| /* | 
 |  * cpu/ppc4xx/44x_spd_ddr.c | 
 |  * This SPD DDR detection code supports IBM/AMCC PPC44x cpu with a | 
 |  * DDR controller. Those are 440GP/GX/EP/GR. | 
 |  * | 
 |  * (C) Copyright 2001 | 
 |  * Bill Hunter, Wave 7 Optics, williamhunter@attbi.com | 
 |  * | 
 |  * Based on code by: | 
 |  * | 
 |  * Kenneth Johansson ,Ericsson AB. | 
 |  * kenneth.johansson@etx.ericsson.se | 
 |  * | 
 |  * hacked up by bill hunter. fixed so we could run before | 
 |  * serial_init and console_init. previous version avoided this by | 
 |  * running out of cache memory during serial/console init, then running | 
 |  * this code later. | 
 |  * | 
 |  * (C) Copyright 2002 | 
 |  * Jun Gu, Artesyn Technology, jung@artesyncp.com | 
 |  * Support for AMCC 440 based on OpenBIOS draminit.c from IBM. | 
 |  * | 
 |  * (C) Copyright 2005-2007 | 
 |  * Stefan Roese, DENX Software Engineering, sr@denx.de. | 
 |  * | 
 |  * See file CREDITS for list of people who contributed to this | 
 |  * project. | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or | 
 |  * modify it under the terms of the GNU General Public License as | 
 |  * published by the Free Software Foundation; either version 2 of | 
 |  * the License, or (at your option) any later version. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, | 
 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the | 
 |  * GNU General Public License for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public License | 
 |  * along with this program; if not, write to the Free Software | 
 |  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, | 
 |  * MA 02111-1307 USA | 
 |  */ | 
 |  | 
 | /* define DEBUG for debugging output (obviously ;-)) */ | 
 | #if 0 | 
 | #define DEBUG | 
 | #endif | 
 |  | 
 | #include <common.h> | 
 | #include <asm/processor.h> | 
 | #include <i2c.h> | 
 | #include <ppc4xx.h> | 
 | #include <asm/mmu.h> | 
 |  | 
 | #include "ecc.h" | 
 |  | 
 | #if defined(CONFIG_SPD_EEPROM) &&					\ | 
 | 	(defined(CONFIG_440GP) || defined(CONFIG_440GX) ||		\ | 
 | 	 defined(CONFIG_440EP) || defined(CONFIG_440GR)) | 
 |  | 
 | /* | 
 |  * Set default values | 
 |  */ | 
 | #ifndef CONFIG_SYS_I2C_SPEED | 
 | #define CONFIG_SYS_I2C_SPEED	50000 | 
 | #endif | 
 |  | 
 | #define ONE_BILLION	1000000000 | 
 |  | 
 | /* | 
 |  * Board-specific Platform code can reimplement spd_ddr_init_hang () if needed | 
 |  */ | 
 | void __spd_ddr_init_hang (void) | 
 | { | 
 | 	hang (); | 
 | } | 
 | void spd_ddr_init_hang (void) __attribute__((weak, alias("__spd_ddr_init_hang"))); | 
 |  | 
 | /*-----------------------------------------------------------------------------+ | 
 |   |  General Definition | 
 |   +-----------------------------------------------------------------------------*/ | 
 | #define DEFAULT_SPD_ADDR1	0x53 | 
 | #define DEFAULT_SPD_ADDR2	0x52 | 
 | #define MAXBANKS		4		/* at most 4 dimm banks */ | 
 | #define MAX_SPD_BYTES		256 | 
 | #define NUMHALFCYCLES		4 | 
 | #define NUMMEMTESTS		8 | 
 | #define NUMMEMWORDS		8 | 
 | #define MAXBXCR			4 | 
 | #define TRUE			1 | 
 | #define FALSE			0 | 
 |  | 
 | /* | 
 |  * This DDR2 setup code can dynamically setup the TLB entries for the DDR2 memory | 
 |  * region. Right now the cache should still be disabled in U-Boot because of the | 
 |  * EMAC driver, that need it's buffer descriptor to be located in non cached | 
 |  * memory. | 
 |  * | 
 |  * If at some time this restriction doesn't apply anymore, just define | 
 |  * CONFIG_4xx_DCACHE in the board config file and this code should setup | 
 |  * everything correctly. | 
 |  */ | 
 | #ifdef CONFIG_4xx_DCACHE | 
 | #define MY_TLB_WORD2_I_ENABLE	0			/* enable caching on SDRAM */ | 
 | #else | 
 | #define MY_TLB_WORD2_I_ENABLE	TLB_WORD2_I_ENABLE	/* disable caching on SDRAM */ | 
 | #endif | 
 |  | 
 | /* bank_parms is used to sort the bank sizes by descending order */ | 
 | struct bank_param { | 
 | 	unsigned long cr; | 
 | 	unsigned long bank_size_bytes; | 
 | }; | 
 |  | 
 | typedef struct bank_param BANKPARMS; | 
 |  | 
 | #ifdef CONFIG_SYS_SIMULATE_SPD_EEPROM | 
 | extern const unsigned char cfg_simulate_spd_eeprom[128]; | 
 | #endif | 
 |  | 
 | static unsigned char spd_read(uchar chip, uint addr); | 
 | static void get_spd_info(unsigned long *dimm_populated, | 
 | 			 unsigned char *iic0_dimm_addr, | 
 | 			 unsigned long num_dimm_banks); | 
 | static void check_mem_type(unsigned long *dimm_populated, | 
 | 			   unsigned char *iic0_dimm_addr, | 
 | 			   unsigned long num_dimm_banks); | 
 | static void check_volt_type(unsigned long *dimm_populated, | 
 | 			    unsigned char *iic0_dimm_addr, | 
 | 			    unsigned long num_dimm_banks); | 
 | static void program_cfg0(unsigned long *dimm_populated, | 
 | 			 unsigned char *iic0_dimm_addr, | 
 | 			 unsigned long  num_dimm_banks); | 
 | static void program_cfg1(unsigned long *dimm_populated, | 
 | 			 unsigned char *iic0_dimm_addr, | 
 | 			 unsigned long num_dimm_banks); | 
 | static void program_rtr(unsigned long *dimm_populated, | 
 | 			unsigned char *iic0_dimm_addr, | 
 | 			unsigned long num_dimm_banks); | 
 | static void program_tr0(unsigned long *dimm_populated, | 
 | 			unsigned char *iic0_dimm_addr, | 
 | 			unsigned long num_dimm_banks); | 
 | static void program_tr1(void); | 
 |  | 
 | static unsigned long program_bxcr(unsigned long *dimm_populated, | 
 | 				  unsigned char *iic0_dimm_addr, | 
 | 				  unsigned long num_dimm_banks); | 
 |  | 
 | /* | 
 |  * This function is reading data from the DIMM module EEPROM over the SPD bus | 
 |  * and uses that to program the sdram controller. | 
 |  * | 
 |  * This works on boards that has the same schematics that the AMCC walnut has. | 
 |  * | 
 |  * BUG: Don't handle ECC memory | 
 |  * BUG: A few values in the TR register is currently hardcoded | 
 |  */ | 
 | long int spd_sdram(void) { | 
 | 	unsigned char iic0_dimm_addr[] = SPD_EEPROM_ADDRESS; | 
 | 	unsigned long dimm_populated[sizeof(iic0_dimm_addr)]; | 
 | 	unsigned long total_size; | 
 | 	unsigned long cfg0; | 
 | 	unsigned long mcsts; | 
 | 	unsigned long num_dimm_banks;		    /* on board dimm banks */ | 
 |  | 
 | 	num_dimm_banks = sizeof(iic0_dimm_addr); | 
 |  | 
 | 	/* | 
 | 	 * Make sure I2C controller is initialized | 
 | 	 * before continuing. | 
 | 	 */ | 
 | 	i2c_init(CONFIG_SYS_I2C_SPEED, CONFIG_SYS_I2C_SLAVE); | 
 |  | 
 | 	/* | 
 | 	 * Read the SPD information using I2C interface. Check to see if the | 
 | 	 * DIMM slots are populated. | 
 | 	 */ | 
 | 	get_spd_info(dimm_populated, iic0_dimm_addr, num_dimm_banks); | 
 |  | 
 | 	/* | 
 | 	 * Check the memory type for the dimms plugged. | 
 | 	 */ | 
 | 	check_mem_type(dimm_populated, iic0_dimm_addr, num_dimm_banks); | 
 |  | 
 | 	/* | 
 | 	 * Check the voltage type for the dimms plugged. | 
 | 	 */ | 
 | 	check_volt_type(dimm_populated, iic0_dimm_addr, num_dimm_banks); | 
 |  | 
 | #if defined(CONFIG_440GX) || defined(CONFIG_440EP) || defined(CONFIG_440GR) | 
 | 	/* | 
 | 	 * Soft-reset SDRAM controller. | 
 | 	 */ | 
 | 	mtsdr(sdr_srst, SDR0_SRST_DMC); | 
 | 	mtsdr(sdr_srst, 0x00000000); | 
 | #endif | 
 |  | 
 | 	/* | 
 | 	 * program 440GP SDRAM controller options (SDRAM0_CFG0) | 
 | 	 */ | 
 | 	program_cfg0(dimm_populated, iic0_dimm_addr, num_dimm_banks); | 
 |  | 
 | 	/* | 
 | 	 * program 440GP SDRAM controller options (SDRAM0_CFG1) | 
 | 	 */ | 
 | 	program_cfg1(dimm_populated, iic0_dimm_addr, num_dimm_banks); | 
 |  | 
 | 	/* | 
 | 	 * program SDRAM refresh register (SDRAM0_RTR) | 
 | 	 */ | 
 | 	program_rtr(dimm_populated, iic0_dimm_addr, num_dimm_banks); | 
 |  | 
 | 	/* | 
 | 	 * program SDRAM Timing Register 0 (SDRAM0_TR0) | 
 | 	 */ | 
 | 	program_tr0(dimm_populated, iic0_dimm_addr, num_dimm_banks); | 
 |  | 
 | 	/* | 
 | 	 * program the BxCR registers to find out total sdram installed | 
 | 	 */ | 
 | 	total_size = program_bxcr(dimm_populated, iic0_dimm_addr, | 
 | 				  num_dimm_banks); | 
 |  | 
 | #ifdef CONFIG_PROG_SDRAM_TLB /* this define should eventually be removed */ | 
 | 	/* and program tlb entries for this size (dynamic) */ | 
 | 	program_tlb(0, 0, total_size, MY_TLB_WORD2_I_ENABLE); | 
 | #endif | 
 |  | 
 | 	/* | 
 | 	 * program SDRAM Clock Timing Register (SDRAM0_CLKTR) | 
 | 	 */ | 
 | 	mtsdram(mem_clktr, 0x40000000); | 
 |  | 
 | 	/* | 
 | 	 * delay to ensure 200 usec has elapsed | 
 | 	 */ | 
 | 	udelay(400); | 
 |  | 
 | 	/* | 
 | 	 * enable the memory controller | 
 | 	 */ | 
 | 	mfsdram(mem_cfg0, cfg0); | 
 | 	mtsdram(mem_cfg0, cfg0 | SDRAM_CFG0_DCEN); | 
 |  | 
 | 	/* | 
 | 	 * wait for SDRAM_CFG0_DC_EN to complete | 
 | 	 */ | 
 | 	while (1) { | 
 | 		mfsdram(mem_mcsts, mcsts); | 
 | 		if ((mcsts & SDRAM_MCSTS_MRSC) != 0) | 
 | 			break; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * program SDRAM Timing Register 1, adding some delays | 
 | 	 */ | 
 | 	program_tr1(); | 
 |  | 
 | #ifdef CONFIG_DDR_ECC | 
 | 	/* | 
 | 	 * If ecc is enabled, initialize the parity bits. | 
 | 	 */ | 
 | 	ecc_init(CONFIG_SYS_SDRAM_BASE, total_size); | 
 | #endif | 
 |  | 
 | 	return total_size; | 
 | } | 
 |  | 
 | static unsigned char spd_read(uchar chip, uint addr) | 
 | { | 
 | 	unsigned char data[2]; | 
 |  | 
 | #ifdef CONFIG_SYS_SIMULATE_SPD_EEPROM | 
 | 	if (chip == CONFIG_SYS_SIMULATE_SPD_EEPROM) { | 
 | 		/* | 
 | 		 * Onboard spd eeprom requested -> simulate values | 
 | 		 */ | 
 | 		return cfg_simulate_spd_eeprom[addr]; | 
 | 	} | 
 | #endif /* CONFIG_SYS_SIMULATE_SPD_EEPROM */ | 
 |  | 
 | 	if (i2c_probe(chip) == 0) { | 
 | 		if (i2c_read(chip, addr, 1, data, 1) == 0) { | 
 | 			return data[0]; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void get_spd_info(unsigned long *dimm_populated, | 
 | 			 unsigned char *iic0_dimm_addr, | 
 | 			 unsigned long num_dimm_banks) | 
 | { | 
 | 	unsigned long dimm_num; | 
 | 	unsigned long dimm_found; | 
 | 	unsigned char num_of_bytes; | 
 | 	unsigned char total_size; | 
 |  | 
 | 	dimm_found = FALSE; | 
 | 	for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { | 
 | 		num_of_bytes = 0; | 
 | 		total_size = 0; | 
 |  | 
 | 		num_of_bytes = spd_read(iic0_dimm_addr[dimm_num], 0); | 
 | 		total_size = spd_read(iic0_dimm_addr[dimm_num], 1); | 
 |  | 
 | 		if ((num_of_bytes != 0) && (total_size != 0)) { | 
 | 			dimm_populated[dimm_num] = TRUE; | 
 | 			dimm_found = TRUE; | 
 | 			debug("DIMM slot %lu: populated\n", dimm_num); | 
 | 		} else { | 
 | 			dimm_populated[dimm_num] = FALSE; | 
 | 			debug("DIMM slot %lu: Not populated\n", dimm_num); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (dimm_found == FALSE) { | 
 | 		printf("ERROR - No memory installed. Install a DDR-SDRAM DIMM.\n\n"); | 
 | 		spd_ddr_init_hang (); | 
 | 	} | 
 | } | 
 |  | 
 | static void check_mem_type(unsigned long *dimm_populated, | 
 | 			   unsigned char *iic0_dimm_addr, | 
 | 			   unsigned long num_dimm_banks) | 
 | { | 
 | 	unsigned long dimm_num; | 
 | 	unsigned char dimm_type; | 
 |  | 
 | 	for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { | 
 | 		if (dimm_populated[dimm_num] == TRUE) { | 
 | 			dimm_type = spd_read(iic0_dimm_addr[dimm_num], 2); | 
 | 			switch (dimm_type) { | 
 | 			case 7: | 
 | 				debug("DIMM slot %lu: DDR SDRAM detected\n", dimm_num); | 
 | 				break; | 
 | 			default: | 
 | 				printf("ERROR: Unsupported DIMM detected in slot %lu.\n", | 
 | 				       dimm_num); | 
 | 				printf("Only DDR SDRAM DIMMs are supported.\n"); | 
 | 				printf("Replace the DIMM module with a supported DIMM.\n\n"); | 
 | 				spd_ddr_init_hang (); | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static void check_volt_type(unsigned long *dimm_populated, | 
 | 			    unsigned char *iic0_dimm_addr, | 
 | 			    unsigned long num_dimm_banks) | 
 | { | 
 | 	unsigned long dimm_num; | 
 | 	unsigned long voltage_type; | 
 |  | 
 | 	for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { | 
 | 		if (dimm_populated[dimm_num] == TRUE) { | 
 | 			voltage_type = spd_read(iic0_dimm_addr[dimm_num], 8); | 
 | 			if (voltage_type != 0x04) { | 
 | 				printf("ERROR: DIMM %lu with unsupported voltage level.\n", | 
 | 				       dimm_num); | 
 | 				spd_ddr_init_hang (); | 
 | 			} else { | 
 | 				debug("DIMM %lu voltage level supported.\n", dimm_num); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static void program_cfg0(unsigned long *dimm_populated, | 
 | 			 unsigned char *iic0_dimm_addr, | 
 | 			 unsigned long num_dimm_banks) | 
 | { | 
 | 	unsigned long dimm_num; | 
 | 	unsigned long cfg0; | 
 | 	unsigned long ecc_enabled; | 
 | 	unsigned char ecc; | 
 | 	unsigned char attributes; | 
 | 	unsigned long data_width; | 
 | 	unsigned long dimm_32bit; | 
 | 	unsigned long dimm_64bit; | 
 |  | 
 | 	/* | 
 | 	 * get Memory Controller Options 0 data | 
 | 	 */ | 
 | 	mfsdram(mem_cfg0, cfg0); | 
 |  | 
 | 	/* | 
 | 	 * clear bits | 
 | 	 */ | 
 | 	cfg0 &= ~(SDRAM_CFG0_DCEN | SDRAM_CFG0_MCHK_MASK | | 
 | 		  SDRAM_CFG0_RDEN | SDRAM_CFG0_PMUD | | 
 | 		  SDRAM_CFG0_DMWD_MASK | | 
 | 		  SDRAM_CFG0_UIOS_MASK | SDRAM_CFG0_PDP); | 
 |  | 
 |  | 
 | 	/* | 
 | 	 * FIXME: assume the DDR SDRAMs in both banks are the same | 
 | 	 */ | 
 | 	ecc_enabled = TRUE; | 
 | 	for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { | 
 | 		if (dimm_populated[dimm_num] == TRUE) { | 
 | 			ecc = spd_read(iic0_dimm_addr[dimm_num], 11); | 
 | 			if (ecc != 0x02) { | 
 | 				ecc_enabled = FALSE; | 
 | 			} | 
 |  | 
 | 			/* | 
 | 			 * program Registered DIMM Enable | 
 | 			 */ | 
 | 			attributes = spd_read(iic0_dimm_addr[dimm_num], 21); | 
 | 			if ((attributes & 0x02) != 0x00) { | 
 | 				cfg0 |= SDRAM_CFG0_RDEN; | 
 | 			} | 
 |  | 
 | 			/* | 
 | 			 * program DDR SDRAM Data Width | 
 | 			 */ | 
 | 			data_width = | 
 | 				(unsigned long)spd_read(iic0_dimm_addr[dimm_num],6) + | 
 | 				(((unsigned long)spd_read(iic0_dimm_addr[dimm_num],7)) << 8); | 
 | 			if (data_width == 64 || data_width == 72) { | 
 | 				dimm_64bit = TRUE; | 
 | 				cfg0 |= SDRAM_CFG0_DMWD_64; | 
 | 			} else if (data_width == 32 || data_width == 40) { | 
 | 				dimm_32bit = TRUE; | 
 | 				cfg0 |= SDRAM_CFG0_DMWD_32; | 
 | 			} else { | 
 | 				printf("WARNING: DIMM with datawidth of %lu bits.\n", | 
 | 				       data_width); | 
 | 				printf("Only DIMMs with 32 or 64 bit datawidths supported.\n"); | 
 | 				spd_ddr_init_hang (); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * program Memory Data Error Checking | 
 | 	 */ | 
 | 	if (ecc_enabled == TRUE) { | 
 | 		cfg0 |= SDRAM_CFG0_MCHK_GEN; | 
 | 	} else { | 
 | 		cfg0 |= SDRAM_CFG0_MCHK_NON; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * program Page Management Unit (0 == enabled) | 
 | 	 */ | 
 | 	cfg0 &= ~SDRAM_CFG0_PMUD; | 
 |  | 
 | 	/* | 
 | 	 * program Memory Controller Options 0 | 
 | 	 * Note: DCEN must be enabled after all DDR SDRAM controller | 
 | 	 * configuration registers get initialized. | 
 | 	 */ | 
 | 	mtsdram(mem_cfg0, cfg0); | 
 | } | 
 |  | 
 | static void program_cfg1(unsigned long *dimm_populated, | 
 | 			 unsigned char *iic0_dimm_addr, | 
 | 			 unsigned long num_dimm_banks) | 
 | { | 
 | 	unsigned long cfg1; | 
 | 	mfsdram(mem_cfg1, cfg1); | 
 |  | 
 | 	/* | 
 | 	 * Self-refresh exit, disable PM | 
 | 	 */ | 
 | 	cfg1 &= ~(SDRAM_CFG1_SRE | SDRAM_CFG1_PMEN); | 
 |  | 
 | 	/* | 
 | 	 * program Memory Controller Options 1 | 
 | 	 */ | 
 | 	mtsdram(mem_cfg1, cfg1); | 
 | } | 
 |  | 
 | static void program_rtr(unsigned long *dimm_populated, | 
 | 			unsigned char *iic0_dimm_addr, | 
 | 			unsigned long num_dimm_banks) | 
 | { | 
 | 	unsigned long dimm_num; | 
 | 	unsigned long bus_period_x_10; | 
 | 	unsigned long refresh_rate = 0; | 
 | 	unsigned char refresh_rate_type; | 
 | 	unsigned long refresh_interval; | 
 | 	unsigned long sdram_rtr; | 
 | 	PPC4xx_SYS_INFO sys_info; | 
 |  | 
 | 	/* | 
 | 	 * get the board info | 
 | 	 */ | 
 | 	get_sys_info(&sys_info); | 
 | 	bus_period_x_10 = ONE_BILLION / (sys_info.freqPLB / 10); | 
 |  | 
 | 	for (dimm_num = 0;  dimm_num < num_dimm_banks; dimm_num++) { | 
 | 		if (dimm_populated[dimm_num] == TRUE) { | 
 | 			refresh_rate_type = 0x7F & spd_read(iic0_dimm_addr[dimm_num], 12); | 
 | 			switch (refresh_rate_type) { | 
 | 			case 0x00: | 
 | 				refresh_rate = 15625; | 
 | 				break; | 
 | 			case 0x01: | 
 | 				refresh_rate = 15625/4; | 
 | 				break; | 
 | 			case 0x02: | 
 | 				refresh_rate = 15625/2; | 
 | 				break; | 
 | 			case 0x03: | 
 | 				refresh_rate = 15626*2; | 
 | 				break; | 
 | 			case 0x04: | 
 | 				refresh_rate = 15625*4; | 
 | 				break; | 
 | 			case 0x05: | 
 | 				refresh_rate = 15625*8; | 
 | 				break; | 
 | 			default: | 
 | 				printf("ERROR: DIMM %lu, unsupported refresh rate/type.\n", | 
 | 				       dimm_num); | 
 | 				printf("Replace the DIMM module with a supported DIMM.\n"); | 
 | 				break; | 
 | 			} | 
 |  | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	refresh_interval = refresh_rate * 10 / bus_period_x_10; | 
 | 	sdram_rtr = (refresh_interval & 0x3ff8) <<  16; | 
 |  | 
 | 	/* | 
 | 	 * program Refresh Timer Register (SDRAM0_RTR) | 
 | 	 */ | 
 | 	mtsdram(mem_rtr, sdram_rtr); | 
 | } | 
 |  | 
 | static void program_tr0(unsigned long *dimm_populated, | 
 | 			 unsigned char *iic0_dimm_addr, | 
 | 			 unsigned long num_dimm_banks) | 
 | { | 
 | 	unsigned long dimm_num; | 
 | 	unsigned long tr0; | 
 | 	unsigned char wcsbc; | 
 | 	unsigned char t_rp_ns; | 
 | 	unsigned char t_rcd_ns; | 
 | 	unsigned char t_ras_ns; | 
 | 	unsigned long t_rp_clk; | 
 | 	unsigned long t_ras_rcd_clk; | 
 | 	unsigned long t_rcd_clk; | 
 | 	unsigned long t_rfc_clk; | 
 | 	unsigned long plb_check; | 
 | 	unsigned char cas_bit; | 
 | 	unsigned long cas_index; | 
 | 	unsigned char cas_2_0_available; | 
 | 	unsigned char cas_2_5_available; | 
 | 	unsigned char cas_3_0_available; | 
 | 	unsigned long cycle_time_ns_x_10[3]; | 
 | 	unsigned long tcyc_3_0_ns_x_10; | 
 | 	unsigned long tcyc_2_5_ns_x_10; | 
 | 	unsigned long tcyc_2_0_ns_x_10; | 
 | 	unsigned long tcyc_reg; | 
 | 	unsigned long bus_period_x_10; | 
 | 	PPC4xx_SYS_INFO sys_info; | 
 | 	unsigned long residue; | 
 |  | 
 | 	/* | 
 | 	 * get the board info | 
 | 	 */ | 
 | 	get_sys_info(&sys_info); | 
 | 	bus_period_x_10 = ONE_BILLION / (sys_info.freqPLB / 10); | 
 |  | 
 | 	/* | 
 | 	 * get SDRAM Timing Register 0 (SDRAM_TR0) and clear bits | 
 | 	 */ | 
 | 	mfsdram(mem_tr0, tr0); | 
 | 	tr0 &= ~(SDRAM_TR0_SDWR_MASK | SDRAM_TR0_SDWD_MASK | | 
 | 		 SDRAM_TR0_SDCL_MASK | SDRAM_TR0_SDPA_MASK | | 
 | 		 SDRAM_TR0_SDCP_MASK | SDRAM_TR0_SDLD_MASK | | 
 | 		 SDRAM_TR0_SDRA_MASK | SDRAM_TR0_SDRD_MASK); | 
 |  | 
 | 	/* | 
 | 	 * initialization | 
 | 	 */ | 
 | 	wcsbc = 0; | 
 | 	t_rp_ns = 0; | 
 | 	t_rcd_ns = 0; | 
 | 	t_ras_ns = 0; | 
 | 	cas_2_0_available = TRUE; | 
 | 	cas_2_5_available = TRUE; | 
 | 	cas_3_0_available = TRUE; | 
 | 	tcyc_2_0_ns_x_10 = 0; | 
 | 	tcyc_2_5_ns_x_10 = 0; | 
 | 	tcyc_3_0_ns_x_10 = 0; | 
 |  | 
 | 	for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { | 
 | 		if (dimm_populated[dimm_num] == TRUE) { | 
 | 			wcsbc = spd_read(iic0_dimm_addr[dimm_num], 15); | 
 | 			t_rp_ns	 = spd_read(iic0_dimm_addr[dimm_num], 27) >> 2; | 
 | 			t_rcd_ns = spd_read(iic0_dimm_addr[dimm_num], 29) >> 2; | 
 | 			t_ras_ns = spd_read(iic0_dimm_addr[dimm_num], 30); | 
 | 			cas_bit = spd_read(iic0_dimm_addr[dimm_num], 18); | 
 |  | 
 | 			for (cas_index = 0; cas_index < 3; cas_index++) { | 
 | 				switch (cas_index) { | 
 | 				case 0: | 
 | 					tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 9); | 
 | 					break; | 
 | 				case 1: | 
 | 					tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 23); | 
 | 					break; | 
 | 				default: | 
 | 					tcyc_reg = spd_read(iic0_dimm_addr[dimm_num], 25); | 
 | 					break; | 
 | 				} | 
 |  | 
 | 				if ((tcyc_reg & 0x0F) >= 10) { | 
 | 					printf("ERROR: Tcyc incorrect for DIMM in slot %lu\n", | 
 | 					       dimm_num); | 
 | 					spd_ddr_init_hang (); | 
 | 				} | 
 |  | 
 | 				cycle_time_ns_x_10[cas_index] = | 
 | 					(((tcyc_reg & 0xF0) >> 4) * 10) + (tcyc_reg & 0x0F); | 
 | 			} | 
 |  | 
 | 			cas_index = 0; | 
 |  | 
 | 			if ((cas_bit & 0x80) != 0) { | 
 | 				cas_index += 3; | 
 | 			} else if ((cas_bit & 0x40) != 0) { | 
 | 				cas_index += 2; | 
 | 			} else if ((cas_bit & 0x20) != 0) { | 
 | 				cas_index += 1; | 
 | 			} | 
 |  | 
 | 			if (((cas_bit & 0x10) != 0) && (cas_index < 3)) { | 
 | 				tcyc_3_0_ns_x_10 = cycle_time_ns_x_10[cas_index]; | 
 | 				cas_index++; | 
 | 			} else { | 
 | 				if (cas_index != 0) { | 
 | 					cas_index++; | 
 | 				} | 
 | 				cas_3_0_available = FALSE; | 
 | 			} | 
 |  | 
 | 			if (((cas_bit & 0x08) != 0) || (cas_index < 3)) { | 
 | 				tcyc_2_5_ns_x_10 = cycle_time_ns_x_10[cas_index]; | 
 | 				cas_index++; | 
 | 			} else { | 
 | 				if (cas_index != 0) { | 
 | 					cas_index++; | 
 | 				} | 
 | 				cas_2_5_available = FALSE; | 
 | 			} | 
 |  | 
 | 			if (((cas_bit & 0x04) != 0) || (cas_index < 3)) { | 
 | 				tcyc_2_0_ns_x_10 = cycle_time_ns_x_10[cas_index]; | 
 | 				cas_index++; | 
 | 			} else { | 
 | 				if (cas_index != 0) { | 
 | 					cas_index++; | 
 | 				} | 
 | 				cas_2_0_available = FALSE; | 
 | 			} | 
 |  | 
 | 			break; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Program SD_WR and SD_WCSBC fields | 
 | 	 */ | 
 | 	tr0 |= SDRAM_TR0_SDWR_2_CLK;		    /* Write Recovery: 2 CLK */ | 
 | 	switch (wcsbc) { | 
 | 	case 0: | 
 | 		tr0 |= SDRAM_TR0_SDWD_0_CLK; | 
 | 		break; | 
 | 	default: | 
 | 		tr0 |= SDRAM_TR0_SDWD_1_CLK; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Program SD_CASL field | 
 | 	 */ | 
 | 	if ((cas_2_0_available == TRUE) && | 
 | 	    (bus_period_x_10 >= tcyc_2_0_ns_x_10)) { | 
 | 		tr0 |= SDRAM_TR0_SDCL_2_0_CLK; | 
 | 	} else if ((cas_2_5_available == TRUE) && | 
 | 		 (bus_period_x_10 >= tcyc_2_5_ns_x_10)) { | 
 | 		tr0 |= SDRAM_TR0_SDCL_2_5_CLK; | 
 | 	} else if ((cas_3_0_available == TRUE) && | 
 | 		 (bus_period_x_10 >= tcyc_3_0_ns_x_10)) { | 
 | 		tr0 |= SDRAM_TR0_SDCL_3_0_CLK; | 
 | 	} else { | 
 | 		printf("ERROR: No supported CAS latency with the installed DIMMs.\n"); | 
 | 		printf("Only CAS latencies of 2.0, 2.5, and 3.0 are supported.\n"); | 
 | 		printf("Make sure the PLB speed is within the supported range.\n"); | 
 | 		spd_ddr_init_hang (); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Calculate Trp in clock cycles and round up if necessary | 
 | 	 * Program SD_PTA field | 
 | 	 */ | 
 | 	t_rp_clk = sys_info.freqPLB * t_rp_ns / ONE_BILLION; | 
 | 	plb_check = ONE_BILLION * t_rp_clk / t_rp_ns; | 
 | 	if (sys_info.freqPLB != plb_check) { | 
 | 		t_rp_clk++; | 
 | 	} | 
 | 	switch ((unsigned long)t_rp_clk) { | 
 | 	case 0: | 
 | 	case 1: | 
 | 	case 2: | 
 | 		tr0 |= SDRAM_TR0_SDPA_2_CLK; | 
 | 		break; | 
 | 	case 3: | 
 | 		tr0 |= SDRAM_TR0_SDPA_3_CLK; | 
 | 		break; | 
 | 	default: | 
 | 		tr0 |= SDRAM_TR0_SDPA_4_CLK; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Program SD_CTP field | 
 | 	 */ | 
 | 	t_ras_rcd_clk = sys_info.freqPLB * (t_ras_ns - t_rcd_ns) / ONE_BILLION; | 
 | 	plb_check = ONE_BILLION * t_ras_rcd_clk / (t_ras_ns - t_rcd_ns); | 
 | 	if (sys_info.freqPLB != plb_check) { | 
 | 		t_ras_rcd_clk++; | 
 | 	} | 
 | 	switch (t_ras_rcd_clk) { | 
 | 	case 0: | 
 | 	case 1: | 
 | 	case 2: | 
 | 		tr0 |= SDRAM_TR0_SDCP_2_CLK; | 
 | 		break; | 
 | 	case 3: | 
 | 		tr0 |= SDRAM_TR0_SDCP_3_CLK; | 
 | 		break; | 
 | 	case 4: | 
 | 		tr0 |= SDRAM_TR0_SDCP_4_CLK; | 
 | 		break; | 
 | 	default: | 
 | 		tr0 |= SDRAM_TR0_SDCP_5_CLK; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Program SD_LDF field | 
 | 	 */ | 
 | 	tr0 |= SDRAM_TR0_SDLD_2_CLK; | 
 |  | 
 | 	/* | 
 | 	 * Program SD_RFTA field | 
 | 	 * FIXME tRFC hardcoded as 75 nanoseconds | 
 | 	 */ | 
 | 	t_rfc_clk = sys_info.freqPLB / (ONE_BILLION / 75); | 
 | 	residue = sys_info.freqPLB % (ONE_BILLION / 75); | 
 | 	if (residue >= (ONE_BILLION / 150)) { | 
 | 		t_rfc_clk++; | 
 | 	} | 
 | 	switch (t_rfc_clk) { | 
 | 	case 0: | 
 | 	case 1: | 
 | 	case 2: | 
 | 	case 3: | 
 | 	case 4: | 
 | 	case 5: | 
 | 	case 6: | 
 | 		tr0 |= SDRAM_TR0_SDRA_6_CLK; | 
 | 		break; | 
 | 	case 7: | 
 | 		tr0 |= SDRAM_TR0_SDRA_7_CLK; | 
 | 		break; | 
 | 	case 8: | 
 | 		tr0 |= SDRAM_TR0_SDRA_8_CLK; | 
 | 		break; | 
 | 	case 9: | 
 | 		tr0 |= SDRAM_TR0_SDRA_9_CLK; | 
 | 		break; | 
 | 	case 10: | 
 | 		tr0 |= SDRAM_TR0_SDRA_10_CLK; | 
 | 		break; | 
 | 	case 11: | 
 | 		tr0 |= SDRAM_TR0_SDRA_11_CLK; | 
 | 		break; | 
 | 	case 12: | 
 | 		tr0 |= SDRAM_TR0_SDRA_12_CLK; | 
 | 		break; | 
 | 	default: | 
 | 		tr0 |= SDRAM_TR0_SDRA_13_CLK; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * Program SD_RCD field | 
 | 	 */ | 
 | 	t_rcd_clk = sys_info.freqPLB * t_rcd_ns / ONE_BILLION; | 
 | 	plb_check = ONE_BILLION * t_rcd_clk / t_rcd_ns; | 
 | 	if (sys_info.freqPLB != plb_check) { | 
 | 		t_rcd_clk++; | 
 | 	} | 
 | 	switch (t_rcd_clk) { | 
 | 	case 0: | 
 | 	case 1: | 
 | 	case 2: | 
 | 		tr0 |= SDRAM_TR0_SDRD_2_CLK; | 
 | 		break; | 
 | 	case 3: | 
 | 		tr0 |= SDRAM_TR0_SDRD_3_CLK; | 
 | 		break; | 
 | 	default: | 
 | 		tr0 |= SDRAM_TR0_SDRD_4_CLK; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	debug("tr0: %x\n", tr0); | 
 | 	mtsdram(mem_tr0, tr0); | 
 | } | 
 |  | 
 | static int short_mem_test(void) | 
 | { | 
 | 	unsigned long i, j; | 
 | 	unsigned long bxcr_num; | 
 | 	unsigned long *membase; | 
 | 	const unsigned long test[NUMMEMTESTS][NUMMEMWORDS] = { | 
 | 		{0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF, | 
 | 		 0x00000000, 0x00000000, 0xFFFFFFFF, 0xFFFFFFFF}, | 
 | 		{0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000, | 
 | 		 0xFFFFFFFF, 0xFFFFFFFF, 0x00000000, 0x00000000}, | 
 | 		{0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555, | 
 | 		 0xAAAAAAAA, 0xAAAAAAAA, 0x55555555, 0x55555555}, | 
 | 		{0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA, | 
 | 		 0x55555555, 0x55555555, 0xAAAAAAAA, 0xAAAAAAAA}, | 
 | 		{0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A, | 
 | 		 0xA5A5A5A5, 0xA5A5A5A5, 0x5A5A5A5A, 0x5A5A5A5A}, | 
 | 		{0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5, | 
 | 		 0x5A5A5A5A, 0x5A5A5A5A, 0xA5A5A5A5, 0xA5A5A5A5}, | 
 | 		{0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA, | 
 | 		 0xAA55AA55, 0xAA55AA55, 0x55AA55AA, 0x55AA55AA}, | 
 | 		{0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55, | 
 | 		 0x55AA55AA, 0x55AA55AA, 0xAA55AA55, 0xAA55AA55}}; | 
 |  | 
 | 	for (bxcr_num = 0; bxcr_num < MAXBXCR; bxcr_num++) { | 
 | 		mtdcr(memcfga, mem_b0cr + (bxcr_num << 2)); | 
 | 		if ((mfdcr(memcfgd) & SDRAM_BXCR_SDBE) == SDRAM_BXCR_SDBE) { | 
 | 			/* Bank is enabled */ | 
 | 			membase = (unsigned long*) | 
 | 				(mfdcr(memcfgd) & SDRAM_BXCR_SDBA_MASK); | 
 |  | 
 | 			/* | 
 | 			 * Run the short memory test | 
 | 			 */ | 
 | 			for (i = 0; i < NUMMEMTESTS; i++) { | 
 | 				for (j = 0; j < NUMMEMWORDS; j++) { | 
 | 					/* printf("bank enabled base:%x\n", &membase[j]); */ | 
 | 					membase[j] = test[i][j]; | 
 | 					ppcDcbf((unsigned long)&(membase[j])); | 
 | 				} | 
 |  | 
 | 				for (j = 0; j < NUMMEMWORDS; j++) { | 
 | 					if (membase[j] != test[i][j]) { | 
 | 						ppcDcbf((unsigned long)&(membase[j])); | 
 | 						return 0; | 
 | 					} | 
 | 					ppcDcbf((unsigned long)&(membase[j])); | 
 | 				} | 
 |  | 
 | 				if (j < NUMMEMWORDS) | 
 | 					return 0; | 
 | 			} | 
 |  | 
 | 			/* | 
 | 			 * see if the rdclt value passed | 
 | 			 */ | 
 | 			if (i < NUMMEMTESTS) | 
 | 				return 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return 1; | 
 | } | 
 |  | 
 | static void program_tr1(void) | 
 | { | 
 | 	unsigned long tr0; | 
 | 	unsigned long tr1; | 
 | 	unsigned long cfg0; | 
 | 	unsigned long ecc_temp; | 
 | 	unsigned long dlycal; | 
 | 	unsigned long dly_val; | 
 | 	unsigned long k; | 
 | 	unsigned long max_pass_length; | 
 | 	unsigned long current_pass_length; | 
 | 	unsigned long current_fail_length; | 
 | 	unsigned long current_start; | 
 | 	unsigned long rdclt; | 
 | 	unsigned long rdclt_offset; | 
 | 	long max_start; | 
 | 	long max_end; | 
 | 	long rdclt_average; | 
 | 	unsigned char window_found; | 
 | 	unsigned char fail_found; | 
 | 	unsigned char pass_found; | 
 | 	PPC4xx_SYS_INFO sys_info; | 
 |  | 
 | 	/* | 
 | 	 * get the board info | 
 | 	 */ | 
 | 	get_sys_info(&sys_info); | 
 |  | 
 | 	/* | 
 | 	 * get SDRAM Timing Register 0 (SDRAM_TR0) and clear bits | 
 | 	 */ | 
 | 	mfsdram(mem_tr1, tr1); | 
 | 	tr1 &= ~(SDRAM_TR1_RDSS_MASK | SDRAM_TR1_RDSL_MASK | | 
 | 		 SDRAM_TR1_RDCD_MASK | SDRAM_TR1_RDCT_MASK); | 
 |  | 
 | 	mfsdram(mem_tr0, tr0); | 
 | 	if (((tr0 & SDRAM_TR0_SDCL_MASK) == SDRAM_TR0_SDCL_2_5_CLK) && | 
 | 	    (sys_info.freqPLB > 100000000)) { | 
 | 		tr1 |= SDRAM_TR1_RDSS_TR2; | 
 | 		tr1 |= SDRAM_TR1_RDSL_STAGE3; | 
 | 		tr1 |= SDRAM_TR1_RDCD_RCD_1_2; | 
 | 	} else { | 
 | 		tr1 |= SDRAM_TR1_RDSS_TR1; | 
 | 		tr1 |= SDRAM_TR1_RDSL_STAGE2; | 
 | 		tr1 |= SDRAM_TR1_RDCD_RCD_0_0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * save CFG0 ECC setting to a temporary variable and turn ECC off | 
 | 	 */ | 
 | 	mfsdram(mem_cfg0, cfg0); | 
 | 	ecc_temp = cfg0 & SDRAM_CFG0_MCHK_MASK; | 
 | 	mtsdram(mem_cfg0, (cfg0 & ~SDRAM_CFG0_MCHK_MASK) | SDRAM_CFG0_MCHK_NON); | 
 |  | 
 | 	/* | 
 | 	 * get the delay line calibration register value | 
 | 	 */ | 
 | 	mfsdram(mem_dlycal, dlycal); | 
 | 	dly_val = SDRAM_DLYCAL_DLCV_DECODE(dlycal) << 2; | 
 |  | 
 | 	max_pass_length = 0; | 
 | 	max_start = 0; | 
 | 	max_end = 0; | 
 | 	current_pass_length = 0; | 
 | 	current_fail_length = 0; | 
 | 	current_start = 0; | 
 | 	rdclt_offset = 0; | 
 | 	window_found = FALSE; | 
 | 	fail_found = FALSE; | 
 | 	pass_found = FALSE; | 
 | 	debug("Starting memory test "); | 
 |  | 
 | 	for (k = 0; k < NUMHALFCYCLES; k++) { | 
 | 		for (rdclt = 0; rdclt < dly_val; rdclt++) { | 
 | 			/* | 
 | 			 * Set the timing reg for the test. | 
 | 			 */ | 
 | 			mtsdram(mem_tr1, (tr1 | SDRAM_TR1_RDCT_ENCODE(rdclt))); | 
 |  | 
 | 			if (short_mem_test()) { | 
 | 				if (fail_found == TRUE) { | 
 | 					pass_found = TRUE; | 
 | 					if (current_pass_length == 0) { | 
 | 						current_start = rdclt_offset + rdclt; | 
 | 					} | 
 |  | 
 | 					current_fail_length = 0; | 
 | 					current_pass_length++; | 
 |  | 
 | 					if (current_pass_length > max_pass_length) { | 
 | 						max_pass_length = current_pass_length; | 
 | 						max_start = current_start; | 
 | 						max_end = rdclt_offset + rdclt; | 
 | 					} | 
 | 				} | 
 | 			} else { | 
 | 				current_pass_length = 0; | 
 | 				current_fail_length++; | 
 |  | 
 | 				if (current_fail_length >= (dly_val>>2)) { | 
 | 					if (fail_found == FALSE) { | 
 | 						fail_found = TRUE; | 
 | 					} else if (pass_found == TRUE) { | 
 | 						window_found = TRUE; | 
 | 						break; | 
 | 					} | 
 | 				} | 
 | 			} | 
 | 		} | 
 | 		debug("."); | 
 |  | 
 | 		if (window_found == TRUE) { | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		tr1 = tr1 ^ SDRAM_TR1_RDCD_MASK; | 
 | 		rdclt_offset += dly_val; | 
 | 	} | 
 | 	debug("\n"); | 
 |  | 
 | 	/* | 
 | 	 * make sure we find the window | 
 | 	 */ | 
 | 	if (window_found == FALSE) { | 
 | 		printf("ERROR: Cannot determine a common read delay.\n"); | 
 | 		spd_ddr_init_hang (); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * restore the orignal ECC setting | 
 | 	 */ | 
 | 	mtsdram(mem_cfg0, (cfg0 & ~SDRAM_CFG0_MCHK_MASK) | ecc_temp); | 
 |  | 
 | 	/* | 
 | 	 * set the SDRAM TR1 RDCD value | 
 | 	 */ | 
 | 	tr1 &= ~SDRAM_TR1_RDCD_MASK; | 
 | 	if ((tr0 & SDRAM_TR0_SDCL_MASK) == SDRAM_TR0_SDCL_2_5_CLK) { | 
 | 		tr1 |= SDRAM_TR1_RDCD_RCD_1_2; | 
 | 	} else { | 
 | 		tr1 |= SDRAM_TR1_RDCD_RCD_0_0; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * set the SDRAM TR1 RDCLT value | 
 | 	 */ | 
 | 	tr1 &= ~SDRAM_TR1_RDCT_MASK; | 
 | 	while (max_end >= (dly_val << 1)) { | 
 | 		max_end -= (dly_val << 1); | 
 | 		max_start -= (dly_val << 1); | 
 | 	} | 
 |  | 
 | 	rdclt_average = ((max_start + max_end) >> 1); | 
 |  | 
 | 	if (rdclt_average < 0) { | 
 | 		rdclt_average = 0; | 
 | 	} | 
 |  | 
 | 	if (rdclt_average >= dly_val) { | 
 | 		rdclt_average -= dly_val; | 
 | 		tr1 = tr1 ^ SDRAM_TR1_RDCD_MASK; | 
 | 	} | 
 | 	tr1 |= SDRAM_TR1_RDCT_ENCODE(rdclt_average); | 
 |  | 
 | 	debug("tr1: %x\n", tr1); | 
 |  | 
 | 	/* | 
 | 	 * program SDRAM Timing Register 1 TR1 | 
 | 	 */ | 
 | 	mtsdram(mem_tr1, tr1); | 
 | } | 
 |  | 
 | static unsigned long program_bxcr(unsigned long *dimm_populated, | 
 | 				  unsigned char *iic0_dimm_addr, | 
 | 				  unsigned long num_dimm_banks) | 
 | { | 
 | 	unsigned long dimm_num; | 
 | 	unsigned long bank_base_addr; | 
 | 	unsigned long cr; | 
 | 	unsigned long i; | 
 | 	unsigned long j; | 
 | 	unsigned long temp; | 
 | 	unsigned char num_row_addr; | 
 | 	unsigned char num_col_addr; | 
 | 	unsigned char num_banks; | 
 | 	unsigned char bank_size_id; | 
 | 	unsigned long ctrl_bank_num[MAXBANKS]; | 
 | 	unsigned long bx_cr_num; | 
 | 	unsigned long largest_size_index; | 
 | 	unsigned long largest_size; | 
 | 	unsigned long current_size_index; | 
 | 	BANKPARMS bank_parms[MAXBXCR]; | 
 | 	unsigned long sorted_bank_num[MAXBXCR]; /* DDR Controller bank number table (sorted by size) */ | 
 | 	unsigned long sorted_bank_size[MAXBXCR]; /* DDR Controller bank size table (sorted by size)*/ | 
 |  | 
 | 	/* | 
 | 	 * Set the BxCR regs.  First, wipe out the bank config registers. | 
 | 	 */ | 
 | 	for (bx_cr_num = 0; bx_cr_num < MAXBXCR; bx_cr_num++) { | 
 | 		mtdcr(memcfga, mem_b0cr + (bx_cr_num << 2)); | 
 | 		mtdcr(memcfgd, 0x00000000); | 
 | 		bank_parms[bx_cr_num].bank_size_bytes = 0; | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_BAMBOO | 
 | 	/* | 
 | 	 * This next section is hardware dependent and must be programmed | 
 | 	 * to match the hardware.  For bamboo, the following holds... | 
 | 	 * 1. SDRAM0_B0CR: Bank 0 of dimm 0 ctrl_bank_num : 0 (soldered onboard) | 
 | 	 * 2. SDRAM0_B1CR: Bank 0 of dimm 1 ctrl_bank_num : 1 | 
 | 	 * 3. SDRAM0_B2CR: Bank 1 of dimm 1 ctrl_bank_num : 1 | 
 | 	 * 4. SDRAM0_B3CR: Bank 0 of dimm 2 ctrl_bank_num : 3 | 
 | 	 * ctrl_bank_num corresponds to the first usable DDR controller bank number by DIMM | 
 | 	 */ | 
 | 	ctrl_bank_num[0] = 0; | 
 | 	ctrl_bank_num[1] = 1; | 
 | 	ctrl_bank_num[2] = 3; | 
 | #else | 
 | 	/* | 
 | 	 * Ocotea, Ebony and the other IBM/AMCC eval boards have | 
 | 	 * 2 DIMM slots with each max 2 banks | 
 | 	 */ | 
 | 	ctrl_bank_num[0] = 0; | 
 | 	ctrl_bank_num[1] = 2; | 
 | #endif | 
 |  | 
 | 	/* | 
 | 	 * reset the bank_base address | 
 | 	 */ | 
 | 	bank_base_addr = CONFIG_SYS_SDRAM_BASE; | 
 |  | 
 | 	for (dimm_num = 0; dimm_num < num_dimm_banks; dimm_num++) { | 
 | 		if (dimm_populated[dimm_num] == TRUE) { | 
 | 			num_row_addr = spd_read(iic0_dimm_addr[dimm_num], 3); | 
 | 			num_col_addr = spd_read(iic0_dimm_addr[dimm_num], 4); | 
 | 			num_banks    = spd_read(iic0_dimm_addr[dimm_num], 5); | 
 | 			bank_size_id = spd_read(iic0_dimm_addr[dimm_num], 31); | 
 | 			debug("DIMM%d: row=%d col=%d banks=%d\n", dimm_num, | 
 | 			      num_row_addr, num_col_addr, num_banks); | 
 |  | 
 | 			/* | 
 | 			 * Set the SDRAM0_BxCR regs | 
 | 			 */ | 
 | 			cr = 0; | 
 | 			switch (bank_size_id) { | 
 | 			case 0x02: | 
 | 				cr |= SDRAM_BXCR_SDSZ_8; | 
 | 				break; | 
 | 			case 0x04: | 
 | 				cr |= SDRAM_BXCR_SDSZ_16; | 
 | 				break; | 
 | 			case 0x08: | 
 | 				cr |= SDRAM_BXCR_SDSZ_32; | 
 | 				break; | 
 | 			case 0x10: | 
 | 				cr |= SDRAM_BXCR_SDSZ_64; | 
 | 				break; | 
 | 			case 0x20: | 
 | 				cr |= SDRAM_BXCR_SDSZ_128; | 
 | 				break; | 
 | 			case 0x40: | 
 | 				cr |= SDRAM_BXCR_SDSZ_256; | 
 | 				break; | 
 | 			case 0x80: | 
 | 				cr |= SDRAM_BXCR_SDSZ_512; | 
 | 				break; | 
 | 			default: | 
 | 				printf("DDR-SDRAM: DIMM %lu BxCR configuration.\n", | 
 | 				       dimm_num); | 
 | 				printf("ERROR: Unsupported value for the banksize: %d.\n", | 
 | 				       bank_size_id); | 
 | 				printf("Replace the DIMM module with a supported DIMM.\n\n"); | 
 | 				spd_ddr_init_hang (); | 
 | 			} | 
 |  | 
 | 			switch (num_col_addr) { | 
 | 			case 0x08: | 
 | 				cr |= SDRAM_BXCR_SDAM_1; | 
 | 				break; | 
 | 			case 0x09: | 
 | 				cr |= SDRAM_BXCR_SDAM_2; | 
 | 				break; | 
 | 			case 0x0A: | 
 | 				cr |= SDRAM_BXCR_SDAM_3; | 
 | 				break; | 
 | 			case 0x0B: | 
 | 				cr |= SDRAM_BXCR_SDAM_4; | 
 | 				break; | 
 | 			default: | 
 | 				printf("DDR-SDRAM: DIMM %lu BxCR configuration.\n", | 
 | 				       dimm_num); | 
 | 				printf("ERROR: Unsupported value for number of " | 
 | 				       "column addresses: %d.\n", num_col_addr); | 
 | 				printf("Replace the DIMM module with a supported DIMM.\n\n"); | 
 | 				spd_ddr_init_hang (); | 
 | 			} | 
 |  | 
 | 			/* | 
 | 			 * enable the bank | 
 | 			 */ | 
 | 			cr |= SDRAM_BXCR_SDBE; | 
 |  | 
 | 			for (i = 0; i < num_banks; i++) { | 
 | 				bank_parms[ctrl_bank_num[dimm_num]+i].bank_size_bytes = | 
 | 					(4 << 20) * bank_size_id; | 
 | 				bank_parms[ctrl_bank_num[dimm_num]+i].cr = cr; | 
 | 				debug("DIMM%d-bank %d (SDRAM0_B%dCR): bank_size_bytes=%d\n", | 
 | 				      dimm_num, i, ctrl_bank_num[dimm_num]+i, | 
 | 				      bank_parms[ctrl_bank_num[dimm_num]+i].bank_size_bytes); | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Initialize sort tables */ | 
 | 	for (i = 0; i < MAXBXCR; i++) { | 
 | 		sorted_bank_num[i] = i; | 
 | 		sorted_bank_size[i] = bank_parms[i].bank_size_bytes; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < MAXBXCR-1; i++) { | 
 | 		largest_size = sorted_bank_size[i]; | 
 | 		largest_size_index = 255; | 
 |  | 
 | 		/* Find the largest remaining value */ | 
 | 		for (j = i + 1; j < MAXBXCR; j++) { | 
 | 			if (sorted_bank_size[j] > largest_size) { | 
 | 				/* Save largest remaining value and its index */ | 
 | 				largest_size = sorted_bank_size[j]; | 
 | 				largest_size_index = j; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if (largest_size_index != 255) { | 
 | 			/* Swap the current and largest values */ | 
 | 			current_size_index = sorted_bank_num[largest_size_index]; | 
 | 			sorted_bank_size[largest_size_index] = sorted_bank_size[i]; | 
 | 			sorted_bank_size[i] = largest_size; | 
 | 			sorted_bank_num[largest_size_index] = sorted_bank_num[i]; | 
 | 			sorted_bank_num[i] = current_size_index; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Set the SDRAM0_BxCR regs thanks to sort tables */ | 
 | 	for (bx_cr_num = 0, bank_base_addr = 0; bx_cr_num < MAXBXCR; bx_cr_num++) { | 
 | 		if (bank_parms[sorted_bank_num[bx_cr_num]].bank_size_bytes) { | 
 | 			mtdcr(memcfga, mem_b0cr + (sorted_bank_num[bx_cr_num] << 2)); | 
 | 			temp = mfdcr(memcfgd) & ~(SDRAM_BXCR_SDBA_MASK | SDRAM_BXCR_SDSZ_MASK | | 
 | 						  SDRAM_BXCR_SDAM_MASK | SDRAM_BXCR_SDBE); | 
 | 			temp = temp | (bank_base_addr & SDRAM_BXCR_SDBA_MASK) | | 
 | 				bank_parms[sorted_bank_num[bx_cr_num]].cr; | 
 | 			mtdcr(memcfgd, temp); | 
 | 			bank_base_addr += bank_parms[sorted_bank_num[bx_cr_num]].bank_size_bytes; | 
 | 			debug("SDRAM0_B%dCR=0x%08lx\n", sorted_bank_num[bx_cr_num], temp); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return(bank_base_addr); | 
 | } | 
 | #endif /* CONFIG_SPD_EEPROM */ |