|  | /* | 
|  | * (C) Copyright 2001 | 
|  | * Josh Huber <huber@mclx.com>, Mission Critical Linux, Inc. | 
|  | * | 
|  | * See file CREDITS for list of people who contributed to this | 
|  | * project. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public License as | 
|  | * published by the Free Software Foundation; either version 2 of | 
|  | * the License, or (at your option) any later version. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write to the Free Software | 
|  | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, | 
|  | * MA 02111-1307 USA | 
|  | */ | 
|  |  | 
|  | /************************************************************************* | 
|  | * adaption for the Marvell DB64360 Board | 
|  | * Ingo Assmus (ingo.assmus@keymile.com) | 
|  | * | 
|  | * adaption for the cpci750 Board | 
|  | * Reinhard Arlt (reinhard.arlt@esd-electronics.com) | 
|  | *************************************************************************/ | 
|  |  | 
|  |  | 
|  | /* sdram_init.c - automatic memory sizing */ | 
|  |  | 
|  | #include <common.h> | 
|  | #include <74xx_7xx.h> | 
|  | #include "../../Marvell/include/memory.h" | 
|  | #include "../../Marvell/include/pci.h" | 
|  | #include "../../Marvell/include/mv_gen_reg.h" | 
|  | #include <net.h> | 
|  |  | 
|  | #include "eth.h" | 
|  | #include "mpsc.h" | 
|  | #include "../../Marvell/common/i2c.h" | 
|  | #include "64360.h" | 
|  | #include "mv_regs.h" | 
|  |  | 
|  | DECLARE_GLOBAL_DATA_PTR; | 
|  |  | 
|  | #undef	DEBUG | 
|  | /* #define DEBUG */ | 
|  | #ifdef CONFIG_PCI | 
|  | #define	MAP_PCI | 
|  | #endif /* of CONFIG_PCI */ | 
|  |  | 
|  | #ifdef DEBUG | 
|  | #define DP(x) x | 
|  | #else | 
|  | #define DP(x) | 
|  | #endif | 
|  |  | 
|  | int set_dfcdlInit(void);	/* setup delay line of Mv64360 */ | 
|  |  | 
|  | /* ------------------------------------------------------------------------- */ | 
|  |  | 
|  | int | 
|  | memory_map_bank(unsigned int bankNo, | 
|  | unsigned int bankBase, | 
|  | unsigned int bankLength) | 
|  | { | 
|  | #ifdef MAP_PCI | 
|  | PCI_HOST host; | 
|  | #endif | 
|  |  | 
|  |  | 
|  | #ifdef DEBUG | 
|  | if (bankLength > 0) { | 
|  | printf("mapping bank %d at %08x - %08x\n", | 
|  | bankNo, bankBase, bankBase + bankLength - 1); | 
|  | } else { | 
|  | printf("unmapping bank %d\n", bankNo); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | memoryMapBank(bankNo, bankBase, bankLength); | 
|  |  | 
|  | #ifdef MAP_PCI | 
|  | for (host=PCI_HOST0;host<=PCI_HOST1;host++) { | 
|  | const int features= | 
|  | PREFETCH_ENABLE | | 
|  | DELAYED_READ_ENABLE | | 
|  | AGGRESSIVE_PREFETCH | | 
|  | READ_LINE_AGGRESSIVE_PREFETCH | | 
|  | READ_MULTI_AGGRESSIVE_PREFETCH | | 
|  | MAX_BURST_4 | | 
|  | PCI_NO_SWAP; | 
|  |  | 
|  | pciMapMemoryBank(host, bankNo, bankBase, bankLength); | 
|  |  | 
|  | pciSetRegionSnoopMode(host, bankNo, PCI_SNOOP_WB, bankBase, | 
|  | bankLength); | 
|  |  | 
|  | pciSetRegionFeatures(host, bankNo, features, bankBase, bankLength); | 
|  | } | 
|  | #endif | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #define GB	   (1 << 30) | 
|  |  | 
|  | /* much of this code is based on (or is) the code in the pip405 port */ | 
|  | /* thanks go to the authors of said port - Josh */ | 
|  |  | 
|  | /* structure to store the relevant information about an sdram bank */ | 
|  | typedef struct sdram_info { | 
|  | uchar drb_size; | 
|  | uchar registered, ecc; | 
|  | uchar tpar; | 
|  | uchar tras_clocks; | 
|  | uchar burst_len; | 
|  | uchar banks, slot; | 
|  | } sdram_info_t; | 
|  |  | 
|  | /* Typedefs for 'gtAuxilGetDIMMinfo' function */ | 
|  |  | 
|  | typedef enum _memoryType {SDRAM, DDR} MEMORY_TYPE; | 
|  |  | 
|  | typedef enum _voltageInterface {TTL_5V_TOLERANT, LVTTL, HSTL_1_5V, | 
|  | SSTL_3_3V, SSTL_2_5V, VOLTAGE_UNKNOWN, | 
|  | } VOLTAGE_INTERFACE; | 
|  |  | 
|  | typedef enum _max_CL_supported_DDR {DDR_CL_1=1, DDR_CL_1_5=2, DDR_CL_2=4, DDR_CL_2_5=8, DDR_CL_3=16, DDR_CL_3_5=32, DDR_CL_FAULT} MAX_CL_SUPPORTED_DDR; | 
|  | typedef enum _max_CL_supported_SD {SD_CL_1=1,  SD_CL_2,  SD_CL_3, SD_CL_4, SD_CL_5, SD_CL_6, SD_CL_7, SD_FAULT} MAX_CL_SUPPORTED_SD; | 
|  |  | 
|  |  | 
|  | /* SDRAM/DDR information struct */ | 
|  | typedef struct _gtMemoryDimmInfo { | 
|  | MEMORY_TYPE memoryType; | 
|  | unsigned int numOfRowAddresses; | 
|  | unsigned int numOfColAddresses; | 
|  | unsigned int numOfModuleBanks; | 
|  | unsigned int dataWidth; | 
|  | VOLTAGE_INTERFACE voltageInterface; | 
|  | unsigned int errorCheckType;			/* ECC , PARITY.. */ | 
|  | unsigned int sdramWidth;			/* 4,8,16 or 32 */ ; | 
|  | unsigned int errorCheckDataWidth;		/* 0 - no, 1 - Yes */ | 
|  | unsigned int minClkDelay; | 
|  | unsigned int burstLengthSupported; | 
|  | unsigned int numOfBanksOnEachDevice; | 
|  | unsigned int suportedCasLatencies; | 
|  | unsigned int RefreshInterval; | 
|  | unsigned int maxCASlatencySupported_LoP;	/* LoP left of point (measured in ns) */ | 
|  | unsigned int maxCASlatencySupported_RoP;	/* RoP right of point (measured in ns) */ | 
|  | MAX_CL_SUPPORTED_DDR maxClSupported_DDR; | 
|  | MAX_CL_SUPPORTED_SD maxClSupported_SD; | 
|  | unsigned int moduleBankDensity; | 
|  | /* module attributes (true for yes) */ | 
|  | bool bufferedAddrAndControlInputs; | 
|  | bool registeredAddrAndControlInputs; | 
|  | bool onCardPLL; | 
|  | bool bufferedDQMBinputs; | 
|  | bool registeredDQMBinputs; | 
|  | bool differentialClockInput; | 
|  | bool redundantRowAddressing; | 
|  |  | 
|  | /* module general attributes */ | 
|  | bool suportedAutoPreCharge; | 
|  | bool suportedPreChargeAll; | 
|  | bool suportedEarlyRasPreCharge; | 
|  | bool suportedWrite1ReadBurst; | 
|  | bool suported5PercentLowVCC; | 
|  | bool suported5PercentUpperVCC; | 
|  | /* module timing parameters */ | 
|  | unsigned int minRasToCasDelay; | 
|  | unsigned int minRowActiveRowActiveDelay; | 
|  | unsigned int minRasPulseWidth; | 
|  | unsigned int minRowPrechargeTime;		/* measured in ns */ | 
|  |  | 
|  | int addrAndCommandHoldTime;			/* LoP left of point (measured in ns) */ | 
|  | int addrAndCommandSetupTime;			/* (measured in ns/100) */ | 
|  | int dataInputSetupTime;				/* LoP left of point (measured in ns) */ | 
|  | int dataInputHoldTime;				/* LoP left of point (measured in ns) */ | 
|  | /* tAC times for highest 2nd and 3rd highest CAS Latency values */ | 
|  | unsigned int clockToDataOut_LoP;		/* LoP left of point (measured in ns) */ | 
|  | unsigned int clockToDataOut_RoP;		/* RoP right of point (measured in ns) */ | 
|  | unsigned int clockToDataOutMinus1_LoP;		/* LoP left of point (measured in ns) */ | 
|  | unsigned int clockToDataOutMinus1_RoP;		/* RoP right of point (measured in ns) */ | 
|  | unsigned int clockToDataOutMinus2_LoP;		/* LoP left of point (measured in ns) */ | 
|  | unsigned int clockToDataOutMinus2_RoP;		/* RoP right of point (measured in ns) */ | 
|  |  | 
|  | unsigned int minimumCycleTimeAtMaxCasLatancy_LoP;	/* LoP left of point (measured in ns) */ | 
|  | unsigned int minimumCycleTimeAtMaxCasLatancy_RoP;	/* RoP right of point (measured in ns) */ | 
|  |  | 
|  | unsigned int minimumCycleTimeAtMaxCasLatancyMinus1_LoP;	/* LoP left of point (measured in ns) */ | 
|  | unsigned int minimumCycleTimeAtMaxCasLatancyMinus1_RoP;	/* RoP right of point (measured in ns) */ | 
|  |  | 
|  | unsigned int minimumCycleTimeAtMaxCasLatancyMinus2_LoP;	/* LoP left of point (measured in ns) */ | 
|  | unsigned int minimumCycleTimeAtMaxCasLatancyMinus2_RoP;	/* RoP right of point (measured in ns) */ | 
|  |  | 
|  | /* Parameters calculated from | 
|  | the extracted DIMM information */ | 
|  | unsigned int size; | 
|  | unsigned int deviceDensity;			/* 16,64,128,256 or 512 Mbit */ | 
|  | unsigned int numberOfDevices; | 
|  | uchar drb_size;					/* DRAM size in n*64Mbit */ | 
|  | uchar slot;					/* Slot Number this module is inserted in */ | 
|  | uchar spd_raw_data[128];			/* Content of SPD-EEPROM copied 1:1 */ | 
|  | #ifdef DEBUG | 
|  | uchar manufactura[8];				/* Content of SPD-EEPROM Byte 64-71 */ | 
|  | uchar modul_id[18];				/* Content of SPD-EEPROM Byte 73-90 */ | 
|  | uchar vendor_data[27];				/* Content of SPD-EEPROM Byte 99-125 */ | 
|  | unsigned long modul_serial_no;			/* Content of SPD-EEPROM Byte 95-98 */ | 
|  | unsigned int manufac_date;			/* Content of SPD-EEPROM Byte 93-94 */ | 
|  | unsigned int modul_revision;			/* Content of SPD-EEPROM Byte 91-92 */ | 
|  | uchar manufac_place;				/* Content of SPD-EEPROM Byte 72 */ | 
|  |  | 
|  | #endif | 
|  | } AUX_MEM_DIMM_INFO; | 
|  |  | 
|  |  | 
|  | /* | 
|  | * translate ns.ns/10 coding of SPD timing values | 
|  | * into 10 ps unit values | 
|  | */ | 
|  | static inline unsigned short | 
|  | NS10to10PS(unsigned char spd_byte) | 
|  | { | 
|  | unsigned short ns, ns10; | 
|  |  | 
|  | /* isolate upper nibble */ | 
|  | ns = (spd_byte >> 4) & 0x0F; | 
|  | /* isolate lower nibble */ | 
|  | ns10 = (spd_byte & 0x0F); | 
|  |  | 
|  | return(ns*100 + ns10*10); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * translate ns coding of SPD timing values | 
|  | * into 10 ps unit values | 
|  | */ | 
|  | static inline unsigned short | 
|  | NSto10PS(unsigned char spd_byte) | 
|  | { | 
|  | return(spd_byte*100); | 
|  | } | 
|  |  | 
|  | /* This code reads the SPD chip on the sdram and populates | 
|  | * the array which is passed in with the relevant information */ | 
|  | /* static int check_dimm(uchar slot, AUX_MEM_DIMM_INFO *info) */ | 
|  | static int check_dimm (uchar slot, AUX_MEM_DIMM_INFO * dimmInfo) | 
|  | { | 
|  | unsigned long spd_checksum; | 
|  |  | 
|  | uchar addr = slot == 0 ? DIMM0_I2C_ADDR : DIMM1_I2C_ADDR; | 
|  | int ret; | 
|  | unsigned int i, j, density = 1, devicesForErrCheck = 0; | 
|  |  | 
|  | #ifdef DEBUG | 
|  | unsigned int k; | 
|  | #endif | 
|  | unsigned int rightOfPoint = 0, leftOfPoint = 0, mult, div, time_tmp; | 
|  | int sign = 1, shift, maskLeftOfPoint, maskRightOfPoint; | 
|  | uchar supp_cal, cal_val; | 
|  | ulong memclk, tmemclk; | 
|  | ulong tmp; | 
|  | uchar trp_clocks = 0, trcd_clocks, tras_clocks, trrd_clocks; | 
|  | uchar data[128]; | 
|  |  | 
|  | memclk = gd->bus_clk; | 
|  | tmemclk = 1000000000 / (memclk / 100);	/* in 10 ps units */ | 
|  |  | 
|  | memset (data, 0, sizeof (data)); | 
|  |  | 
|  |  | 
|  | ret = 0; | 
|  |  | 
|  | DP (puts ("before i2c read\n")); | 
|  |  | 
|  | ret = i2c_read (addr, 0, 2, data, 128); | 
|  |  | 
|  | DP (puts ("after i2c read\n")); | 
|  |  | 
|  | if ((data[64] != 'e') || (data[65] != 's') || (data[66] != 'd') | 
|  | || (data[67] != '-') || (data[68] != 'g') || (data[69] != 'm') | 
|  | || (data[70] != 'b') || (data[71] != 'h')) { | 
|  | ret = -1; | 
|  | } | 
|  |  | 
|  | if ((ret != 0) && (slot == 0)) { | 
|  | memset (data, 0, sizeof (data)); | 
|  | data[0] = 0x80; | 
|  | data[1] = 0x08; | 
|  | data[2] = 0x07; | 
|  | data[3] = 0x0c; | 
|  | data[4] = 0x09; | 
|  | data[5] = 0x01; | 
|  | data[6] = 0x48; | 
|  | data[7] = 0x00; | 
|  | data[8] = 0x04; | 
|  | data[9] = 0x75; | 
|  | data[10] = 0x80; | 
|  | data[11] = 0x02; | 
|  | data[12] = 0x80; | 
|  | data[13] = 0x10; | 
|  | data[14] = 0x08; | 
|  | data[15] = 0x01; | 
|  | data[16] = 0x0e; | 
|  | data[17] = 0x04; | 
|  | data[18] = 0x0c; | 
|  | data[19] = 0x01; | 
|  | data[20] = 0x02; | 
|  | data[21] = 0x20; | 
|  | data[22] = 0x00; | 
|  | data[23] = 0xa0; | 
|  | data[24] = 0x80; | 
|  | data[25] = 0x00; | 
|  | data[26] = 0x00; | 
|  | data[27] = 0x50; | 
|  | data[28] = 0x3c; | 
|  | data[29] = 0x50; | 
|  | data[30] = 0x32; | 
|  | data[31] = 0x10; | 
|  | data[32] = 0xb0; | 
|  | data[33] = 0xb0; | 
|  | data[34] = 0x60; | 
|  | data[35] = 0x60; | 
|  | data[64] = 'e'; | 
|  | data[65] = 's'; | 
|  | data[66] = 'd'; | 
|  | data[67] = '-'; | 
|  | data[68] = 'g'; | 
|  | data[69] = 'm'; | 
|  | data[70] = 'b'; | 
|  | data[71] = 'h'; | 
|  | ret = 0; | 
|  | } | 
|  |  | 
|  | /* zero all the values */ | 
|  | memset (dimmInfo, 0, sizeof (*dimmInfo)); | 
|  |  | 
|  | /* copy the SPD content 1:1 into the dimmInfo structure */ | 
|  | for (i = 0; i <= 127; i++) { | 
|  | dimmInfo->spd_raw_data[i] = data[i]; | 
|  | } | 
|  |  | 
|  | if (ret) { | 
|  | DP (printf ("No DIMM in slot %d [err = %x]\n", slot, ret)); | 
|  | return 0; | 
|  | } else | 
|  | dimmInfo->slot = slot;	/* start to fill up dimminfo for this "slot" */ | 
|  |  | 
|  | #ifdef CONFIG_SYS_DISPLAY_DIMM_SPD_CONTENT | 
|  |  | 
|  | for (i = 0; i <= 127; i++) { | 
|  | printf ("SPD-EEPROM Byte %3d = %3x (%3d)\n", i, data[i], | 
|  | data[i]); | 
|  | } | 
|  |  | 
|  | #endif | 
|  | #ifdef DEBUG | 
|  | /* find Manufacturer of Dimm Module */ | 
|  | for (i = 0; i < sizeof (dimmInfo->manufactura); i++) { | 
|  | dimmInfo->manufactura[i] = data[64 + i]; | 
|  | } | 
|  | printf ("\nThis RAM-Module is produced by:		%s\n", | 
|  | dimmInfo->manufactura); | 
|  |  | 
|  | /* find Manul-ID of Dimm Module */ | 
|  | for (i = 0; i < sizeof (dimmInfo->modul_id); i++) { | 
|  | dimmInfo->modul_id[i] = data[73 + i]; | 
|  | } | 
|  | printf ("The Module-ID of this RAM-Module is:		%s\n", | 
|  | dimmInfo->modul_id); | 
|  |  | 
|  | /* find Vendor-Data of Dimm Module */ | 
|  | for (i = 0; i < sizeof (dimmInfo->vendor_data); i++) { | 
|  | dimmInfo->vendor_data[i] = data[99 + i]; | 
|  | } | 
|  | printf ("Vendor Data of this RAM-Module is:		%s\n", | 
|  | dimmInfo->vendor_data); | 
|  |  | 
|  | /* find modul_serial_no of Dimm Module */ | 
|  | dimmInfo->modul_serial_no = (*((unsigned long *) (&data[95]))); | 
|  | printf ("Serial No. of this RAM-Module is:		%ld (%lx)\n", | 
|  | dimmInfo->modul_serial_no, dimmInfo->modul_serial_no); | 
|  |  | 
|  | /* find Manufac-Data of Dimm Module */ | 
|  | dimmInfo->manufac_date = (*((unsigned int *) (&data[93]))); | 
|  | printf ("Manufactoring Date of this RAM-Module is:	%d.%d\n", data[93], data[94]);	/*dimmInfo->manufac_date */ | 
|  |  | 
|  | /* find modul_revision of Dimm Module */ | 
|  | dimmInfo->modul_revision = (*((unsigned int *) (&data[91]))); | 
|  | printf ("Module Revision of this RAM-Module is: 		%d.%d\n", data[91], data[92]);	/* dimmInfo->modul_revision */ | 
|  |  | 
|  | /* find manufac_place of Dimm Module */ | 
|  | dimmInfo->manufac_place = (*((unsigned char *) (&data[72]))); | 
|  | printf ("manufac_place of this RAM-Module is:		%d\n", | 
|  | dimmInfo->manufac_place); | 
|  |  | 
|  | #endif | 
|  | /*------------------------------------------------------------------------------------------------------------------------------*/ | 
|  | /* calculate SPD checksum */ | 
|  | /*------------------------------------------------------------------------------------------------------------------------------*/ | 
|  | spd_checksum = 0; | 
|  | #if 0				/* test-only */ | 
|  | for (i = 0; i <= 62; i++) { | 
|  | spd_checksum += data[i]; | 
|  | } | 
|  |  | 
|  | if ((spd_checksum & 0xff) != data[63]) { | 
|  | printf ("### Error in SPD Checksum !!! Is_value: %2x should value %2x\n", (unsigned int) (spd_checksum & 0xff), data[63]); | 
|  | hang (); | 
|  | } | 
|  |  | 
|  | else | 
|  | printf ("SPD Checksum ok!\n"); | 
|  | #endif /* test-only */ | 
|  |  | 
|  | /*------------------------------------------------------------------------------------------------------------------------------*/ | 
|  | for (i = 2; i <= 35; i++) { | 
|  | switch (i) { | 
|  | case 2:	/* Memory type (DDR / SDRAM) */ | 
|  | dimmInfo->memoryType = (data[i] == 0x7) ? DDR : SDRAM; | 
|  | #ifdef DEBUG | 
|  | if (dimmInfo->memoryType == 0) | 
|  | DP (printf | 
|  | ("Dram_type in slot %d is:			SDRAM\n", | 
|  | dimmInfo->slot)); | 
|  | if (dimmInfo->memoryType == 1) | 
|  | DP (printf | 
|  | ("Dram_type in slot %d is:			DDRAM\n", | 
|  | dimmInfo->slot)); | 
|  | #endif | 
|  | break; | 
|  | /*------------------------------------------------------------------------------------------------------------------------------*/ | 
|  |  | 
|  | case 3:	/* Number Of Row Addresses */ | 
|  | dimmInfo->numOfRowAddresses = data[i]; | 
|  | DP (printf | 
|  | ("Module Number of row addresses:		%d\n", | 
|  | dimmInfo->numOfRowAddresses)); | 
|  | break; | 
|  | /*------------------------------------------------------------------------------------------------------------------------------*/ | 
|  |  | 
|  | case 4:	/* Number Of Column Addresses */ | 
|  | dimmInfo->numOfColAddresses = data[i]; | 
|  | DP (printf | 
|  | ("Module Number of col addresses:		%d\n", | 
|  | dimmInfo->numOfColAddresses)); | 
|  | break; | 
|  | /*------------------------------------------------------------------------------------------------------------------------------*/ | 
|  |  | 
|  | case 5:	/* Number Of Module Banks */ | 
|  | dimmInfo->numOfModuleBanks = data[i]; | 
|  | DP (printf | 
|  | ("Number of Banks on Mod. : 				%d\n", | 
|  | dimmInfo->numOfModuleBanks)); | 
|  | break; | 
|  | /*------------------------------------------------------------------------------------------------------------------------------*/ | 
|  |  | 
|  | case 6:	/* Data Width */ | 
|  | dimmInfo->dataWidth = data[i]; | 
|  | DP (printf | 
|  | ("Module Data Width:				%d\n", | 
|  | dimmInfo->dataWidth)); | 
|  | break; | 
|  | /*------------------------------------------------------------------------------------------------------------------------------*/ | 
|  |  | 
|  | case 8:	/* Voltage Interface */ | 
|  | switch (data[i]) { | 
|  | case 0x0: | 
|  | dimmInfo->voltageInterface = TTL_5V_TOLERANT; | 
|  | DP (printf | 
|  | ("Module is 					TTL_5V_TOLERANT\n")); | 
|  | break; | 
|  | case 0x1: | 
|  | dimmInfo->voltageInterface = LVTTL; | 
|  | DP (printf | 
|  | ("Module is 					LVTTL\n")); | 
|  | break; | 
|  | case 0x2: | 
|  | dimmInfo->voltageInterface = HSTL_1_5V; | 
|  | DP (printf | 
|  | ("Module is 					TTL_5V_TOLERANT\n")); | 
|  | break; | 
|  | case 0x3: | 
|  | dimmInfo->voltageInterface = SSTL_3_3V; | 
|  | DP (printf | 
|  | ("Module is 					HSTL_1_5V\n")); | 
|  | break; | 
|  | case 0x4: | 
|  | dimmInfo->voltageInterface = SSTL_2_5V; | 
|  | DP (printf | 
|  | ("Module is 					SSTL_2_5V\n")); | 
|  | break; | 
|  | default: | 
|  | dimmInfo->voltageInterface = VOLTAGE_UNKNOWN; | 
|  | DP (printf | 
|  | ("Module is 					VOLTAGE_UNKNOWN\n")); | 
|  | break; | 
|  | } | 
|  | break; | 
|  | /*------------------------------------------------------------------------------------------------------------------------------*/ | 
|  |  | 
|  | case 9:	/* Minimum Cycle Time At Max CasLatancy */ | 
|  | shift = (dimmInfo->memoryType == DDR) ? 4 : 2; | 
|  | mult = (dimmInfo->memoryType == DDR) ? 10 : 25; | 
|  | maskLeftOfPoint = | 
|  | (dimmInfo->memoryType == DDR) ? 0xf0 : 0xfc; | 
|  | maskRightOfPoint = | 
|  | (dimmInfo->memoryType == DDR) ? 0xf : 0x03; | 
|  | leftOfPoint = (data[i] & maskLeftOfPoint) >> shift; | 
|  | rightOfPoint = (data[i] & maskRightOfPoint) * mult; | 
|  | dimmInfo->minimumCycleTimeAtMaxCasLatancy_LoP = | 
|  | leftOfPoint; | 
|  | dimmInfo->minimumCycleTimeAtMaxCasLatancy_RoP = | 
|  | rightOfPoint; | 
|  | DP (printf | 
|  | ("Minimum Cycle Time At Max CasLatancy:		%d.%d [ns]\n", | 
|  | leftOfPoint, rightOfPoint)); | 
|  | break; | 
|  | /*------------------------------------------------------------------------------------------------------------------------------*/ | 
|  |  | 
|  | case 10:	/* Clock To Data Out */ | 
|  | div = (dimmInfo->memoryType == DDR) ? 100 : 10; | 
|  | time_tmp = | 
|  | (((data[i] & 0xf0) >> 4) * 10) + | 
|  | ((data[i] & 0x0f)); | 
|  | leftOfPoint = time_tmp / div; | 
|  | rightOfPoint = time_tmp % div; | 
|  | dimmInfo->clockToDataOut_LoP = leftOfPoint; | 
|  | dimmInfo->clockToDataOut_RoP = rightOfPoint; | 
|  | DP (printf | 
|  | ("Clock To Data Out:				%d.%2d [ns]\n", | 
|  | leftOfPoint, rightOfPoint)); | 
|  | /*dimmInfo->clockToDataOut */ | 
|  | break; | 
|  | /*------------------------------------------------------------------------------------------------------------------------------*/ | 
|  |  | 
|  | #ifdef CONFIG_MV64360_ECC | 
|  | case 11:	/* Error Check Type */ | 
|  | dimmInfo->errorCheckType = data[i]; | 
|  | DP (printf | 
|  | ("Error Check Type (0=NONE):			%d\n", | 
|  | dimmInfo->errorCheckType)); | 
|  | break; | 
|  | #endif /* of ifdef CONFIG_MV64360_ECC */ | 
|  | /*------------------------------------------------------------------------------------------------------------------------------*/ | 
|  |  | 
|  | case 12:	/* Refresh Interval */ | 
|  | dimmInfo->RefreshInterval = data[i]; | 
|  | DP (printf | 
|  | ("RefreshInterval (80= Self refresh Normal, 15.625us) : %x\n", | 
|  | dimmInfo->RefreshInterval)); | 
|  | break; | 
|  | /*------------------------------------------------------------------------------------------------------------------------------*/ | 
|  |  | 
|  | case 13:	/* Sdram Width */ | 
|  | dimmInfo->sdramWidth = data[i]; | 
|  | DP (printf | 
|  | ("Sdram Width:					%d\n", | 
|  | dimmInfo->sdramWidth)); | 
|  | break; | 
|  | /*------------------------------------------------------------------------------------------------------------------------------*/ | 
|  |  | 
|  | case 14:	/* Error Check Data Width */ | 
|  | dimmInfo->errorCheckDataWidth = data[i]; | 
|  | DP (printf | 
|  | ("Error Check Data Width:			%d\n", | 
|  | dimmInfo->errorCheckDataWidth)); | 
|  | break; | 
|  | /*------------------------------------------------------------------------------------------------------------------------------*/ | 
|  |  | 
|  | case 15:	/* Minimum Clock Delay */ | 
|  | dimmInfo->minClkDelay = data[i]; | 
|  | DP (printf | 
|  | ("Minimum Clock Delay:				%d\n", | 
|  | dimmInfo->minClkDelay)); | 
|  | break; | 
|  | /*------------------------------------------------------------------------------------------------------------------------------*/ | 
|  |  | 
|  | case 16:	/* Burst Length Supported */ | 
|  | /******-******-******-******* | 
|  | * bit3 | bit2 | bit1 | bit0 * | 
|  | *******-******-******-******* | 
|  | burst length = *  8   |  4	 |   2	|   1  * | 
|  | ***************************** | 
|  |  | 
|  | If for example bit0 and bit2 are set, the burst | 
|  | length supported are 1 and 4. */ | 
|  |  | 
|  | dimmInfo->burstLengthSupported = data[i]; | 
|  | #ifdef DEBUG | 
|  | DP (printf | 
|  | ("Burst Length Supported:			")); | 
|  | if (dimmInfo->burstLengthSupported & 0x01) | 
|  | DP (printf ("1, ")); | 
|  | if (dimmInfo->burstLengthSupported & 0x02) | 
|  | DP (printf ("2, ")); | 
|  | if (dimmInfo->burstLengthSupported & 0x04) | 
|  | DP (printf ("4, ")); | 
|  | if (dimmInfo->burstLengthSupported & 0x08) | 
|  | DP (printf ("8, ")); | 
|  | DP (printf (" Bit \n")); | 
|  | #endif | 
|  | break; | 
|  | /*------------------------------------------------------------------------------------------------------------------------------*/ | 
|  |  | 
|  | case 17:	/* Number Of Banks On Each Device */ | 
|  | dimmInfo->numOfBanksOnEachDevice = data[i]; | 
|  | DP (printf | 
|  | ("Number Of Banks On Each Chip:			%d\n", | 
|  | dimmInfo->numOfBanksOnEachDevice)); | 
|  | break; | 
|  | /*------------------------------------------------------------------------------------------------------------------------------*/ | 
|  |  | 
|  | case 18:	/* Suported Cas Latencies */ | 
|  |  | 
|  | /*     DDR: | 
|  | *******-******-******-******-******-******-******-******* | 
|  | * bit7 | bit6 | bit5 | bit4 | bit3 | bit2 | bit1 | bit0 * | 
|  | *******-******-******-******-******-******-******-******* | 
|  | CAS =	 * TBD	| TBD  | 3.5  |   3  | 2.5  |  2   | 1.5  |   1  * | 
|  | ********************************************************* | 
|  | SDRAM: | 
|  | *******-******-******-******-******-******-******-******* | 
|  | * bit7 | bit6 | bit5 | bit4 | bit3 | bit2 | bit1 | bit0 * | 
|  | *******-******-******-******-******-******-******-******* | 
|  | CAS =	 * TBD	|  7   |  6   |  5   |	4   |  3   |   2  |   1  * | 
|  | ********************************************************/ | 
|  | dimmInfo->suportedCasLatencies = data[i]; | 
|  | #ifdef DEBUG | 
|  | DP (printf | 
|  | ("Suported Cas Latencies: (CL)			")); | 
|  | if (dimmInfo->memoryType == 0) {	/* SDRAM */ | 
|  | for (k = 0; k <= 7; k++) { | 
|  | if (dimmInfo-> | 
|  | suportedCasLatencies & (1 << k)) | 
|  | DP (printf | 
|  | ("%d,			", | 
|  | k + 1)); | 
|  | } | 
|  |  | 
|  | } else {	/* DDR-RAM */ | 
|  |  | 
|  | if (dimmInfo->suportedCasLatencies & 1) | 
|  | DP (printf ("1, ")); | 
|  | if (dimmInfo->suportedCasLatencies & 2) | 
|  | DP (printf ("1.5, ")); | 
|  | if (dimmInfo->suportedCasLatencies & 4) | 
|  | DP (printf ("2, ")); | 
|  | if (dimmInfo->suportedCasLatencies & 8) | 
|  | DP (printf ("2.5, ")); | 
|  | if (dimmInfo->suportedCasLatencies & 16) | 
|  | DP (printf ("3, ")); | 
|  | if (dimmInfo->suportedCasLatencies & 32) | 
|  | DP (printf ("3.5, ")); | 
|  |  | 
|  | } | 
|  | DP (printf ("\n")); | 
|  | #endif | 
|  | /* Calculating MAX CAS latency */ | 
|  | for (j = 7; j > 0; j--) { | 
|  | if (((dimmInfo-> | 
|  | suportedCasLatencies >> j) & 0x1) == | 
|  | 1) { | 
|  | switch (dimmInfo->memoryType) { | 
|  | case DDR: | 
|  | /* CAS latency 1, 1.5, 2, 2.5, 3, 3.5 */ | 
|  | switch (j) { | 
|  | case 7: | 
|  | DP (printf | 
|  | ("Max. Cas Latencies (DDR): 			ERROR !!!\n")); | 
|  | dimmInfo-> | 
|  | maxClSupported_DDR | 
|  | = | 
|  | DDR_CL_FAULT; | 
|  | hang (); | 
|  | break; | 
|  | case 6: | 
|  | DP (printf | 
|  | ("Max. Cas Latencies (DDR): 			ERROR !!!\n")); | 
|  | dimmInfo-> | 
|  | maxClSupported_DDR | 
|  | = | 
|  | DDR_CL_FAULT; | 
|  | hang (); | 
|  | break; | 
|  | case 5: | 
|  | DP (printf | 
|  | ("Max. Cas Latencies (DDR): 			3.5 clk's\n")); | 
|  | dimmInfo-> | 
|  | maxClSupported_DDR | 
|  | = DDR_CL_3_5; | 
|  | break; | 
|  | case 4: | 
|  | DP (printf | 
|  | ("Max. Cas Latencies (DDR): 			3 clk's \n")); | 
|  | dimmInfo-> | 
|  | maxClSupported_DDR | 
|  | = DDR_CL_3; | 
|  | break; | 
|  | case 3: | 
|  | DP (printf | 
|  | ("Max. Cas Latencies (DDR): 			2.5 clk's \n")); | 
|  | dimmInfo-> | 
|  | maxClSupported_DDR | 
|  | = DDR_CL_2_5; | 
|  | break; | 
|  | case 2: | 
|  | DP (printf | 
|  | ("Max. Cas Latencies (DDR): 			2 clk's \n")); | 
|  | dimmInfo-> | 
|  | maxClSupported_DDR | 
|  | = DDR_CL_2; | 
|  | break; | 
|  | case 1: | 
|  | DP (printf | 
|  | ("Max. Cas Latencies (DDR): 			1.5 clk's \n")); | 
|  | dimmInfo-> | 
|  | maxClSupported_DDR | 
|  | = DDR_CL_1_5; | 
|  | break; | 
|  | } | 
|  | dimmInfo-> | 
|  | maxCASlatencySupported_LoP | 
|  | = | 
|  | 1 + | 
|  | (int) (5 * j / 10); | 
|  | if (((5 * j) % 10) != 0) | 
|  | dimmInfo-> | 
|  | maxCASlatencySupported_RoP | 
|  | = 5; | 
|  | else | 
|  | dimmInfo-> | 
|  | maxCASlatencySupported_RoP | 
|  | = 0; | 
|  | DP (printf | 
|  | ("Max. Cas Latencies (DDR LoP.RoP Notation):	%d.%d \n", | 
|  | dimmInfo-> | 
|  | maxCASlatencySupported_LoP, | 
|  | dimmInfo-> | 
|  | maxCASlatencySupported_RoP)); | 
|  | break; | 
|  | case SDRAM: | 
|  | /* CAS latency 1, 2, 3, 4, 5, 6, 7 */ | 
|  | dimmInfo->maxClSupported_SD = j;	/*  Cas Latency DDR-RAM Coded			*/ | 
|  | DP (printf | 
|  | ("Max. Cas Latencies (SD): %d\n", | 
|  | dimmInfo-> | 
|  | maxClSupported_SD)); | 
|  | dimmInfo-> | 
|  | maxCASlatencySupported_LoP | 
|  | = j; | 
|  | dimmInfo-> | 
|  | maxCASlatencySupported_RoP | 
|  | = 0; | 
|  | DP (printf | 
|  | ("Max. Cas Latencies (DDR LoP.RoP Notation): %d.%d \n", | 
|  | dimmInfo-> | 
|  | maxCASlatencySupported_LoP, | 
|  | dimmInfo-> | 
|  | maxCASlatencySupported_RoP)); | 
|  | break; | 
|  | } | 
|  | break; | 
|  | } | 
|  | } | 
|  | break; | 
|  | /*------------------------------------------------------------------------------------------------------------------------------*/ | 
|  |  | 
|  | case 21:	/* Buffered Address And Control Inputs */ | 
|  | DP (printf ("\nModul Attributes (SPD Byte 21): \n")); | 
|  | dimmInfo->bufferedAddrAndControlInputs = | 
|  | data[i] & BIT0; | 
|  | dimmInfo->registeredAddrAndControlInputs = | 
|  | (data[i] & BIT1) >> 1; | 
|  | dimmInfo->onCardPLL = (data[i] & BIT2) >> 2; | 
|  | dimmInfo->bufferedDQMBinputs = (data[i] & BIT3) >> 3; | 
|  | dimmInfo->registeredDQMBinputs = | 
|  | (data[i] & BIT4) >> 4; | 
|  | dimmInfo->differentialClockInput = | 
|  | (data[i] & BIT5) >> 5; | 
|  | dimmInfo->redundantRowAddressing = | 
|  | (data[i] & BIT6) >> 6; | 
|  | #ifdef DEBUG | 
|  | if (dimmInfo->bufferedAddrAndControlInputs == 1) | 
|  | DP (printf | 
|  | (" - Buffered Address/Control Input:		Yes \n")); | 
|  | else | 
|  | DP (printf | 
|  | (" - Buffered Address/Control Input:		No \n")); | 
|  |  | 
|  | if (dimmInfo->registeredAddrAndControlInputs == 1) | 
|  | DP (printf | 
|  | (" - Registered Address/Control Input:		Yes \n")); | 
|  | else | 
|  | DP (printf | 
|  | (" - Registered Address/Control Input:		No \n")); | 
|  |  | 
|  | if (dimmInfo->onCardPLL == 1) | 
|  | DP (printf | 
|  | (" - On-Card PLL (clock):				Yes \n")); | 
|  | else | 
|  | DP (printf | 
|  | (" - On-Card PLL (clock):				No \n")); | 
|  |  | 
|  | if (dimmInfo->bufferedDQMBinputs == 1) | 
|  | DP (printf | 
|  | (" - Bufferd DQMB Inputs:				Yes \n")); | 
|  | else | 
|  | DP (printf | 
|  | (" - Bufferd DQMB Inputs:				No \n")); | 
|  |  | 
|  | if (dimmInfo->registeredDQMBinputs == 1) | 
|  | DP (printf | 
|  | (" - Registered DQMB Inputs:			Yes \n")); | 
|  | else | 
|  | DP (printf | 
|  | (" - Registered DQMB Inputs:			No \n")); | 
|  |  | 
|  | if (dimmInfo->differentialClockInput == 1) | 
|  | DP (printf | 
|  | (" - Differential Clock Input:			Yes \n")); | 
|  | else | 
|  | DP (printf | 
|  | (" - Differential Clock Input:			No \n")); | 
|  |  | 
|  | if (dimmInfo->redundantRowAddressing == 1) | 
|  | DP (printf | 
|  | (" - redundant Row Addressing:			Yes \n")); | 
|  | else | 
|  | DP (printf | 
|  | (" - redundant Row Addressing:			No \n")); | 
|  |  | 
|  | #endif | 
|  | break; | 
|  | /*------------------------------------------------------------------------------------------------------------------------------*/ | 
|  |  | 
|  | case 22:	/* Suported AutoPreCharge */ | 
|  | DP (printf ("\nModul Attributes (SPD Byte 22): \n")); | 
|  | dimmInfo->suportedEarlyRasPreCharge = data[i] & BIT0; | 
|  | dimmInfo->suportedAutoPreCharge = | 
|  | (data[i] & BIT1) >> 1; | 
|  | dimmInfo->suportedPreChargeAll = | 
|  | (data[i] & BIT2) >> 2; | 
|  | dimmInfo->suportedWrite1ReadBurst = | 
|  | (data[i] & BIT3) >> 3; | 
|  | dimmInfo->suported5PercentLowVCC = | 
|  | (data[i] & BIT4) >> 4; | 
|  | dimmInfo->suported5PercentUpperVCC = | 
|  | (data[i] & BIT5) >> 5; | 
|  | #ifdef DEBUG | 
|  | if (dimmInfo->suportedEarlyRasPreCharge == 1) | 
|  | DP (printf | 
|  | (" - Early Ras Precharge:			Yes \n")); | 
|  | else | 
|  | DP (printf | 
|  | (" -  Early Ras Precharge:			No \n")); | 
|  |  | 
|  | if (dimmInfo->suportedAutoPreCharge == 1) | 
|  | DP (printf | 
|  | (" - AutoPreCharge:				Yes \n")); | 
|  | else | 
|  | DP (printf | 
|  | (" -  AutoPreCharge:				No \n")); | 
|  |  | 
|  | if (dimmInfo->suportedPreChargeAll == 1) | 
|  | DP (printf | 
|  | (" - Precharge All:				Yes \n")); | 
|  | else | 
|  | DP (printf | 
|  | (" -  Precharge All:				No \n")); | 
|  |  | 
|  | if (dimmInfo->suportedWrite1ReadBurst == 1) | 
|  | DP (printf | 
|  | (" - Write 1/ReadBurst:				Yes \n")); | 
|  | else | 
|  | DP (printf | 
|  | (" -  Write 1/ReadBurst:				No \n")); | 
|  |  | 
|  | if (dimmInfo->suported5PercentLowVCC == 1) | 
|  | DP (printf | 
|  | (" - lower VCC tolerance:			5 Percent \n")); | 
|  | else | 
|  | DP (printf | 
|  | ("	- lower VCC tolerance:			10 Percent \n")); | 
|  |  | 
|  | if (dimmInfo->suported5PercentUpperVCC == 1) | 
|  | DP (printf | 
|  | (" - upper VCC tolerance:			5 Percent \n")); | 
|  | else | 
|  | DP (printf | 
|  | (" -  upper VCC tolerance:			10 Percent \n")); | 
|  |  | 
|  | #endif | 
|  | break; | 
|  | /*------------------------------------------------------------------------------------------------------------------------------*/ | 
|  |  | 
|  | case 23:	/* Minimum Cycle Time At Maximum Cas Latancy Minus 1 (2nd highest CL) */ | 
|  | shift = (dimmInfo->memoryType == DDR) ? 4 : 2; | 
|  | mult = (dimmInfo->memoryType == DDR) ? 10 : 25; | 
|  | maskLeftOfPoint = | 
|  | (dimmInfo->memoryType == DDR) ? 0xf0 : 0xfc; | 
|  | maskRightOfPoint = | 
|  | (dimmInfo->memoryType == DDR) ? 0xf : 0x03; | 
|  | leftOfPoint = (data[i] & maskLeftOfPoint) >> shift; | 
|  | rightOfPoint = (data[i] & maskRightOfPoint) * mult; | 
|  | dimmInfo->minimumCycleTimeAtMaxCasLatancyMinus1_LoP = | 
|  | leftOfPoint; | 
|  | dimmInfo->minimumCycleTimeAtMaxCasLatancyMinus1_RoP = | 
|  | rightOfPoint; | 
|  | DP (printf | 
|  | ("Minimum Cycle Time At 2nd highest CasLatancy (0 = Not supported): %d.%d [ns]\n", | 
|  | leftOfPoint, rightOfPoint)); | 
|  | /*dimmInfo->minimumCycleTimeAtMaxCasLatancy */ | 
|  | break; | 
|  | /*------------------------------------------------------------------------------------------------------------------------------*/ | 
|  |  | 
|  | case 24:	/* Clock To Data Out 2nd highest Cas Latency Value */ | 
|  | div = (dimmInfo->memoryType == DDR) ? 100 : 10; | 
|  | time_tmp = | 
|  | (((data[i] & 0xf0) >> 4) * 10) + | 
|  | ((data[i] & 0x0f)); | 
|  | leftOfPoint = time_tmp / div; | 
|  | rightOfPoint = time_tmp % div; | 
|  | dimmInfo->clockToDataOutMinus1_LoP = leftOfPoint; | 
|  | dimmInfo->clockToDataOutMinus1_RoP = rightOfPoint; | 
|  | DP (printf | 
|  | ("Clock To Data Out (2nd CL value): 		%d.%2d [ns]\n", | 
|  | leftOfPoint, rightOfPoint)); | 
|  | break; | 
|  | /*------------------------------------------------------------------------------------------------------------------------------*/ | 
|  |  | 
|  | case 25:	/* Minimum Cycle Time At Maximum Cas Latancy Minus 2 (3rd highest CL) */ | 
|  | shift = (dimmInfo->memoryType == DDR) ? 4 : 2; | 
|  | mult = (dimmInfo->memoryType == DDR) ? 10 : 25; | 
|  | maskLeftOfPoint = | 
|  | (dimmInfo->memoryType == DDR) ? 0xf0 : 0xfc; | 
|  | maskRightOfPoint = | 
|  | (dimmInfo->memoryType == DDR) ? 0xf : 0x03; | 
|  | leftOfPoint = (data[i] & maskLeftOfPoint) >> shift; | 
|  | rightOfPoint = (data[i] & maskRightOfPoint) * mult; | 
|  | dimmInfo->minimumCycleTimeAtMaxCasLatancyMinus2_LoP = | 
|  | leftOfPoint; | 
|  | dimmInfo->minimumCycleTimeAtMaxCasLatancyMinus2_RoP = | 
|  | rightOfPoint; | 
|  | DP (printf | 
|  | ("Minimum Cycle Time At 3rd highest CasLatancy (0 = Not supported): %d.%d [ns]\n", | 
|  | leftOfPoint, rightOfPoint)); | 
|  | /*dimmInfo->minimumCycleTimeAtMaxCasLatancy */ | 
|  | break; | 
|  | /*------------------------------------------------------------------------------------------------------------------------------*/ | 
|  |  | 
|  | case 26:	/* Clock To Data Out 3rd highest Cas Latency Value */ | 
|  | div = (dimmInfo->memoryType == DDR) ? 100 : 10; | 
|  | time_tmp = | 
|  | (((data[i] & 0xf0) >> 4) * 10) + | 
|  | ((data[i] & 0x0f)); | 
|  | leftOfPoint = time_tmp / div; | 
|  | rightOfPoint = time_tmp % div; | 
|  | dimmInfo->clockToDataOutMinus2_LoP = leftOfPoint; | 
|  | dimmInfo->clockToDataOutMinus2_RoP = rightOfPoint; | 
|  | DP (printf | 
|  | ("Clock To Data Out (3rd CL value): 		%d.%2d [ns]\n", | 
|  | leftOfPoint, rightOfPoint)); | 
|  | break; | 
|  | /*------------------------------------------------------------------------------------------------------------------------------*/ | 
|  |  | 
|  | case 27:	/* Minimum Row Precharge Time */ | 
|  | shift = (dimmInfo->memoryType == DDR) ? 2 : 0; | 
|  | maskLeftOfPoint = | 
|  | (dimmInfo->memoryType == DDR) ? 0xfc : 0xff; | 
|  | maskRightOfPoint = | 
|  | (dimmInfo->memoryType == DDR) ? 0x03 : 0x00; | 
|  | leftOfPoint = ((data[i] & maskLeftOfPoint) >> shift); | 
|  | rightOfPoint = (data[i] & maskRightOfPoint) * 25; | 
|  |  | 
|  | dimmInfo->minRowPrechargeTime = ((leftOfPoint * 100) + rightOfPoint);	/* measured in n times 10ps Intervals */ | 
|  | trp_clocks = | 
|  | (dimmInfo->minRowPrechargeTime + | 
|  | (tmemclk - 1)) / tmemclk; | 
|  | DP (printf | 
|  | ("*** 1 clock cycle = %ld  10ps intervalls = %ld.%ld ns****\n", | 
|  | tmemclk, tmemclk / 100, tmemclk % 100)); | 
|  | DP (printf | 
|  | ("Minimum Row Precharge Time [ns]:		%d.%2d = in Clk cycles %d\n", | 
|  | leftOfPoint, rightOfPoint, trp_clocks)); | 
|  | break; | 
|  | /*------------------------------------------------------------------------------------------------------------------------------*/ | 
|  |  | 
|  | case 28:	/* Minimum Row Active to Row Active Time */ | 
|  | shift = (dimmInfo->memoryType == DDR) ? 2 : 0; | 
|  | maskLeftOfPoint = | 
|  | (dimmInfo->memoryType == DDR) ? 0xfc : 0xff; | 
|  | maskRightOfPoint = | 
|  | (dimmInfo->memoryType == DDR) ? 0x03 : 0x00; | 
|  | leftOfPoint = ((data[i] & maskLeftOfPoint) >> shift); | 
|  | rightOfPoint = (data[i] & maskRightOfPoint) * 25; | 
|  |  | 
|  | dimmInfo->minRowActiveRowActiveDelay = ((leftOfPoint * 100) + rightOfPoint);	/* measured in 100ns Intervals */ | 
|  | trrd_clocks = | 
|  | (dimmInfo->minRowActiveRowActiveDelay + | 
|  | (tmemclk - 1)) / tmemclk; | 
|  | DP (printf | 
|  | ("Minimum Row Active -To- Row Active Delay [ns]:	%d.%2d = in Clk cycles %d\n", | 
|  | leftOfPoint, rightOfPoint, trp_clocks)); | 
|  | break; | 
|  | /*------------------------------------------------------------------------------------------------------------------------------*/ | 
|  |  | 
|  | case 29:	/* Minimum Ras-To-Cas Delay */ | 
|  | shift = (dimmInfo->memoryType == DDR) ? 2 : 0; | 
|  | maskLeftOfPoint = | 
|  | (dimmInfo->memoryType == DDR) ? 0xfc : 0xff; | 
|  | maskRightOfPoint = | 
|  | (dimmInfo->memoryType == DDR) ? 0x03 : 0x00; | 
|  | leftOfPoint = ((data[i] & maskLeftOfPoint) >> shift); | 
|  | rightOfPoint = (data[i] & maskRightOfPoint) * 25; | 
|  |  | 
|  | dimmInfo->minRowActiveRowActiveDelay = ((leftOfPoint * 100) + rightOfPoint);	/* measured in 100ns Intervals */ | 
|  | trcd_clocks = | 
|  | (dimmInfo->minRowActiveRowActiveDelay + | 
|  | (tmemclk - 1)) / tmemclk; | 
|  | DP (printf | 
|  | ("Minimum Ras-To-Cas Delay [ns]:			%d.%2d = in Clk cycles %d\n", | 
|  | leftOfPoint, rightOfPoint, trp_clocks)); | 
|  | break; | 
|  | /*------------------------------------------------------------------------------------------------------------------------------*/ | 
|  |  | 
|  | case 30:	/* Minimum Ras Pulse Width */ | 
|  | dimmInfo->minRasPulseWidth = data[i]; | 
|  | tras_clocks = | 
|  | (NSto10PS (data[i]) + | 
|  | (tmemclk - 1)) / tmemclk; | 
|  | DP (printf | 
|  | ("Minimum Ras Pulse Width [ns]:			%d = in Clk cycles %d\n", | 
|  | dimmInfo->minRasPulseWidth, tras_clocks)); | 
|  |  | 
|  | break; | 
|  | /*------------------------------------------------------------------------------------------------------------------------------*/ | 
|  |  | 
|  | case 31:	/* Module Bank Density */ | 
|  | dimmInfo->moduleBankDensity = data[i]; | 
|  | DP (printf | 
|  | ("Module Bank Density:				%d\n", | 
|  | dimmInfo->moduleBankDensity)); | 
|  | #ifdef DEBUG | 
|  | DP (printf | 
|  | ("*** Offered Densities (more than 1 = Multisize-Module): ")); | 
|  | { | 
|  | if (dimmInfo->moduleBankDensity & 1) | 
|  | DP (printf ("4MB, ")); | 
|  | if (dimmInfo->moduleBankDensity & 2) | 
|  | DP (printf ("8MB, ")); | 
|  | if (dimmInfo->moduleBankDensity & 4) | 
|  | DP (printf ("16MB, ")); | 
|  | if (dimmInfo->moduleBankDensity & 8) | 
|  | DP (printf ("32MB, ")); | 
|  | if (dimmInfo->moduleBankDensity & 16) | 
|  | DP (printf ("64MB, ")); | 
|  | if (dimmInfo->moduleBankDensity & 32) | 
|  | DP (printf ("128MB, ")); | 
|  | if ((dimmInfo->moduleBankDensity & 64) | 
|  | || (dimmInfo->moduleBankDensity & 128)) { | 
|  | DP (printf ("ERROR, ")); | 
|  | hang (); | 
|  | } | 
|  | } | 
|  | DP (printf ("\n")); | 
|  | #endif | 
|  | break; | 
|  | /*------------------------------------------------------------------------------------------------------------------------------*/ | 
|  |  | 
|  | case 32:	/* Address And Command Setup Time (measured in ns/1000) */ | 
|  | sign = 1; | 
|  | switch (dimmInfo->memoryType) { | 
|  | case DDR: | 
|  | time_tmp = | 
|  | (((data[i] & 0xf0) >> 4) * 10) + | 
|  | ((data[i] & 0x0f)); | 
|  | leftOfPoint = time_tmp / 100; | 
|  | rightOfPoint = time_tmp % 100; | 
|  | break; | 
|  | case SDRAM: | 
|  | leftOfPoint = (data[i] & 0xf0) >> 4; | 
|  | if (leftOfPoint > 7) { | 
|  | leftOfPoint = data[i] & 0x70 >> 4; | 
|  | sign = -1; | 
|  | } | 
|  | rightOfPoint = (data[i] & 0x0f); | 
|  | break; | 
|  | } | 
|  | dimmInfo->addrAndCommandSetupTime = | 
|  | (leftOfPoint * 100 + rightOfPoint) * sign; | 
|  | DP (printf | 
|  | ("Address And Command Setup Time [ns]:		%d.%d\n", | 
|  | sign * leftOfPoint, rightOfPoint)); | 
|  | break; | 
|  | /*------------------------------------------------------------------------------------------------------------------------------*/ | 
|  |  | 
|  | case 33:	/* Address And Command Hold Time */ | 
|  | sign = 1; | 
|  | switch (dimmInfo->memoryType) { | 
|  | case DDR: | 
|  | time_tmp = | 
|  | (((data[i] & 0xf0) >> 4) * 10) + | 
|  | ((data[i] & 0x0f)); | 
|  | leftOfPoint = time_tmp / 100; | 
|  | rightOfPoint = time_tmp % 100; | 
|  | break; | 
|  | case SDRAM: | 
|  | leftOfPoint = (data[i] & 0xf0) >> 4; | 
|  | if (leftOfPoint > 7) { | 
|  | leftOfPoint = data[i] & 0x70 >> 4; | 
|  | sign = -1; | 
|  | } | 
|  | rightOfPoint = (data[i] & 0x0f); | 
|  | break; | 
|  | } | 
|  | dimmInfo->addrAndCommandHoldTime = | 
|  | (leftOfPoint * 100 + rightOfPoint) * sign; | 
|  | DP (printf | 
|  | ("Address And Command Hold Time [ns]:		%d.%d\n", | 
|  | sign * leftOfPoint, rightOfPoint)); | 
|  | break; | 
|  | /*------------------------------------------------------------------------------------------------------------------------------*/ | 
|  |  | 
|  | case 34:	/* Data Input Setup Time */ | 
|  | sign = 1; | 
|  | switch (dimmInfo->memoryType) { | 
|  | case DDR: | 
|  | time_tmp = | 
|  | (((data[i] & 0xf0) >> 4) * 10) + | 
|  | ((data[i] & 0x0f)); | 
|  | leftOfPoint = time_tmp / 100; | 
|  | rightOfPoint = time_tmp % 100; | 
|  | break; | 
|  | case SDRAM: | 
|  | leftOfPoint = (data[i] & 0xf0) >> 4; | 
|  | if (leftOfPoint > 7) { | 
|  | leftOfPoint = data[i] & 0x70 >> 4; | 
|  | sign = -1; | 
|  | } | 
|  | rightOfPoint = (data[i] & 0x0f); | 
|  | break; | 
|  | } | 
|  | dimmInfo->dataInputSetupTime = | 
|  | (leftOfPoint * 100 + rightOfPoint) * sign; | 
|  | DP (printf | 
|  | ("Data Input Setup Time [ns]:			%d.%d\n", | 
|  | sign * leftOfPoint, rightOfPoint)); | 
|  | break; | 
|  | /*------------------------------------------------------------------------------------------------------------------------------*/ | 
|  |  | 
|  | case 35:	/* Data Input Hold Time */ | 
|  | sign = 1; | 
|  | switch (dimmInfo->memoryType) { | 
|  | case DDR: | 
|  | time_tmp = | 
|  | (((data[i] & 0xf0) >> 4) * 10) + | 
|  | ((data[i] & 0x0f)); | 
|  | leftOfPoint = time_tmp / 100; | 
|  | rightOfPoint = time_tmp % 100; | 
|  | break; | 
|  | case SDRAM: | 
|  | leftOfPoint = (data[i] & 0xf0) >> 4; | 
|  | if (leftOfPoint > 7) { | 
|  | leftOfPoint = data[i] & 0x70 >> 4; | 
|  | sign = -1; | 
|  | } | 
|  | rightOfPoint = (data[i] & 0x0f); | 
|  | break; | 
|  | } | 
|  | dimmInfo->dataInputHoldTime = | 
|  | (leftOfPoint * 100 + rightOfPoint) * sign; | 
|  | DP (printf | 
|  | ("Data Input Hold Time [ns]:			%d.%d\n\n", | 
|  | sign * leftOfPoint, rightOfPoint)); | 
|  | break; | 
|  | /*------------------------------------------------------------------------------------------------------------------------------*/ | 
|  | } | 
|  | } | 
|  | /* calculating the sdram density */ | 
|  | for (i = 0; | 
|  | i < dimmInfo->numOfRowAddresses + dimmInfo->numOfColAddresses; | 
|  | i++) { | 
|  | density = density * 2; | 
|  | } | 
|  | dimmInfo->deviceDensity = density * dimmInfo->numOfBanksOnEachDevice * | 
|  | dimmInfo->sdramWidth; | 
|  | dimmInfo->numberOfDevices = | 
|  | (dimmInfo->dataWidth / dimmInfo->sdramWidth) * | 
|  | dimmInfo->numOfModuleBanks; | 
|  | devicesForErrCheck = | 
|  | (dimmInfo->dataWidth - 64) / dimmInfo->sdramWidth; | 
|  | if ((dimmInfo->errorCheckType == 0x1) | 
|  | || (dimmInfo->errorCheckType == 0x2) | 
|  | || (dimmInfo->errorCheckType == 0x3)) { | 
|  | dimmInfo->size = | 
|  | (dimmInfo->deviceDensity / 8) * | 
|  | (dimmInfo->numberOfDevices - devicesForErrCheck); | 
|  | } else { | 
|  | dimmInfo->size = | 
|  | (dimmInfo->deviceDensity / 8) * | 
|  | dimmInfo->numberOfDevices; | 
|  | } | 
|  |  | 
|  | /* compute the module DRB size */ | 
|  | tmp = (1 << | 
|  | (dimmInfo->numOfRowAddresses + dimmInfo->numOfColAddresses)); | 
|  | tmp *= dimmInfo->numOfModuleBanks; | 
|  | tmp *= dimmInfo->sdramWidth; | 
|  | tmp = tmp >> 24;	/* div by 0x4000000 (64M)	*/ | 
|  | dimmInfo->drb_size = (uchar) tmp; | 
|  | DP (printf ("Module DRB size (n*64Mbit): %d\n", dimmInfo->drb_size)); | 
|  |  | 
|  | /* try a CAS latency of 3 first... */ | 
|  |  | 
|  | /* bit 1 is CL2, bit 2 is CL3 */ | 
|  | supp_cal = (dimmInfo->suportedCasLatencies & 0x1c) >> 1; | 
|  |  | 
|  | cal_val = 0; | 
|  | if (supp_cal & 8) { | 
|  | if (NS10to10PS (data[9]) <= tmemclk) | 
|  | cal_val = 6; | 
|  | } | 
|  | if (supp_cal & 4) { | 
|  | if (NS10to10PS (data[9]) <= tmemclk) | 
|  | cal_val = 5; | 
|  | } | 
|  |  | 
|  | /* then 2... */ | 
|  | if (supp_cal & 2) { | 
|  | if (NS10to10PS (data[23]) <= tmemclk) | 
|  | cal_val = 4; | 
|  | } | 
|  |  | 
|  | DP (printf ("cal_val = %d\n", cal_val * 5)); | 
|  |  | 
|  | /* bummer, did't work... */ | 
|  | if (cal_val == 0) { | 
|  | DP (printf ("Couldn't find a good CAS latency\n")); | 
|  | hang (); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* sets up the GT properly with information passed in */ | 
|  | int setup_sdram (AUX_MEM_DIMM_INFO * info) | 
|  | { | 
|  | ulong tmp; | 
|  | ulong tmp_sdram_mode = 0;	/* 0x141c */ | 
|  | ulong tmp_dunit_control_low = 0;	/* 0x1404 */ | 
|  | uint sdram_config_reg = CONFIG_SYS_SDRAM_CONFIG; | 
|  | int i; | 
|  |  | 
|  | /* sanity checking */ | 
|  | if (!info->numOfModuleBanks) { | 
|  | printf ("setup_sdram called with 0 banks\n"); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* delay line */ | 
|  |  | 
|  | /* Program the GT with the discovered data */ | 
|  | if (info->registeredAddrAndControlInputs == true) | 
|  | DP (printf | 
|  | ("Module is registered, but we do not support registered Modules !!!\n")); | 
|  |  | 
|  | /* delay line */ | 
|  | set_dfcdlInit ();	/* may be its not needed */ | 
|  | DP (printf ("Delay line set done\n")); | 
|  |  | 
|  | /* set SDRAM mode NOP */ /* To_do check it */ | 
|  | GT_REG_WRITE (SDRAM_OPERATION, 0x5); | 
|  | while (GTREGREAD (SDRAM_OPERATION) != 0) { | 
|  | DP (printf | 
|  | ("\n*** SDRAM_OPERATION 1418: Module still busy ... please wait... ***\n")); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MV64360_ECC | 
|  | if ((info->errorCheckType == 0x2) && (CPCI750_ECC_TEST)) { | 
|  | /* DRAM has ECC, so turn it on */ | 
|  | sdram_config_reg |= BIT18; | 
|  | DP(printf("Enabling ECC\n")); | 
|  | } | 
|  | #endif /* of ifdef CONFIG_MV64360_ECC */ | 
|  |  | 
|  | /* SDRAM configuration */ | 
|  | GT_REG_WRITE(SDRAM_CONFIG, sdram_config_reg); | 
|  | DP (printf ("sdram_conf 0x1400: %08x\n", GTREGREAD (SDRAM_CONFIG))); | 
|  |  | 
|  | /* SDRAM open pages controll keep open as much as I can */ | 
|  | GT_REG_WRITE (SDRAM_OPEN_PAGES_CONTROL, 0x0); | 
|  | DP (printf | 
|  | ("sdram_open_pages_controll 0x1414: %08x\n", | 
|  | GTREGREAD (SDRAM_OPEN_PAGES_CONTROL))); | 
|  |  | 
|  |  | 
|  | /* SDRAM D_UNIT_CONTROL_LOW 0x1404 */ | 
|  | tmp = (GTREGREAD (D_UNIT_CONTROL_LOW) & 0x01);	/* Clock Domain Sync from power on reset */ | 
|  | if (tmp == 0) | 
|  | DP (printf ("Core Signals are sync (by HW-Setting)!!!\n")); | 
|  | else | 
|  | DP (printf | 
|  | ("Core Signals syncs. are bypassed (by HW-Setting)!!!\n")); | 
|  |  | 
|  | /* SDRAM set CAS Lentency according to SPD information */ | 
|  | switch (info->memoryType) { | 
|  | case SDRAM: | 
|  | DP (printf ("### SD-RAM not supported yet !!!\n")); | 
|  | hang (); | 
|  | /* ToDo fill SD-RAM if needed !!!!! */ | 
|  | break; | 
|  |  | 
|  | case DDR: | 
|  | DP (printf ("### SET-CL for DDR-RAM\n")); | 
|  |  | 
|  | switch (info->maxClSupported_DDR) { | 
|  | case DDR_CL_3: | 
|  | tmp_dunit_control_low = 0x3c000000;	/* Read-Data sampled on falling edge of Clk */ | 
|  | tmp_sdram_mode = 0x32;	/* CL=3 Burstlength = 4 */ | 
|  | DP (printf | 
|  | ("Max. CL is 3 CLKs 0x141c= %08lx, 0x1404 = %08lx\n", | 
|  | tmp_sdram_mode, tmp_dunit_control_low)); | 
|  | break; | 
|  |  | 
|  | case DDR_CL_2_5: | 
|  | if (tmp == 1) {	/* clocks sync */ | 
|  | tmp_dunit_control_low = 0x24000000;	/* Read-Data sampled on falling edge of Clk */ | 
|  | tmp_sdram_mode = 0x62;	/* CL=2,5 Burstlength = 4 */ | 
|  | DP (printf | 
|  | ("Max. CL is 2,5s CLKs 0x141c= %08lx, 0x1404 = %08lx\n", | 
|  | tmp_sdram_mode, tmp_dunit_control_low)); | 
|  | } else {	/* clk sync. bypassed	  */ | 
|  |  | 
|  | tmp_dunit_control_low = 0x03000000;	/* Read-Data sampled on rising edge of Clk */ | 
|  | tmp_sdram_mode = 0x62;	/* CL=2,5 Burstlength = 4 */ | 
|  | DP (printf | 
|  | ("Max. CL is 2,5 CLKs 0x141c= %08lx, 0x1404 = %08lx\n", | 
|  | tmp_sdram_mode, tmp_dunit_control_low)); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case DDR_CL_2: | 
|  | if (tmp == 1) {	/* Sync */ | 
|  | tmp_dunit_control_low = 0x03000000;	/* Read-Data sampled on rising edge of Clk */ | 
|  | tmp_sdram_mode = 0x22;	/* CL=2 Burstlength = 4 */ | 
|  | DP (printf | 
|  | ("Max. CL is 2s CLKs 0x141c= %08lx, 0x1404 = %08lx\n", | 
|  | tmp_sdram_mode, tmp_dunit_control_low)); | 
|  | } else {	/* Not sync.	  */ | 
|  |  | 
|  | tmp_dunit_control_low = 0x3b000000;	/* Read-Data sampled on rising edge of Clk */ | 
|  | tmp_sdram_mode = 0x22;	/* CL=2 Burstlength = 4 */ | 
|  | DP (printf | 
|  | ("Max. CL is 2 CLKs 0x141c= %08lx, 0x1404 = %08lx\n", | 
|  | tmp_sdram_mode, tmp_dunit_control_low)); | 
|  | } | 
|  | break; | 
|  |  | 
|  | case DDR_CL_1_5: | 
|  | if (tmp == 1) {	/* Sync */ | 
|  | tmp_dunit_control_low = 0x23000000;	/* Read-Data sampled on falling edge of Clk */ | 
|  | tmp_sdram_mode = 0x52;	/* CL=1,5 Burstlength = 4 */ | 
|  | DP (printf | 
|  | ("Max. CL is 1,5s CLKs 0x141c= %08lx, 0x1404 = %08lx\n", | 
|  | tmp_sdram_mode, tmp_dunit_control_low)); | 
|  | } else {	/* not sync */ | 
|  |  | 
|  | tmp_dunit_control_low = 0x1a000000;	/* Read-Data sampled on rising edge of Clk */ | 
|  | tmp_sdram_mode = 0x52;	/* CL=1,5 Burstlength = 4 */ | 
|  | DP (printf | 
|  | ("Max. CL is 1,5 CLKs 0x141c= %08lx, 0x1404 = %08lx\n", | 
|  | tmp_sdram_mode, tmp_dunit_control_low)); | 
|  | } | 
|  | break; | 
|  |  | 
|  | default: | 
|  | printf ("Max. CL is out of range %d\n", | 
|  | info->maxClSupported_DDR); | 
|  | hang (); | 
|  | break; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Write results of CL detection procedure */ | 
|  | GT_REG_WRITE (SDRAM_MODE, tmp_sdram_mode); | 
|  | /* set SDRAM mode SetCommand 0x1418 */ | 
|  | GT_REG_WRITE (SDRAM_OPERATION, 0x3); | 
|  | while (GTREGREAD (SDRAM_OPERATION) != 0) { | 
|  | DP (printf | 
|  | ("\n*** SDRAM_OPERATION 1418 after SDRAM_MODE: Module still busy ... please wait... ***\n")); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* SDRAM D_UNIT_CONTROL_LOW 0x1404 */ | 
|  | tmp = (GTREGREAD (D_UNIT_CONTROL_LOW) & 0x01);	/* Clock Domain Sync from power on reset */ | 
|  | if (tmp != 1) {		/*clocks are not sync */ | 
|  | /* asyncmode */ | 
|  | GT_REG_WRITE (D_UNIT_CONTROL_LOW, | 
|  | (GTREGREAD (D_UNIT_CONTROL_LOW) & 0x7F) | | 
|  | 0x18110780 | tmp_dunit_control_low); | 
|  | } else { | 
|  | /* syncmode */ | 
|  | GT_REG_WRITE (D_UNIT_CONTROL_LOW, | 
|  | (GTREGREAD (D_UNIT_CONTROL_LOW) & 0x7F) | | 
|  | 0x00110000 | tmp_dunit_control_low); | 
|  | } | 
|  |  | 
|  | /* set SDRAM mode SetCommand 0x1418 */ | 
|  | GT_REG_WRITE (SDRAM_OPERATION, 0x3); | 
|  | while (GTREGREAD (SDRAM_OPERATION) != 0) { | 
|  | DP (printf | 
|  | ("\n*** SDRAM_OPERATION 1418 after D_UNIT_CONTROL_LOW: Module still busy ... please wait... ***\n")); | 
|  | } | 
|  |  | 
|  | /*------------------------------------------------------------------------------ */ | 
|  |  | 
|  |  | 
|  | /* bank parameters */ | 
|  | /* SDRAM address decode register */ | 
|  | /* program this with the default value */ | 
|  | tmp = 0x02; | 
|  |  | 
|  |  | 
|  | DP (printf ("drb_size (n*64Mbit): %d\n", info->drb_size)); | 
|  | switch (info->drb_size) { | 
|  | case 1:		/* 64 Mbit */ | 
|  | case 2:		/* 128 Mbit */ | 
|  | DP (printf ("RAM-Device_size 64Mbit or 128Mbit)\n")); | 
|  | tmp |= (0x00 << 4); | 
|  | break; | 
|  | case 4:		/* 256 Mbit */ | 
|  | case 8:		/* 512 Mbit */ | 
|  | DP (printf ("RAM-Device_size 256Mbit or 512Mbit)\n")); | 
|  | tmp |= (0x01 << 4); | 
|  | break; | 
|  | case 16:		/* 1 Gbit */ | 
|  | case 32:		/* 2 Gbit */ | 
|  | DP (printf ("RAM-Device_size 1Gbit or 2Gbit)\n")); | 
|  | tmp |= (0x02 << 4); | 
|  | break; | 
|  | default: | 
|  | printf ("Error in dram size calculation\n"); | 
|  | DP (printf ("Assume: RAM-Device_size 1Gbit or 2Gbit)\n")); | 
|  | tmp |= (0x02 << 4); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* SDRAM bank parameters */ | 
|  | /* the param registers for slot 1 (banks 2+3) are offset by 0x8 */ | 
|  | DP (printf | 
|  | ("setting up slot %d config with: %08lx \n", info->slot, tmp)); | 
|  | GT_REG_WRITE (SDRAM_ADDR_CONTROL, tmp); | 
|  |  | 
|  | /* ------------------------------------------------------------------------------ */ | 
|  |  | 
|  | DP (printf | 
|  | ("setting up sdram_timing_control_low with: %08x \n", | 
|  | 0x11511220)); | 
|  | GT_REG_WRITE (SDRAM_TIMING_CONTROL_LOW, 0x11511220); | 
|  |  | 
|  |  | 
|  | /* ------------------------------------------------------------------------------ */ | 
|  |  | 
|  | /* SDRAM configuration */ | 
|  | tmp = GTREGREAD (SDRAM_CONFIG); | 
|  |  | 
|  | if (info->registeredAddrAndControlInputs | 
|  | || info->registeredDQMBinputs) { | 
|  | tmp |= (1 << 17); | 
|  | DP (printf | 
|  | ("SPD says: registered Addr. and Cont.: %d; registered DQMBinputs: %d\n", | 
|  | info->registeredAddrAndControlInputs, | 
|  | info->registeredDQMBinputs)); | 
|  | } | 
|  |  | 
|  | /* Use buffer 1 to return read data to the CPU | 
|  | * Page 426 MV64360 */ | 
|  | tmp |= (1 << 26); | 
|  | DP (printf | 
|  | ("Before Buffer assignment - sdram_conf: %08x\n", | 
|  | GTREGREAD (SDRAM_CONFIG))); | 
|  | DP (printf | 
|  | ("After Buffer assignment - sdram_conf: %08x\n", | 
|  | GTREGREAD (SDRAM_CONFIG))); | 
|  |  | 
|  | /* SDRAM timing To_do: */ | 
|  |  | 
|  |  | 
|  | tmp = GTREGREAD (SDRAM_TIMING_CONTROL_HIGH); | 
|  | DP (printf ("# sdram_timing_control_high is : %08lx \n", tmp)); | 
|  |  | 
|  | /* SDRAM address decode register */ | 
|  | /* program this with the default value */ | 
|  | tmp = GTREGREAD (SDRAM_ADDR_CONTROL); | 
|  | DP (printf | 
|  | ("SDRAM address control (before: decode): %08x  ", | 
|  | GTREGREAD (SDRAM_ADDR_CONTROL))); | 
|  | GT_REG_WRITE (SDRAM_ADDR_CONTROL, (tmp | 0x2)); | 
|  | DP (printf | 
|  | ("SDRAM address control (after: decode): %08x\n", | 
|  | GTREGREAD (SDRAM_ADDR_CONTROL))); | 
|  |  | 
|  | /* set the SDRAM configuration for each bank */ | 
|  |  | 
|  | /*	for (i = info->slot * 2; i < ((info->slot * 2) + info->banks); i++) */ | 
|  | { | 
|  | int l, l1; | 
|  |  | 
|  | i = info->slot; | 
|  | DP (printf | 
|  | ("\n*** Running a MRS cycle for bank %d ***\n", i)); | 
|  |  | 
|  | /* map the bank */ | 
|  | memory_map_bank (i, 0, GB / 4); | 
|  | #if 1				/* test only */ | 
|  |  | 
|  | tmp = GTREGREAD (SDRAM_MODE); | 
|  | GT_REG_WRITE (EXTENDED_DRAM_MODE, 0x0); | 
|  | GT_REG_WRITE (SDRAM_OPERATION, 0x4); | 
|  | while (GTREGREAD (SDRAM_OPERATION) != 0) { | 
|  | DP (printf | 
|  | ("\n*** SDRAM_OPERATION 1418 after SDRAM_MODE: Module still busy ... please wait... ***\n")); | 
|  | } | 
|  |  | 
|  | GT_REG_WRITE (SDRAM_MODE, tmp | 0x80); | 
|  | GT_REG_WRITE (SDRAM_OPERATION, 0x3); | 
|  | while (GTREGREAD (SDRAM_OPERATION) != 0) { | 
|  | DP (printf | 
|  | ("\n*** SDRAM_OPERATION 1418 after SDRAM_MODE: Module still busy ... please wait... ***\n")); | 
|  | } | 
|  | l1 = 0; | 
|  | for (l=0;l<200;l++) | 
|  | l1 += GTREGREAD (SDRAM_OPERATION); | 
|  |  | 
|  | GT_REG_WRITE (SDRAM_MODE, tmp); | 
|  | GT_REG_WRITE (SDRAM_OPERATION, 0x3); | 
|  | while (GTREGREAD (SDRAM_OPERATION) != 0) { | 
|  | DP (printf | 
|  | ("\n*** SDRAM_OPERATION 1418 after SDRAM_MODE: Module still busy ... please wait... ***\n")); | 
|  | } | 
|  |  | 
|  | /* switch back to normal operation mode */ | 
|  | GT_REG_WRITE (SDRAM_OPERATION, 0x5); | 
|  | while (GTREGREAD (SDRAM_OPERATION) != 0) { | 
|  | DP (printf | 
|  | ("\n*** SDRAM_OPERATION 1418 after SDRAM_MODE: Module still busy ... please wait... ***\n")); | 
|  | } | 
|  |  | 
|  | #endif /* test only */ | 
|  | /* unmap the bank */ | 
|  | memory_map_bank (i, 0, 0); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check memory range for valid RAM. A simple memory test determines | 
|  | * the actually available RAM size between addresses `base' and | 
|  | * `base + maxsize'. Some (not all) hardware errors are detected: | 
|  | * - short between address lines | 
|  | * - short between data lines | 
|  | */ | 
|  | long int | 
|  | dram_size(long int *base, long int maxsize) | 
|  | { | 
|  | volatile long int	 *addr, *b=base; | 
|  | long int	 cnt, val, save1, save2; | 
|  |  | 
|  | #define STARTVAL (1<<20)	/* start test at 1M */ | 
|  | for (cnt = STARTVAL/sizeof(long); cnt < maxsize/sizeof(long); cnt <<= 1) { | 
|  | addr = base + cnt;	/* pointer arith! */ | 
|  |  | 
|  | save1 = *addr;		/* save contents of addr */ | 
|  | save2 = *b;		/* save contents of base */ | 
|  |  | 
|  | *addr=cnt;		/* write cnt to addr */ | 
|  | *b=0;			/* put null at base */ | 
|  |  | 
|  | /* check at base address */ | 
|  | if ((*b) != 0) { | 
|  | *addr=save1;	/* restore *addr */ | 
|  | *b=save2;	/* restore *b */ | 
|  | return (0); | 
|  | } | 
|  | val = *addr;		/* read *addr */ | 
|  | val = *addr;		/* read *addr */ | 
|  |  | 
|  | *addr=save1; | 
|  | *b=save2; | 
|  |  | 
|  | if (val != cnt) { | 
|  | DP(printf("Found %08x  at Address %08x (failure)\n", (unsigned int)val, (unsigned int) addr)); | 
|  | /* fix boundary condition.. STARTVAL means zero */ | 
|  | if(cnt==STARTVAL/sizeof(long)) cnt=0; | 
|  | return (cnt * sizeof(long)); | 
|  | } | 
|  | } | 
|  | return maxsize; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MV64360_ECC | 
|  | /* | 
|  | * mv_dma_is_channel_active: | 
|  | * Checks if a engine is busy. | 
|  | */ | 
|  | int mv_dma_is_channel_active(int engine) | 
|  | { | 
|  | ulong data; | 
|  |  | 
|  | data = GTREGREAD(MV64360_DMA_CHANNEL0_CONTROL + 4 * engine); | 
|  | if (data & BIT14)	/* activity status */ | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * mv_dma_set_memory_space: | 
|  | * Set a DMA memory window for the DMA's address decoding map. | 
|  | */ | 
|  | int mv_dma_set_memory_space(ulong mem_space, ulong mem_space_target, | 
|  | ulong mem_space_attr, ulong base_address, | 
|  | ulong size) | 
|  | { | 
|  | ulong temp; | 
|  |  | 
|  | /* The base address must be aligned to the size.  */ | 
|  | if (base_address % size != 0) | 
|  | return 0; | 
|  |  | 
|  | if (size >= 0x10000) { | 
|  | size &= 0xffff0000; | 
|  | base_address = (base_address & 0xffff0000); | 
|  | /* Set the new attributes */ | 
|  | GT_REG_WRITE(MV64360_DMA_BASE_ADDR_REG0 + mem_space * 8, | 
|  | (base_address | mem_space_target | | 
|  | mem_space_attr)); | 
|  | GT_REG_WRITE((MV64360_DMA_SIZE_REG0 + mem_space * 8), | 
|  | (size - 1) & 0xffff0000); | 
|  | temp = GTREGREAD(MV64360_DMA_BASE_ADDR_ENABLE_REG); | 
|  | GT_REG_WRITE(DMA_BASE_ADDR_ENABLE_REG, | 
|  | (temp & ~(BIT0 << mem_space))); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * mv_dma_transfer: | 
|  | * Transfer data from source_addr to dest_addr on one of the 4 DMA channels. | 
|  | */ | 
|  | int mv_dma_transfer(int engine, ulong source_addr, | 
|  | ulong dest_addr, ulong bytes, ulong command) | 
|  | { | 
|  | ulong eng_off_reg;	/* Engine Offset Register */ | 
|  |  | 
|  | if (bytes > 0xffff) | 
|  | command = command | BIT31;	 /* DMA_16M_DESCRIPTOR_MODE */ | 
|  |  | 
|  | command = command | ((command >> 6) & 0x7); | 
|  | eng_off_reg = engine * 4; | 
|  | GT_REG_WRITE(MV64360_DMA_CHANNEL0_BYTE_COUNT + eng_off_reg, | 
|  | bytes); | 
|  | GT_REG_WRITE(MV64360_DMA_CHANNEL0_SOURCE_ADDR + eng_off_reg, | 
|  | source_addr); | 
|  | GT_REG_WRITE(MV64360_DMA_CHANNEL0_DESTINATION_ADDR + eng_off_reg, | 
|  | dest_addr); | 
|  | command |= BIT12	/* DMA_CHANNEL_ENABLE */ | 
|  | | BIT9;		/* DMA_NON_CHAIN_MODE */ | 
|  |  | 
|  | /* Activate DMA engine By writting to mv_dma_control_register */ | 
|  | GT_REG_WRITE(MV64360_DMA_CHANNEL0_CONTROL + eng_off_reg, command); | 
|  |  | 
|  | return 1; | 
|  | } | 
|  | #endif /* of ifdef CONFIG_MV64360_ECC */ | 
|  |  | 
|  | /* ppcboot interface function to SDRAM init - this is where all the | 
|  | * controlling logic happens */ | 
|  | phys_size_t | 
|  | initdram(int board_type) | 
|  | { | 
|  | int s0 = 0, s1 = 0; | 
|  | int checkbank[4] = { [0 ... 3] = 0 }; | 
|  | ulong realsize, total, check; | 
|  | AUX_MEM_DIMM_INFO dimmInfo1; | 
|  | AUX_MEM_DIMM_INFO dimmInfo2; | 
|  | int bank_no, nhr; | 
|  | #ifdef CONFIG_MV64360_ECC | 
|  | ulong dest, mem_space_attr; | 
|  | #endif /* of ifdef CONFIG_MV64360_ECC */ | 
|  |  | 
|  | /* first, use the SPD to get info about the SDRAM/ DDRRAM */ | 
|  |  | 
|  | /* check the NHR bit and skip mem init if it's already done */ | 
|  | nhr = get_hid0() & (1 << 16); | 
|  |  | 
|  | if (nhr) { | 
|  | printf("Skipping SD- DDRRAM setup due to NHR bit being set\n"); | 
|  | } else { | 
|  | /* DIMM0 */ | 
|  | s0 = check_dimm(0, &dimmInfo1); | 
|  |  | 
|  | /* DIMM1 */ | 
|  | s1 = check_dimm(1, &dimmInfo2); | 
|  |  | 
|  | memory_map_bank(0, 0, 0); | 
|  | memory_map_bank(1, 0, 0); | 
|  | memory_map_bank(2, 0, 0); | 
|  | memory_map_bank(3, 0, 0); | 
|  |  | 
|  | if (dimmInfo1.numOfModuleBanks && setup_sdram(&dimmInfo1)) { | 
|  | printf("Setup for DIMM1 failed.\n"); | 
|  | } | 
|  |  | 
|  | if (dimmInfo2.numOfModuleBanks && setup_sdram(&dimmInfo2)) { | 
|  | printf("Setup for DIMM2 failed.\n"); | 
|  | } | 
|  |  | 
|  | /* set the NHR bit */ | 
|  | set_hid0(get_hid0() | (1 << 16)); | 
|  | } | 
|  | /* next, size the SDRAM banks */ | 
|  |  | 
|  | realsize = total = 0; | 
|  | check = GB/4; | 
|  | if (dimmInfo1.numOfModuleBanks > 0) {checkbank[0] = 1; printf("-- DIMM1 has 1 bank\n");} | 
|  | if (dimmInfo1.numOfModuleBanks > 1) {checkbank[1] = 1; printf("-- DIMM1 has 2 banks\n");} | 
|  | if (dimmInfo1.numOfModuleBanks > 2) | 
|  | printf("Error, SPD claims DIMM1 has >2 banks\n"); | 
|  |  | 
|  | if (dimmInfo2.numOfModuleBanks > 0) {checkbank[2] = 1; printf("-- DIMM2 has 1 bank\n");} | 
|  | if (dimmInfo2.numOfModuleBanks > 1) {checkbank[3] = 1; printf("-- DIMM2 has 2 banks\n");} | 
|  | if (dimmInfo2.numOfModuleBanks > 2) | 
|  | printf("Error, SPD claims DIMM2 has >2 banks\n"); | 
|  |  | 
|  | for (bank_no = 0; bank_no < CONFIG_SYS_DRAM_BANKS; bank_no++) { | 
|  | /* skip over banks that are not populated */ | 
|  | if (! checkbank[bank_no]) | 
|  | continue; | 
|  |  | 
|  | if ((total + check) > CONFIG_SYS_GT_REGS) | 
|  | check = CONFIG_SYS_GT_REGS - total; | 
|  |  | 
|  | memory_map_bank(bank_no, total, check); | 
|  | realsize = dram_size((long int *)total, check); | 
|  | memory_map_bank(bank_no, total, realsize); | 
|  |  | 
|  | #ifdef CONFIG_MV64360_ECC | 
|  | if (((dimmInfo1.errorCheckType != 0) && | 
|  | ((dimmInfo2.errorCheckType != 0) || | 
|  | (dimmInfo2.numOfModuleBanks == 0))) && | 
|  | (CPCI750_ECC_TEST)) { | 
|  | printf("ECC Initialization of Bank %d:", bank_no); | 
|  | mem_space_attr = ((~(BIT0 << bank_no)) & 0xf) << 8; | 
|  | mv_dma_set_memory_space(0, 0, mem_space_attr, total, | 
|  | realsize); | 
|  | for (dest = total; dest < total + realsize; | 
|  | dest += _8M) { | 
|  | mv_dma_transfer(0, total, dest, _8M, | 
|  | BIT8 |	/* DMA_DTL_128BYTES */ | 
|  | BIT3 |	/* DMA_HOLD_SOURCE_ADDR */ | 
|  | BIT11);	/* DMA_BLOCK_TRANSFER_MODE */ | 
|  | while (mv_dma_is_channel_active(0)) | 
|  | ; | 
|  | } | 
|  | printf(" PASS\n"); | 
|  | } | 
|  | #endif /* of ifdef CONFIG_MV64360_ECC */ | 
|  |  | 
|  | total += realsize; | 
|  | } | 
|  |  | 
|  | /*	Setup Ethernet DMA Adress window to DRAM Area */ | 
|  | return(total); | 
|  | } | 
|  |  | 
|  | /* *************************************************************************************** | 
|  | ! *				SDRAM INIT						* | 
|  | ! *  This procedure detect all Sdram types: 64, 128, 256, 512 Mbit, 1Gbit and 2Gb	* | 
|  | ! *		  This procedure fits only the Atlantis				       * | 
|  | ! *											* | 
|  | ! *************************************************************************************** */ | 
|  |  | 
|  |  | 
|  | /* *************************************************************************************** | 
|  | ! *				DFCDL initialize MV643xx Design Considerations		   * | 
|  | ! *											* | 
|  | ! *************************************************************************************** */ | 
|  | int set_dfcdlInit (void) | 
|  | { | 
|  | int i; | 
|  | unsigned int dfcdl_word = 0x0000014f; | 
|  |  | 
|  | for (i = 0; i < 64; i++) { | 
|  | GT_REG_WRITE (SRAM_DATA0, dfcdl_word); | 
|  | } | 
|  | GT_REG_WRITE (DFCDL_CONFIG0, 0x00300000);	/* enable dynamic delay line updating */ | 
|  |  | 
|  |  | 
|  | return (0); | 
|  | } | 
|  |  | 
|  | int do_show_ecc(cmd_tbl_t *cmdtp, int flag, int argc, char * const argv[]) | 
|  | { | 
|  | unsigned int ecc_counter; | 
|  | unsigned int ecc_addr; | 
|  |  | 
|  | GT_REG_READ(0x1458, &ecc_counter); | 
|  | GT_REG_READ(0x1450, &ecc_addr); | 
|  | GT_REG_WRITE(0x1450, 0); | 
|  |  | 
|  | printf("Error Counter since Reset:  %8d\n", ecc_counter); | 
|  | printf("Last error address       :0x%08x (" , ecc_addr & 0xfffffff8); | 
|  | if (ecc_addr & 0x01) | 
|  | printf("double"); | 
|  | else | 
|  | printf("single"); | 
|  | printf(" bit) at DDR-RAM CS#%d\n", ((ecc_addr & 0x6) >> 1)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | U_BOOT_CMD( | 
|  | show_ecc, 1, 1, do_show_ecc, | 
|  | "Show Marvell MV64360 ECC Info", | 
|  | "Show Marvell MV64360 ECC Counter and last error." | 
|  | ); |