|  | /* | 
|  | * (C) Copyright 2000 | 
|  | * Paolo Scaffardi, AIRVENT SAM s.p.a - RIMINI(ITALY), arsenio@tin.it | 
|  | * | 
|  | * (C) Copyright 2000 Sysgo Real-Time Solutions, GmbH <www.elinos.com> | 
|  | * Marius Groeger <mgroeger@sysgo.de> | 
|  | * | 
|  | * See file CREDITS for list of people who contributed to this | 
|  | * project. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public License as | 
|  | * published by the Free Software Foundation; either version 2 of | 
|  | * the License, or (at your option) any later version. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write to the Free Software | 
|  | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, | 
|  | * MA 02111-1307 USA | 
|  | */ | 
|  |  | 
|  | #include <common.h> | 
|  |  | 
|  | #if defined(CONFIG_HARD_I2C) | 
|  |  | 
|  | #include <asm/cpm_8260.h> | 
|  | #include <i2c.h> | 
|  |  | 
|  | /* define to enable debug messages */ | 
|  | #undef  DEBUG_I2C | 
|  |  | 
|  | DECLARE_GLOBAL_DATA_PTR; | 
|  |  | 
|  | /* uSec to wait between polls of the i2c */ | 
|  | #define DELAY_US	100 | 
|  | /* uSec to wait for the CPM to start processing the buffer */ | 
|  | #define START_DELAY_US	1000 | 
|  |  | 
|  | /* | 
|  | * tx/rx per-byte timeout: we delay DELAY_US uSec between polls so the | 
|  | * timeout will be (tx_length + rx_length) * DELAY_US * TOUT_LOOP | 
|  | */ | 
|  | #define TOUT_LOOP 5 | 
|  |  | 
|  | /*----------------------------------------------------------------------- | 
|  | * Set default values | 
|  | */ | 
|  | #ifndef	CFG_I2C_SPEED | 
|  | #define	CFG_I2C_SPEED	50000 | 
|  | #endif | 
|  |  | 
|  | #ifndef	CFG_I2C_SLAVE | 
|  | #define	CFG_I2C_SLAVE	0xFE | 
|  | #endif | 
|  | /*----------------------------------------------------------------------- | 
|  | */ | 
|  |  | 
|  | typedef void (*i2c_ecb_t)(int, int, void *);    /* error callback function */ | 
|  |  | 
|  | /* This structure keeps track of the bd and buffer space usage. */ | 
|  | typedef struct i2c_state { | 
|  | int		rx_idx;		/* index   to next free Rx BD */ | 
|  | int		tx_idx;		/* index   to next free Tx BD */ | 
|  | void		*rxbd;		/* pointer to next free Rx BD */ | 
|  | void		*txbd;		/* pointer to next free Tx BD */ | 
|  | int		tx_space;	/* number  of Tx bytes left   */ | 
|  | unsigned char	*tx_buf;	/* pointer to free Tx area    */ | 
|  | i2c_ecb_t	err_cb;		/* error callback function    */ | 
|  | void		*cb_data;	/* private data to be passed  */ | 
|  | } i2c_state_t; | 
|  |  | 
|  | /* flags for i2c_send() and i2c_receive() */ | 
|  | #define	I2CF_ENABLE_SECONDARY	0x01	/* secondary_address is valid	*/ | 
|  | #define	I2CF_START_COND		0x02	/* tx: generate start condition	*/ | 
|  | #define I2CF_STOP_COND		0x04	/* tx: generate stop  condition	*/ | 
|  |  | 
|  | /* return codes */ | 
|  | #define I2CERR_NO_BUFFERS	1	/* no more BDs or buffer space	*/ | 
|  | #define I2CERR_MSG_TOO_LONG	2	/* tried to send/receive to much data   */ | 
|  | #define I2CERR_TIMEOUT		3	/* timeout in i2c_doio()	*/ | 
|  | #define I2CERR_QUEUE_EMPTY	4	/* i2c_doio called without send/receive */ | 
|  | #define I2CERR_IO_ERROR		5	/* had an error during comms	*/ | 
|  |  | 
|  | /* error callback flags */ | 
|  | #define I2CECB_RX_ERR		0x10	/* this is a receive error	*/ | 
|  | #define     I2CECB_RX_OV	0x02	/* receive overrun error	*/ | 
|  | #define     I2CECB_RX_MASK	0x0f	/* mask for error bits		*/ | 
|  | #define I2CECB_TX_ERR		0x20	/* this is a transmit error	*/ | 
|  | #define     I2CECB_TX_CL	0x01	/* transmit collision error	*/ | 
|  | #define     I2CECB_TX_UN	0x02	/* transmit underflow error	*/ | 
|  | #define     I2CECB_TX_NAK	0x04	/* transmit no ack error	*/ | 
|  | #define     I2CECB_TX_MASK	0x0f	/* mask for error bits		*/ | 
|  | #define I2CECB_TIMEOUT		0x40	/* this is a timeout error	*/ | 
|  |  | 
|  | #define ERROR_I2C_NONE		0 | 
|  | #define ERROR_I2C_LENGTH	1 | 
|  |  | 
|  | #define I2C_WRITE_BIT		0x00 | 
|  | #define I2C_READ_BIT		0x01 | 
|  |  | 
|  | #define I2C_RXTX_LEN	128	/* maximum tx/rx buffer length */ | 
|  |  | 
|  |  | 
|  | #define NUM_RX_BDS 4 | 
|  | #define NUM_TX_BDS 4 | 
|  | #define MAX_TX_SPACE 256 | 
|  |  | 
|  | typedef struct I2C_BD | 
|  | { | 
|  | unsigned short status; | 
|  | unsigned short length; | 
|  | unsigned char *addr; | 
|  | } I2C_BD; | 
|  | #define BD_I2C_TX_START 0x0400  /* special status for i2c: Start condition */ | 
|  |  | 
|  | #define BD_I2C_TX_CL	0x0001	/* collision error */ | 
|  | #define BD_I2C_TX_UN	0x0002	/* underflow error */ | 
|  | #define BD_I2C_TX_NAK	0x0004	/* no acknowledge error */ | 
|  | #define BD_I2C_TX_ERR	(BD_I2C_TX_NAK|BD_I2C_TX_UN|BD_I2C_TX_CL) | 
|  |  | 
|  | #define BD_I2C_RX_ERR	BD_SC_OV | 
|  |  | 
|  | #ifdef DEBUG_I2C | 
|  | #define PRINTD(x) printf x | 
|  | #else | 
|  | #define PRINTD(x) | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Returns the best value of I2BRG to meet desired clock speed of I2C with | 
|  | * input parameters (clock speed, filter, and predivider value). | 
|  | * It returns computer speed value and the difference between it and desired | 
|  | * speed. | 
|  | */ | 
|  | static inline int | 
|  | i2c_roundrate(int hz, int speed, int filter, int modval, | 
|  | int *brgval, int *totspeed) | 
|  | { | 
|  | int moddiv = 1 << (5-(modval & 3)), brgdiv, div; | 
|  |  | 
|  | PRINTD(("\t[I2C] trying hz=%d, speed=%d, filter=%d, modval=%d\n", | 
|  | hz, speed, filter, modval)); | 
|  |  | 
|  | div = moddiv * speed; | 
|  | brgdiv = (hz + div - 1) / div; | 
|  |  | 
|  | PRINTD(("\t\tmoddiv=%d, brgdiv=%d\n", moddiv, brgdiv)); | 
|  |  | 
|  | *brgval = ((brgdiv + 1) / 2) - 3 - (2*filter); | 
|  |  | 
|  | if ((*brgval < 0) || (*brgval > 255)) { | 
|  | PRINTD(("\t\trejected brgval=%d\n", *brgval)); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | brgdiv = 2 * (*brgval + 3 + (2 * filter)); | 
|  | div = moddiv * brgdiv ; | 
|  | *totspeed = hz / div; | 
|  |  | 
|  | PRINTD(("\t\taccepted brgval=%d, totspeed=%d\n", *brgval, *totspeed)); | 
|  |  | 
|  | return  0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Sets the I2C clock predivider and divider to meet required clock speed. | 
|  | */ | 
|  | static int i2c_setrate(int hz, int speed) | 
|  | { | 
|  | immap_t	*immap = (immap_t *)CFG_IMMR ; | 
|  | volatile i2c8260_t *i2c = (i2c8260_t *)&immap->im_i2c; | 
|  | int brgval, | 
|  | modval,	/* 0-3 */ | 
|  | bestspeed_diff = speed, | 
|  | bestspeed_brgval=0, | 
|  | bestspeed_modval=0, | 
|  | bestspeed_filter=0, | 
|  | totspeed, | 
|  | filter = 0; /* Use this fixed value */ | 
|  |  | 
|  | for (modval = 0; modval < 4; modval++) | 
|  | { | 
|  | if (i2c_roundrate (hz, speed, filter, modval, &brgval, &totspeed) == 0) | 
|  | { | 
|  | int diff = speed - totspeed ; | 
|  |  | 
|  | if ((diff >= 0) && (diff < bestspeed_diff)) | 
|  | { | 
|  | bestspeed_diff	= diff ; | 
|  | bestspeed_modval	= modval; | 
|  | bestspeed_brgval	= brgval; | 
|  | bestspeed_filter	= filter; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | PRINTD(("[I2C] Best is:\n")); | 
|  | PRINTD(("[I2C] CPU=%dhz RATE=%d F=%d I2MOD=%08x I2BRG=%08x DIFF=%dhz\n", | 
|  | hz, speed, | 
|  | bestspeed_filter, bestspeed_modval, bestspeed_brgval, | 
|  | bestspeed_diff)); | 
|  |  | 
|  | i2c->i2c_i2mod |= ((bestspeed_modval & 3) << 1) | (bestspeed_filter << 3); | 
|  | i2c->i2c_i2brg = bestspeed_brgval & 0xff; | 
|  |  | 
|  | PRINTD(("[I2C] i2mod=%08x i2brg=%08x\n", i2c->i2c_i2mod, i2c->i2c_i2brg)); | 
|  |  | 
|  | return 1 ; | 
|  | } | 
|  |  | 
|  | void i2c_init(int speed, int slaveadd) | 
|  | { | 
|  | volatile immap_t *immap = (immap_t *)CFG_IMMR ; | 
|  | volatile cpm8260_t *cp = (cpm8260_t *)&immap->im_cpm; | 
|  | volatile i2c8260_t *i2c	= (i2c8260_t *)&immap->im_i2c; | 
|  | volatile iic_t *iip; | 
|  | ulong rbase, tbase; | 
|  | volatile I2C_BD *rxbd, *txbd; | 
|  | uint dpaddr; | 
|  |  | 
|  | #ifdef CFG_I2C_INIT_BOARD | 
|  | /* call board specific i2c bus reset routine before accessing the   */ | 
|  | /* environment, which might be in a chip on that bus. For details   */ | 
|  | /* about this problem see doc/I2C_Edge_Conditions.                  */ | 
|  | i2c_init_board(); | 
|  | #endif | 
|  |  | 
|  | dpaddr = *((unsigned short*)(&immap->im_dprambase[PROFF_I2C_BASE])); | 
|  | if (dpaddr == 0) { | 
|  | /* need to allocate dual port ram */ | 
|  | dpaddr = m8260_cpm_dpalloc(64 + | 
|  | (NUM_RX_BDS * sizeof(I2C_BD)) + (NUM_TX_BDS * sizeof(I2C_BD)) + | 
|  | MAX_TX_SPACE, 64); | 
|  | *((unsigned short*)(&immap->im_dprambase[PROFF_I2C_BASE])) = dpaddr; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * initialise data in dual port ram: | 
|  | * | 
|  | *	  dpaddr -> parameter ram (64 bytes) | 
|  | *         rbase -> rx BD         (NUM_RX_BDS * sizeof(I2C_BD) bytes) | 
|  | *         tbase -> tx BD         (NUM_TX_BDS * sizeof(I2C_BD) bytes) | 
|  | *                  tx buffer     (MAX_TX_SPACE bytes) | 
|  | */ | 
|  |  | 
|  | iip = (iic_t *)&immap->im_dprambase[dpaddr]; | 
|  | memset((void*)iip, 0, sizeof(iic_t)); | 
|  |  | 
|  | rbase = dpaddr + 64; | 
|  | tbase = rbase + NUM_RX_BDS * sizeof(I2C_BD); | 
|  |  | 
|  | /* Disable interrupts */ | 
|  | i2c->i2c_i2mod = 0x00; | 
|  | i2c->i2c_i2cmr = 0x00; | 
|  | i2c->i2c_i2cer = 0xff; | 
|  | i2c->i2c_i2add = slaveadd; | 
|  |  | 
|  | /* | 
|  | * Set the I2C BRG Clock division factor from desired i2c rate | 
|  | * and current CPU rate (we assume sccr dfbgr field is 0; | 
|  | * divide BRGCLK by 1) | 
|  | */ | 
|  | PRINTD(("[I2C] Setting rate...\n")); | 
|  | i2c_setrate (gd->brg_clk, CFG_I2C_SPEED) ; | 
|  |  | 
|  | /* Set I2C controller in master mode */ | 
|  | i2c->i2c_i2com = 0x01; | 
|  |  | 
|  | /* Initialize Tx/Rx parameters */ | 
|  | iip->iic_rbase = rbase; | 
|  | iip->iic_tbase = tbase; | 
|  | rxbd = (I2C_BD *)((unsigned char *)&immap->im_dprambase[iip->iic_rbase]); | 
|  | txbd = (I2C_BD *)((unsigned char *)&immap->im_dprambase[iip->iic_tbase]); | 
|  |  | 
|  | PRINTD(("[I2C] rbase = %04x\n", iip->iic_rbase)); | 
|  | PRINTD(("[I2C] tbase = %04x\n", iip->iic_tbase)); | 
|  | PRINTD(("[I2C] rxbd = %08x\n", (int)rxbd)); | 
|  | PRINTD(("[I2C] txbd = %08x\n", (int)txbd)); | 
|  |  | 
|  | /* Set big endian byte order */ | 
|  | iip->iic_tfcr = 0x10; | 
|  | iip->iic_rfcr = 0x10; | 
|  |  | 
|  | /* Set maximum receive size. */ | 
|  | iip->iic_mrblr = I2C_RXTX_LEN; | 
|  |  | 
|  | cp->cp_cpcr = mk_cr_cmd(CPM_CR_I2C_PAGE, | 
|  | CPM_CR_I2C_SBLOCK, | 
|  | 0x00, | 
|  | CPM_CR_INIT_TRX) | CPM_CR_FLG; | 
|  | do { | 
|  | __asm__ __volatile__ ("eieio"); | 
|  | } while (cp->cp_cpcr & CPM_CR_FLG); | 
|  |  | 
|  | /* Clear events and interrupts */ | 
|  | i2c->i2c_i2cer = 0xff; | 
|  | i2c->i2c_i2cmr = 0x00; | 
|  | } | 
|  |  | 
|  | static | 
|  | void i2c_newio(i2c_state_t *state) | 
|  | { | 
|  | volatile immap_t *immap = (immap_t *)CFG_IMMR ; | 
|  | volatile iic_t *iip; | 
|  | uint dpaddr; | 
|  |  | 
|  | PRINTD(("[I2C] i2c_newio\n")); | 
|  |  | 
|  | dpaddr = *((unsigned short*)(&immap->im_dprambase[PROFF_I2C_BASE])); | 
|  | iip = (iic_t *)&immap->im_dprambase[dpaddr]; | 
|  | state->rx_idx = 0; | 
|  | state->tx_idx = 0; | 
|  | state->rxbd = (void*)&immap->im_dprambase[iip->iic_rbase]; | 
|  | state->txbd = (void*)&immap->im_dprambase[iip->iic_tbase]; | 
|  | state->tx_space = MAX_TX_SPACE; | 
|  | state->tx_buf = (uchar*)state->txbd + NUM_TX_BDS * sizeof(I2C_BD); | 
|  | state->err_cb = NULL; | 
|  | state->cb_data = NULL; | 
|  |  | 
|  | PRINTD(("[I2C] rxbd = %08x\n", (int)state->rxbd)); | 
|  | PRINTD(("[I2C] txbd = %08x\n", (int)state->txbd)); | 
|  | PRINTD(("[I2C] tx_buf = %08x\n", (int)state->tx_buf)); | 
|  |  | 
|  | /* clear the buffer memory */ | 
|  | memset((char *)state->tx_buf, 0, MAX_TX_SPACE); | 
|  | } | 
|  |  | 
|  | static | 
|  | int i2c_send(i2c_state_t *state, | 
|  | unsigned char address, | 
|  | unsigned char secondary_address, | 
|  | unsigned int flags, | 
|  | unsigned short size, | 
|  | unsigned char *dataout) | 
|  | { | 
|  | volatile I2C_BD *txbd; | 
|  | int i,j; | 
|  |  | 
|  | PRINTD(("[I2C] i2c_send add=%02d sec=%02d flag=%02d size=%d\n", | 
|  | address, secondary_address, flags, size)); | 
|  |  | 
|  | /* trying to send message larger than BD */ | 
|  | if (size > I2C_RXTX_LEN) | 
|  | return I2CERR_MSG_TOO_LONG; | 
|  |  | 
|  | /* no more free bds */ | 
|  | if (state->tx_idx >= NUM_TX_BDS || state->tx_space < (2 + size)) | 
|  | return I2CERR_NO_BUFFERS; | 
|  |  | 
|  | txbd = (I2C_BD *)state->txbd; | 
|  | txbd->addr = state->tx_buf; | 
|  |  | 
|  | PRINTD(("[I2C] txbd = %08x\n", (int)txbd)); | 
|  |  | 
|  | if (flags & I2CF_START_COND) | 
|  | { | 
|  | PRINTD(("[I2C] Formatting addresses...\n")); | 
|  | if (flags & I2CF_ENABLE_SECONDARY) | 
|  | { | 
|  | txbd->length = size + 2;  /* Length of message plus dest addresses */ | 
|  | txbd->addr[0] = address << 1; | 
|  | txbd->addr[1] = secondary_address; | 
|  | i = 2; | 
|  | } | 
|  | else | 
|  | { | 
|  | txbd->length = size + 1;  /* Length of message plus dest address */ | 
|  | txbd->addr[0] = address << 1;  /* Write destination address to BD */ | 
|  | i = 1; | 
|  | } | 
|  | } | 
|  | else | 
|  | { | 
|  | txbd->length = size;  /* Length of message */ | 
|  | i = 0; | 
|  | } | 
|  |  | 
|  | /* set up txbd */ | 
|  | txbd->status = BD_SC_READY; | 
|  | if (flags & I2CF_START_COND) | 
|  | txbd->status |= BD_I2C_TX_START; | 
|  | if (flags & I2CF_STOP_COND) | 
|  | txbd->status |= BD_SC_LAST | BD_SC_WRAP; | 
|  |  | 
|  | /* Copy data to send into buffer */ | 
|  | PRINTD(("[I2C] copy data...\n")); | 
|  | for(j = 0; j < size; i++, j++) | 
|  | txbd->addr[i] = dataout[j]; | 
|  |  | 
|  | PRINTD(("[I2C] txbd: length=0x%04x status=0x%04x addr[0]=0x%02x addr[1]=0x%02x\n", | 
|  | txbd->length, | 
|  | txbd->status, | 
|  | txbd->addr[0], | 
|  | txbd->addr[1])); | 
|  |  | 
|  | /* advance state */ | 
|  | state->tx_buf += txbd->length; | 
|  | state->tx_space -= txbd->length; | 
|  | state->tx_idx++; | 
|  | state->txbd = (void*)(txbd + 1); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static | 
|  | int i2c_receive(i2c_state_t *state, | 
|  | unsigned char address, | 
|  | unsigned char secondary_address, | 
|  | unsigned int flags, | 
|  | unsigned short size_to_expect, | 
|  | unsigned char *datain) | 
|  | { | 
|  | volatile I2C_BD *rxbd, *txbd; | 
|  |  | 
|  | PRINTD(("[I2C] i2c_receive %02d %02d %02d\n", address, secondary_address, flags)); | 
|  |  | 
|  | /* Expected to receive too much */ | 
|  | if (size_to_expect > I2C_RXTX_LEN) | 
|  | return I2CERR_MSG_TOO_LONG; | 
|  |  | 
|  | /* no more free bds */ | 
|  | if (state->tx_idx >= NUM_TX_BDS || state->rx_idx >= NUM_RX_BDS | 
|  | || state->tx_space < 2) | 
|  | return I2CERR_NO_BUFFERS; | 
|  |  | 
|  | rxbd = (I2C_BD *)state->rxbd; | 
|  | txbd = (I2C_BD *)state->txbd; | 
|  |  | 
|  | PRINTD(("[I2C] rxbd = %08x\n", (int)rxbd)); | 
|  | PRINTD(("[I2C] txbd = %08x\n", (int)txbd)); | 
|  |  | 
|  | txbd->addr = state->tx_buf; | 
|  |  | 
|  | /* set up TXBD for destination address */ | 
|  | if (flags & I2CF_ENABLE_SECONDARY) | 
|  | { | 
|  | txbd->length = 2; | 
|  | txbd->addr[0] = address << 1;   /* Write data */ | 
|  | txbd->addr[1] = secondary_address;  /* Internal address */ | 
|  | txbd->status = BD_SC_READY; | 
|  | } | 
|  | else | 
|  | { | 
|  | txbd->length = 1 + size_to_expect; | 
|  | txbd->addr[0] = (address << 1) | 0x01; | 
|  | txbd->status = BD_SC_READY; | 
|  | memset(&txbd->addr[1], 0, txbd->length); | 
|  | } | 
|  |  | 
|  | /* set up rxbd for reception */ | 
|  | rxbd->status = BD_SC_EMPTY; | 
|  | rxbd->length = size_to_expect; | 
|  | rxbd->addr = datain; | 
|  |  | 
|  | txbd->status |= BD_I2C_TX_START; | 
|  | if (flags & I2CF_STOP_COND) | 
|  | { | 
|  | txbd->status |= BD_SC_LAST | BD_SC_WRAP; | 
|  | rxbd->status |= BD_SC_WRAP; | 
|  | } | 
|  |  | 
|  | PRINTD(("[I2C] txbd: length=0x%04x status=0x%04x addr[0]=0x%02x addr[1]=0x%02x\n", | 
|  | txbd->length, | 
|  | txbd->status, | 
|  | txbd->addr[0], | 
|  | txbd->addr[1])); | 
|  | PRINTD(("[I2C] rxbd: length=0x%04x status=0x%04x addr[0]=0x%02x addr[1]=0x%02x\n", | 
|  | rxbd->length, | 
|  | rxbd->status, | 
|  | rxbd->addr[0], | 
|  | rxbd->addr[1])); | 
|  |  | 
|  | /* advance state */ | 
|  | state->tx_buf += txbd->length; | 
|  | state->tx_space -= txbd->length; | 
|  | state->tx_idx++; | 
|  | state->txbd = (void*)(txbd + 1); | 
|  | state->rx_idx++; | 
|  | state->rxbd = (void*)(rxbd + 1); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | static | 
|  | int i2c_doio(i2c_state_t *state) | 
|  | { | 
|  | volatile immap_t *immap = (immap_t *)CFG_IMMR ; | 
|  | volatile iic_t *iip; | 
|  | volatile i2c8260_t *i2c	= (i2c8260_t *)&immap->im_i2c; | 
|  | volatile I2C_BD *txbd, *rxbd; | 
|  | int  n, i, b, rxcnt = 0, rxtimeo = 0, txcnt = 0, txtimeo = 0, rc = 0; | 
|  | uint dpaddr; | 
|  |  | 
|  | PRINTD(("[I2C] i2c_doio\n")); | 
|  |  | 
|  | if (state->tx_idx <= 0 && state->rx_idx <= 0) { | 
|  | PRINTD(("[I2C] No I/O is queued\n")); | 
|  | return I2CERR_QUEUE_EMPTY; | 
|  | } | 
|  |  | 
|  | dpaddr = *((unsigned short*)(&immap->im_dprambase[PROFF_I2C_BASE])); | 
|  | iip = (iic_t *)&immap->im_dprambase[dpaddr]; | 
|  | iip->iic_rbptr = iip->iic_rbase; | 
|  | iip->iic_tbptr = iip->iic_tbase; | 
|  |  | 
|  | /* Enable I2C */ | 
|  | PRINTD(("[I2C] Enabling I2C...\n")); | 
|  | i2c->i2c_i2mod |= 0x01; | 
|  |  | 
|  | /* Begin transmission */ | 
|  | i2c->i2c_i2com |= 0x80; | 
|  |  | 
|  | /* Loop until transmit & receive completed */ | 
|  |  | 
|  | if ((n = state->tx_idx) > 0) { | 
|  |  | 
|  | txbd = ((I2C_BD*)state->txbd) - n; | 
|  | for (i = 0; i < n; i++) { | 
|  | txtimeo += TOUT_LOOP * txbd->length; | 
|  | txbd++; | 
|  | } | 
|  |  | 
|  | txbd--; /* wait until last in list is done */ | 
|  |  | 
|  | PRINTD(("[I2C] Transmitting...(txbd=0x%08lx)\n", (ulong)txbd)); | 
|  |  | 
|  | udelay(START_DELAY_US);	/* give it time to start */ | 
|  | while((txbd->status & BD_SC_READY) && (++txcnt < txtimeo)) { | 
|  | udelay(DELAY_US); | 
|  | if (ctrlc()) | 
|  | return (-1); | 
|  | __asm__ __volatile__ ("eieio"); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (txcnt < txtimeo && (n = state->rx_idx) > 0) { | 
|  |  | 
|  | rxbd = ((I2C_BD*)state->rxbd) - n; | 
|  | for (i = 0; i < n; i++) { | 
|  | rxtimeo += TOUT_LOOP * rxbd->length; | 
|  | rxbd++; | 
|  | } | 
|  |  | 
|  | rxbd--; /* wait until last in list is done */ | 
|  |  | 
|  | PRINTD(("[I2C] Receiving...(rxbd=0x%08lx)\n", (ulong)rxbd)); | 
|  |  | 
|  | udelay(START_DELAY_US);	/* give it time to start */ | 
|  | while((rxbd->status & BD_SC_EMPTY) && (++rxcnt < rxtimeo)) { | 
|  | udelay(DELAY_US); | 
|  | if (ctrlc()) | 
|  | return (-1); | 
|  | __asm__ __volatile__ ("eieio"); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Turn off I2C */ | 
|  | i2c->i2c_i2mod &= ~0x01; | 
|  |  | 
|  | if ((n = state->tx_idx) > 0) { | 
|  | for (i = 0; i < n; i++) { | 
|  | txbd = ((I2C_BD*)state->txbd) - (n - i); | 
|  | if ((b = txbd->status & BD_I2C_TX_ERR) != 0) { | 
|  | if (state->err_cb != NULL) | 
|  | (*state->err_cb)(I2CECB_TX_ERR|b, i, | 
|  | state->cb_data); | 
|  | if (rc == 0) | 
|  | rc = I2CERR_IO_ERROR; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if ((n = state->rx_idx) > 0) { | 
|  | for (i = 0; i < n; i++) { | 
|  | rxbd = ((I2C_BD*)state->rxbd) - (n - i); | 
|  | if ((b = rxbd->status & BD_I2C_RX_ERR) != 0) { | 
|  | if (state->err_cb != NULL) | 
|  | (*state->err_cb)(I2CECB_RX_ERR|b, i, | 
|  | state->cb_data); | 
|  | if (rc == 0) | 
|  | rc = I2CERR_IO_ERROR; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if ((txtimeo > 0 && txcnt >= txtimeo) || \ | 
|  | (rxtimeo > 0 && rxcnt >= rxtimeo)) { | 
|  | if (state->err_cb != NULL) | 
|  | (*state->err_cb)(I2CECB_TIMEOUT, -1, state->cb_data); | 
|  | if (rc == 0) | 
|  | rc = I2CERR_TIMEOUT; | 
|  | } | 
|  |  | 
|  | return (rc); | 
|  | } | 
|  |  | 
|  | static void | 
|  | i2c_probe_callback(int flags, int xnum, void *data) | 
|  | { | 
|  | /* | 
|  | * the only acceptable errors are a transmit NAK or a receive | 
|  | * overrun - tx NAK means the device does not exist, rx OV | 
|  | * means the device must have responded to the slave address | 
|  | * even though the transfer failed | 
|  | */ | 
|  | if (flags == (I2CECB_TX_ERR|I2CECB_TX_NAK)) | 
|  | *(int *)data |= 1; | 
|  | if (flags == (I2CECB_RX_ERR|I2CECB_RX_OV)) | 
|  | *(int *)data |= 2; | 
|  | } | 
|  |  | 
|  | int | 
|  | i2c_probe(uchar chip) | 
|  | { | 
|  | i2c_state_t state; | 
|  | int rc, err_flag; | 
|  | uchar buf[1]; | 
|  |  | 
|  | i2c_newio(&state); | 
|  |  | 
|  | state.err_cb = i2c_probe_callback; | 
|  | state.cb_data = (void *) &err_flag; | 
|  | err_flag = 0; | 
|  |  | 
|  | rc = i2c_receive(&state, chip, 0, I2CF_START_COND|I2CF_STOP_COND, 1, buf); | 
|  |  | 
|  | if (rc != 0) | 
|  | return (rc);	/* probe failed */ | 
|  |  | 
|  | rc = i2c_doio(&state); | 
|  |  | 
|  | if (rc == 0) | 
|  | return (0);	/* device exists - read succeeded */ | 
|  |  | 
|  | if (rc == I2CERR_TIMEOUT) | 
|  | return (-1);	/* device does not exist - timeout */ | 
|  |  | 
|  | if (rc != I2CERR_IO_ERROR || err_flag == 0) | 
|  | return (rc);	/* probe failed */ | 
|  |  | 
|  | if (err_flag & 1) | 
|  | return (-1);	/* device does not exist - had transmit NAK */ | 
|  |  | 
|  | return (0);	/* device exists - had receive overrun */ | 
|  | } | 
|  |  | 
|  |  | 
|  | int | 
|  | i2c_read(uchar chip, uint addr, int alen, uchar *buffer, int len) | 
|  | { | 
|  | i2c_state_t state; | 
|  | uchar xaddr[4]; | 
|  | int rc; | 
|  |  | 
|  | xaddr[0] = (addr >> 24) & 0xFF; | 
|  | xaddr[1] = (addr >> 16) & 0xFF; | 
|  | xaddr[2] = (addr >>  8) & 0xFF; | 
|  | xaddr[3] =  addr        & 0xFF; | 
|  |  | 
|  | #ifdef CFG_I2C_EEPROM_ADDR_OVERFLOW | 
|  | /* | 
|  | * EEPROM chips that implement "address overflow" are ones | 
|  | * like Catalyst 24WC04/08/16 which has 9/10/11 bits of address | 
|  | * and the extra bits end up in the "chip address" bit slots. | 
|  | * This makes a 24WC08 (1Kbyte) chip look like four 256 byte | 
|  | * chips. | 
|  | * | 
|  | * Note that we consider the length of the address field to still | 
|  | * be one byte because the extra address bits are hidden in the | 
|  | * chip address. | 
|  | */ | 
|  | chip |= ((addr >> (alen * 8)) & CFG_I2C_EEPROM_ADDR_OVERFLOW); | 
|  | #endif | 
|  |  | 
|  | i2c_newio(&state); | 
|  |  | 
|  | rc = i2c_send(&state, chip, 0, I2CF_START_COND, alen, &xaddr[4-alen]); | 
|  | if (rc != 0) { | 
|  | printf("i2c_read: i2c_send failed (%d)\n", rc); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | rc = i2c_receive(&state, chip, 0, I2CF_STOP_COND, len, buffer); | 
|  | if (rc != 0) { | 
|  | printf("i2c_read: i2c_receive failed (%d)\n", rc); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | rc = i2c_doio(&state); | 
|  | if (rc != 0) { | 
|  | printf("i2c_read: i2c_doio failed (%d)\n", rc); | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int | 
|  | i2c_write(uchar chip, uint addr, int alen, uchar *buffer, int len) | 
|  | { | 
|  | i2c_state_t state; | 
|  | uchar xaddr[4]; | 
|  | int rc; | 
|  |  | 
|  | xaddr[0] = (addr >> 24) & 0xFF; | 
|  | xaddr[1] = (addr >> 16) & 0xFF; | 
|  | xaddr[2] = (addr >>  8) & 0xFF; | 
|  | xaddr[3] =  addr        & 0xFF; | 
|  |  | 
|  | #ifdef CFG_I2C_EEPROM_ADDR_OVERFLOW | 
|  | /* | 
|  | * EEPROM chips that implement "address overflow" are ones | 
|  | * like Catalyst 24WC04/08/16 which has 9/10/11 bits of address | 
|  | * and the extra bits end up in the "chip address" bit slots. | 
|  | * This makes a 24WC08 (1Kbyte) chip look like four 256 byte | 
|  | * chips. | 
|  | * | 
|  | * Note that we consider the length of the address field to still | 
|  | * be one byte because the extra address bits are hidden in the | 
|  | * chip address. | 
|  | */ | 
|  | chip |= ((addr >> (alen * 8)) & CFG_I2C_EEPROM_ADDR_OVERFLOW); | 
|  | #endif | 
|  |  | 
|  | i2c_newio(&state); | 
|  |  | 
|  | rc = i2c_send(&state, chip, 0, I2CF_START_COND, alen, &xaddr[4-alen]); | 
|  | if (rc != 0) { | 
|  | printf("i2c_write: first i2c_send failed (%d)\n", rc); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | rc = i2c_send(&state, 0, 0, I2CF_STOP_COND, len, buffer); | 
|  | if (rc != 0) { | 
|  | printf("i2c_write: second i2c_send failed (%d)\n", rc); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | rc = i2c_doio(&state); | 
|  | if (rc != 0) { | 
|  | printf("i2c_write: i2c_doio failed (%d)\n", rc); | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | uchar | 
|  | i2c_reg_read(uchar chip, uchar reg) | 
|  | { | 
|  | uchar buf; | 
|  |  | 
|  | i2c_read(chip, reg, 1, &buf, 1); | 
|  |  | 
|  | return (buf); | 
|  | } | 
|  |  | 
|  | void | 
|  | i2c_reg_write(uchar chip, uchar reg, uchar val) | 
|  | { | 
|  | i2c_write(chip, reg, 1, &val, 1); | 
|  | } | 
|  |  | 
|  | #endif	/* CONFIG_HARD_I2C */ |