDV, adapter->tx_int_delay); | 
|  | if (hw->mac_type >= e1000_82540) | 
|  | E1000_WRITE_REG(hw, TADV, adapter->tx_abs_int_delay); | 
|  | #endif | 
|  | /* Program the Transmit Control Register */ | 
|  | tctl = E1000_READ_REG(hw, TCTL); | 
|  | tctl &= ~E1000_TCTL_CT; | 
|  | tctl |= E1000_TCTL_EN | E1000_TCTL_PSP | | 
|  | (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT); | 
|  | E1000_WRITE_REG(hw, TCTL, tctl); | 
|  |  | 
|  | e1000_config_collision_dist(hw); | 
|  | #if 0 | 
|  | /* Setup Transmit Descriptor Settings for this adapter */ | 
|  | adapter->txd_cmd = E1000_TXD_CMD_IFCS | E1000_TXD_CMD_IDE; | 
|  |  | 
|  | if (adapter->hw.report_tx_early == 1) | 
|  | adapter->txd_cmd |= E1000_TXD_CMD_RS; | 
|  | else | 
|  | adapter->txd_cmd |= E1000_TXD_CMD_RPS; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_setup_rctl - configure the receive control register | 
|  | * @adapter: Board private structure | 
|  | **/ | 
|  | static void | 
|  | e1000_setup_rctl(struct e1000_hw *hw) | 
|  | { | 
|  | uint32_t rctl; | 
|  |  | 
|  | rctl = E1000_READ_REG(hw, RCTL); | 
|  |  | 
|  | rctl &= ~(3 << E1000_RCTL_MO_SHIFT); | 
|  |  | 
|  | rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF;	/* | | 
|  | (hw.mc_filter_type << E1000_RCTL_MO_SHIFT); */ | 
|  |  | 
|  | if (hw->tbi_compatibility_on == 1) | 
|  | rctl |= E1000_RCTL_SBP; | 
|  | else | 
|  | rctl &= ~E1000_RCTL_SBP; | 
|  |  | 
|  | rctl &= ~(E1000_RCTL_SZ_4096); | 
|  | #if 0 | 
|  | switch (adapter->rx_buffer_len) { | 
|  | case E1000_RXBUFFER_2048: | 
|  | default: | 
|  | #endif | 
|  | rctl |= E1000_RCTL_SZ_2048; | 
|  | rctl &= ~(E1000_RCTL_BSEX | E1000_RCTL_LPE); | 
|  | #if 0 | 
|  | break; | 
|  | case E1000_RXBUFFER_4096: | 
|  | rctl |= E1000_RCTL_SZ_4096 | E1000_RCTL_BSEX | E1000_RCTL_LPE; | 
|  | break; | 
|  | case E1000_RXBUFFER_8192: | 
|  | rctl |= E1000_RCTL_SZ_8192 | E1000_RCTL_BSEX | E1000_RCTL_LPE; | 
|  | break; | 
|  | case E1000_RXBUFFER_16384: | 
|  | rctl |= E1000_RCTL_SZ_16384 | E1000_RCTL_BSEX | E1000_RCTL_LPE; | 
|  | break; | 
|  | } | 
|  | #endif | 
|  | E1000_WRITE_REG(hw, RCTL, rctl); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * e1000_configure_rx - Configure 8254x Receive Unit after Reset | 
|  | * @adapter: board private structure | 
|  | * | 
|  | * Configure the Rx unit of the MAC after a reset. | 
|  | **/ | 
|  | static void | 
|  | e1000_configure_rx(struct e1000_hw *hw) | 
|  | { | 
|  | unsigned long ptr; | 
|  | unsigned long rctl; | 
|  | #if 0 | 
|  | unsigned long rxcsum; | 
|  | #endif | 
|  | rx_tail = 0; | 
|  | /* make sure receives are disabled while setting up the descriptors */ | 
|  | rctl = E1000_READ_REG(hw, RCTL); | 
|  | E1000_WRITE_REG(hw, RCTL, rctl & ~E1000_RCTL_EN); | 
|  | #if 0 | 
|  | /* set the Receive Delay Timer Register */ | 
|  |  | 
|  | E1000_WRITE_REG(hw, RDTR, adapter->rx_int_delay); | 
|  | #endif | 
|  | if (hw->mac_type >= e1000_82540) { | 
|  | #if 0 | 
|  | E1000_WRITE_REG(hw, RADV, adapter->rx_abs_int_delay); | 
|  | #endif | 
|  | /* Set the interrupt throttling rate.  Value is calculated | 
|  | * as DEFAULT_ITR = 1/(MAX_INTS_PER_SEC * 256ns) */ | 
|  | #define MAX_INTS_PER_SEC        8000 | 
|  | #define DEFAULT_ITR             1000000000/(MAX_INTS_PER_SEC * 256) | 
|  | E1000_WRITE_REG(hw, ITR, DEFAULT_ITR); | 
|  | } | 
|  |  | 
|  | /* Setup the Base and Length of the Rx Descriptor Ring */ | 
|  | ptr = (u32) rx_pool; | 
|  | if (ptr & 0xf) | 
|  | ptr = (ptr + 0x10) & (~0xf); | 
|  | rx_base = (typeof(rx_base)) ptr; | 
|  | E1000_WRITE_REG(hw, RDBAL, (u32) rx_base); | 
|  | E1000_WRITE_REG(hw, RDBAH, 0); | 
|  |  | 
|  | E1000_WRITE_REG(hw, RDLEN, 128); | 
|  |  | 
|  | /* Setup the HW Rx Head and Tail Descriptor Pointers */ | 
|  | E1000_WRITE_REG(hw, RDH, 0); | 
|  | E1000_WRITE_REG(hw, RDT, 0); | 
|  | #if 0 | 
|  | /* Enable 82543 Receive Checksum Offload for TCP and UDP */ | 
|  | if ((adapter->hw.mac_type >= e1000_82543) && (adapter->rx_csum == TRUE)) { | 
|  | rxcsum = E1000_READ_REG(hw, RXCSUM); | 
|  | rxcsum |= E1000_RXCSUM_TUOFL; | 
|  | E1000_WRITE_REG(hw, RXCSUM, rxcsum); | 
|  | } | 
|  | #endif | 
|  | /* Enable Receives */ | 
|  |  | 
|  | E1000_WRITE_REG(hw, RCTL, rctl); | 
|  | fill_rx(hw); | 
|  | } | 
|  |  | 
|  | /************************************************************************** | 
|  | POLL - Wait for a frame | 
|  | ***************************************************************************/ | 
|  | static int | 
|  | e1000_poll(struct eth_device *nic) | 
|  | { | 
|  | struct e1000_hw *hw = nic->priv; | 
|  | struct e1000_rx_desc *rd; | 
|  | /* return true if there's an ethernet packet ready to read */ | 
|  | rd = rx_base + rx_last; | 
|  | if (!(le32_to_cpu(rd->status)) & E1000_RXD_STAT_DD) | 
|  | return 0; | 
|  | /*DEBUGOUT("recv: packet len=%d \n", rd->length); */ | 
|  | NetReceive(packet, le32_to_cpu(rd->length)); | 
|  | fill_rx(hw); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /************************************************************************** | 
|  | TRANSMIT - Transmit a frame | 
|  | ***************************************************************************/ | 
|  | static int | 
|  | e1000_transmit(struct eth_device *nic, volatile void *packet, int length) | 
|  | { | 
|  | struct e1000_hw *hw = nic->priv; | 
|  | struct e1000_tx_desc *txp; | 
|  | int i = 0; | 
|  |  | 
|  | txp = tx_base + tx_tail; | 
|  | tx_tail = (tx_tail + 1) % 8; | 
|  |  | 
|  | txp->buffer_addr = cpu_to_le64(virt_to_bus(packet)); | 
|  | txp->lower.data = cpu_to_le32(E1000_TXD_CMD_RPS | E1000_TXD_CMD_EOP | | 
|  | E1000_TXD_CMD_IFCS | length); | 
|  | txp->upper.data = 0; | 
|  | E1000_WRITE_REG(hw, TDT, tx_tail); | 
|  |  | 
|  | while (!(le32_to_cpu(txp->upper.data) & E1000_TXD_STAT_DD)) { | 
|  | if (i++ > TOUT_LOOP) { | 
|  | DEBUGOUT("e1000: tx timeout\n"); | 
|  | return 0; | 
|  | } | 
|  | udelay(10);	/* give the nic a chance to write to the register */ | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /*reset function*/ | 
|  | static inline int | 
|  | e1000_reset(struct eth_device *nic) | 
|  | { | 
|  | struct e1000_hw *hw = nic->priv; | 
|  |  | 
|  | e1000_reset_hw(hw); | 
|  | if (hw->mac_type >= e1000_82544) { | 
|  | E1000_WRITE_REG(hw, WUC, 0); | 
|  | } | 
|  | return e1000_init_hw(nic); | 
|  | } | 
|  |  | 
|  | /************************************************************************** | 
|  | DISABLE - Turn off ethernet interface | 
|  | ***************************************************************************/ | 
|  | static void | 
|  | e1000_disable(struct eth_device *nic) | 
|  | { | 
|  | struct e1000_hw *hw = nic->priv; | 
|  |  | 
|  | /* Turn off the ethernet interface */ | 
|  | E1000_WRITE_REG(hw, RCTL, 0); | 
|  | E1000_WRITE_REG(hw, TCTL, 0); | 
|  |  | 
|  | /* Clear the transmit ring */ | 
|  | E1000_WRITE_REG(hw, TDH, 0); | 
|  | E1000_WRITE_REG(hw, TDT, 0); | 
|  |  | 
|  | /* Clear the receive ring */ | 
|  | E1000_WRITE_REG(hw, RDH, 0); | 
|  | E1000_WRITE_REG(hw, RDT, 0); | 
|  |  | 
|  | /* put the card in its initial state */ | 
|  | #if 0 | 
|  | E1000_WRITE_REG(hw, CTRL, E1000_CTRL_RST); | 
|  | #endif | 
|  | mdelay(10); | 
|  |  | 
|  | } | 
|  |  | 
|  | /************************************************************************** | 
|  | INIT - set up ethernet interface(s) | 
|  | ***************************************************************************/ | 
|  | static int | 
|  | e1000_init(struct eth_device *nic, bd_t * bis) | 
|  | { | 
|  | struct e1000_hw *hw = nic->priv; | 
|  | int ret_val = 0; | 
|  |  | 
|  | ret_val = e1000_reset(nic); | 
|  | if (ret_val < 0) { | 
|  | if ((ret_val == -E1000_ERR_NOLINK) || | 
|  | (ret_val == -E1000_ERR_TIMEOUT)) { | 
|  | E1000_ERR("Valid Link not detected\n"); | 
|  | } else { | 
|  | E1000_ERR("Hardware Initialization Failed\n"); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | e1000_configure_tx(hw); | 
|  | e1000_setup_rctl(hw); | 
|  | e1000_configure_rx(hw); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /************************************************************************** | 
|  | PROBE - Look for an adapter, this routine's visible to the outside | 
|  | You should omit the last argument struct pci_device * for a non-PCI NIC | 
|  | ***************************************************************************/ | 
|  | int | 
|  | e1000_initialize(bd_t * bis) | 
|  | { | 
|  | pci_dev_t devno; | 
|  | int card_number = 0; | 
|  | struct eth_device *nic = NULL; | 
|  | struct e1000_hw *hw = NULL; | 
|  | u32 iobase; | 
|  | int idx = 0; | 
|  | u32 PciCommandWord; | 
|  |  | 
|  | while (1) {		/* Find PCI device(s) */ | 
|  | if ((devno = pci_find_devices(supported, idx++)) < 0) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | pci_read_config_dword(devno, PCI_BASE_ADDRESS_0, &iobase); | 
|  | iobase &= ~0xf;	/* Mask the bits that say "this is an io addr" */ | 
|  | DEBUGOUT("e1000#%d: iobase 0x%08x\n", card_number, iobase); | 
|  |  | 
|  | pci_write_config_dword(devno, PCI_COMMAND, | 
|  | PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER); | 
|  | /* Check if I/O accesses and Bus Mastering are enabled. */ | 
|  | pci_read_config_dword(devno, PCI_COMMAND, &PciCommandWord); | 
|  | if (!(PciCommandWord & PCI_COMMAND_MEMORY)) { | 
|  | printf("Error: Can not enable MEM access.\n"); | 
|  | continue; | 
|  | } else if (!(PciCommandWord & PCI_COMMAND_MASTER)) { | 
|  | printf("Error: Can not enable Bus Mastering.\n"); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | nic = (struct eth_device *) malloc(sizeof (*nic)); | 
|  | hw = (struct e1000_hw *) malloc(sizeof (*hw)); | 
|  | hw->pdev = devno; | 
|  | nic->priv = hw; | 
|  | nic->iobase = bus_to_phys(devno, iobase); | 
|  |  | 
|  | sprintf(nic->name, "e1000#%d", card_number); | 
|  |  | 
|  | /* Are these variables needed? */ | 
|  | #if 0 | 
|  | hw->fc = e1000_fc_none; | 
|  | hw->original_fc = e1000_fc_none; | 
|  | #else | 
|  | hw->fc = e1000_fc_default; | 
|  | hw->original_fc = e1000_fc_default; | 
|  | #endif | 
|  | hw->autoneg_failed = 0; | 
|  | hw->get_link_status = TRUE; | 
|  | hw->hw_addr = (typeof(hw->hw_addr)) iobase; | 
|  | hw->mac_type = e1000_undefined; | 
|  |  | 
|  | /* MAC and Phy settings */ | 
|  | if (e1000_sw_init(nic, card_number) < 0) { | 
|  | free(hw); | 
|  | free(nic); | 
|  | return 0; | 
|  | } | 
|  | if (e1000_validate_eeprom_checksum(nic) < 0) { | 
|  | printf("The EEPROM Checksum Is Not Valid\n"); | 
|  | free(hw); | 
|  | free(nic); | 
|  | return 0; | 
|  | } | 
|  | e1000_read_mac_addr(nic); | 
|  |  | 
|  | E1000_WRITE_REG(hw, PBA, E1000_DEFAULT_PBA); | 
|  |  | 
|  | printf("e1000: %02x:%02x:%02x:%02x:%02x:%02x\n", | 
|  | nic->enetaddr[0], nic->enetaddr[1], nic->enetaddr[2], | 
|  | nic->enetaddr[3], nic->enetaddr[4], nic->enetaddr[5]); | 
|  |  | 
|  | nic->init = e1000_init; | 
|  | nic->recv = e1000_poll; | 
|  | nic->send = e1000_transmit; | 
|  | nic->halt = e1000_disable; | 
|  |  | 
|  | eth_register(nic); | 
|  |  | 
|  | card_number++; | 
|  | } | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | #endif |