|  | /* | 
|  | * (C) Copyright 2006-2007 Freescale Semiconductor, Inc. | 
|  | * | 
|  | * (C) Copyright 2006 | 
|  | * Wolfgang Denk, DENX Software Engineering, wd@denx.de. | 
|  | * | 
|  | * Copyright (C) 2004-2006 Freescale Semiconductor, Inc. | 
|  | * (C) Copyright 2003 Motorola Inc. | 
|  | * Xianghua Xiao (X.Xiao@motorola.com) | 
|  | * | 
|  | * See file CREDITS for list of people who contributed to this | 
|  | * project. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public License as | 
|  | * published by the Free Software Foundation; either version 2 of | 
|  | * the License, or (at your option) any later version. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the | 
|  | * GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write to the Free Software | 
|  | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, | 
|  | * MA 02111-1307 USA | 
|  | */ | 
|  |  | 
|  | #include <common.h> | 
|  | #include <asm/processor.h> | 
|  | #include <i2c.h> | 
|  | #include <spd.h> | 
|  | #include <asm/mmu.h> | 
|  | #include <spd_sdram.h> | 
|  |  | 
|  | DECLARE_GLOBAL_DATA_PTR; | 
|  |  | 
|  | void board_add_ram_info(int use_default) | 
|  | { | 
|  | volatile immap_t *immap = (immap_t *) CONFIG_SYS_IMMR; | 
|  | volatile ddr83xx_t *ddr = &immap->ddr; | 
|  | char buf[32]; | 
|  |  | 
|  | printf(" (DDR%d", ((ddr->sdram_cfg & SDRAM_CFG_SDRAM_TYPE_MASK) | 
|  | >> SDRAM_CFG_SDRAM_TYPE_SHIFT) - 1); | 
|  |  | 
|  | if (ddr->sdram_cfg & SDRAM_CFG_32_BE) | 
|  | puts(", 32-bit"); | 
|  | else | 
|  | puts(", 64-bit"); | 
|  |  | 
|  | if (ddr->sdram_cfg & SDRAM_CFG_ECC_EN) | 
|  | puts(", ECC on"); | 
|  | else | 
|  | puts(", ECC off"); | 
|  |  | 
|  | printf(", %s MHz)", strmhz(buf, gd->mem_clk)); | 
|  |  | 
|  | #if defined(CONFIG_SYS_LB_SDRAM) && defined(CONFIG_SYS_LBC_SDRAM_SIZE) | 
|  | puts("\nSDRAM: "); | 
|  | print_size (CONFIG_SYS_LBC_SDRAM_SIZE * 1024 * 1024, " (local bus)"); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SPD_EEPROM | 
|  | #ifndef	CONFIG_SYS_READ_SPD | 
|  | #define CONFIG_SYS_READ_SPD	i2c_read | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Convert picoseconds into clock cycles (rounding up if needed). | 
|  | */ | 
|  | int | 
|  | picos_to_clk(int picos) | 
|  | { | 
|  | unsigned int mem_bus_clk; | 
|  | int clks; | 
|  |  | 
|  | mem_bus_clk = gd->mem_clk >> 1; | 
|  | clks = picos / (1000000000 / (mem_bus_clk / 1000)); | 
|  | if (picos % (1000000000 / (mem_bus_clk / 1000)) != 0) | 
|  | clks++; | 
|  |  | 
|  | return clks; | 
|  | } | 
|  |  | 
|  | unsigned int banksize(unsigned char row_dens) | 
|  | { | 
|  | return ((row_dens >> 2) | ((row_dens & 3) << 6)) << 24; | 
|  | } | 
|  |  | 
|  | int read_spd(uint addr) | 
|  | { | 
|  | return ((int) addr); | 
|  | } | 
|  |  | 
|  | #undef SPD_DEBUG | 
|  | #ifdef SPD_DEBUG | 
|  | static void spd_debug(spd_eeprom_t *spd) | 
|  | { | 
|  | printf ("\nDIMM type:       %-18.18s\n", spd->mpart); | 
|  | printf ("SPD size:        %d\n", spd->info_size); | 
|  | printf ("EEPROM size:     %d\n", 1 << spd->chip_size); | 
|  | printf ("Memory type:     %d\n", spd->mem_type); | 
|  | printf ("Row addr:        %d\n", spd->nrow_addr); | 
|  | printf ("Column addr:     %d\n", spd->ncol_addr); | 
|  | printf ("# of rows:       %d\n", spd->nrows); | 
|  | printf ("Row density:     %d\n", spd->row_dens); | 
|  | printf ("# of banks:      %d\n", spd->nbanks); | 
|  | printf ("Data width:      %d\n", | 
|  | 256 * spd->dataw_msb + spd->dataw_lsb); | 
|  | printf ("Chip width:      %d\n", spd->primw); | 
|  | printf ("Refresh rate:    %02X\n", spd->refresh); | 
|  | printf ("CAS latencies:   %02X\n", spd->cas_lat); | 
|  | printf ("Write latencies: %02X\n", spd->write_lat); | 
|  | printf ("tRP:             %d\n", spd->trp); | 
|  | printf ("tRCD:            %d\n", spd->trcd); | 
|  | printf ("\n"); | 
|  | } | 
|  | #endif /* SPD_DEBUG */ | 
|  |  | 
|  | long int spd_sdram() | 
|  | { | 
|  | volatile immap_t *immap = (immap_t *)CONFIG_SYS_IMMR; | 
|  | volatile ddr83xx_t *ddr = &immap->ddr; | 
|  | volatile law83xx_t *ecm = &immap->sysconf.ddrlaw[0]; | 
|  | spd_eeprom_t spd; | 
|  | unsigned int n_ranks; | 
|  | unsigned int odt_rd_cfg, odt_wr_cfg; | 
|  | unsigned char twr_clk, twtr_clk; | 
|  | unsigned int sdram_type; | 
|  | unsigned int memsize; | 
|  | unsigned int law_size; | 
|  | unsigned char caslat, caslat_ctrl; | 
|  | unsigned int trfc, trfc_clk, trfc_low, trfc_high; | 
|  | unsigned int trcd_clk, trtp_clk; | 
|  | unsigned char cke_min_clk; | 
|  | unsigned char add_lat, wr_lat; | 
|  | unsigned char wr_data_delay; | 
|  | unsigned char four_act; | 
|  | unsigned char cpo; | 
|  | unsigned char burstlen; | 
|  | unsigned char odt_cfg, mode_odt_enable; | 
|  | unsigned int max_bus_clk; | 
|  | unsigned int max_data_rate, effective_data_rate; | 
|  | unsigned int ddrc_clk; | 
|  | unsigned int refresh_clk; | 
|  | unsigned int sdram_cfg; | 
|  | unsigned int ddrc_ecc_enable; | 
|  | unsigned int pvr = get_pvr(); | 
|  |  | 
|  | /* Read SPD parameters with I2C */ | 
|  | CONFIG_SYS_READ_SPD(SPD_EEPROM_ADDRESS, 0, 1, (uchar *) & spd, sizeof (spd)); | 
|  | #ifdef SPD_DEBUG | 
|  | spd_debug(&spd); | 
|  | #endif | 
|  | /* Check the memory type */ | 
|  | if (spd.mem_type != SPD_MEMTYPE_DDR && spd.mem_type != SPD_MEMTYPE_DDR2) { | 
|  | debug("DDR: Module mem type is %02X\n", spd.mem_type); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Check the number of physical bank */ | 
|  | if (spd.mem_type == SPD_MEMTYPE_DDR) { | 
|  | n_ranks = spd.nrows; | 
|  | } else { | 
|  | n_ranks = (spd.nrows & 0x7) + 1; | 
|  | } | 
|  |  | 
|  | if (n_ranks > 2) { | 
|  | printf("DDR: The number of physical bank is %02X\n", n_ranks); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Check if the number of row of the module is in the range of DDRC */ | 
|  | if (spd.nrow_addr < 12 || spd.nrow_addr > 15) { | 
|  | printf("DDR: Row number is out of range of DDRC, row=%02X\n", | 
|  | spd.nrow_addr); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Check if the number of col of the module is in the range of DDRC */ | 
|  | if (spd.ncol_addr < 8 || spd.ncol_addr > 11) { | 
|  | printf("DDR: Col number is out of range of DDRC, col=%02X\n", | 
|  | spd.ncol_addr); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SYS_DDRCDR_VALUE | 
|  | /* | 
|  | * Adjust DDR II IO voltage biasing.  It just makes it work. | 
|  | */ | 
|  | if(spd.mem_type == SPD_MEMTYPE_DDR2) { | 
|  | immap->sysconf.ddrcdr = CONFIG_SYS_DDRCDR_VALUE; | 
|  | } | 
|  | udelay(50000); | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * ODT configuration recommendation from DDR Controller Chapter. | 
|  | */ | 
|  | odt_rd_cfg = 0;			/* Never assert ODT */ | 
|  | odt_wr_cfg = 0;			/* Never assert ODT */ | 
|  | if (spd.mem_type == SPD_MEMTYPE_DDR2) { | 
|  | odt_wr_cfg = 1;		/* Assert ODT on writes to CSn */ | 
|  | } | 
|  |  | 
|  | /* Setup DDR chip select register */ | 
|  | #ifdef CONFIG_SYS_83XX_DDR_USES_CS0 | 
|  | ddr->csbnds[0].csbnds = (banksize(spd.row_dens) >> 24) - 1; | 
|  | ddr->cs_config[0] = ( 1 << 31 | 
|  | | (odt_rd_cfg << 20) | 
|  | | (odt_wr_cfg << 16) | 
|  | | ((spd.nbanks == 8 ? 1 : 0) << 14) | 
|  | | ((spd.nrow_addr - 12) << 8) | 
|  | | (spd.ncol_addr - 8) ); | 
|  | debug("\n"); | 
|  | debug("cs0_bnds = 0x%08x\n",ddr->csbnds[0].csbnds); | 
|  | debug("cs0_config = 0x%08x\n",ddr->cs_config[0]); | 
|  |  | 
|  | if (n_ranks == 2) { | 
|  | ddr->csbnds[1].csbnds = ( (banksize(spd.row_dens) >> 8) | 
|  | | ((banksize(spd.row_dens) >> 23) - 1) ); | 
|  | ddr->cs_config[1] = ( 1<<31 | 
|  | | (odt_rd_cfg << 20) | 
|  | | (odt_wr_cfg << 16) | 
|  | | ((spd.nbanks == 8 ? 1 : 0) << 14) | 
|  | | ((spd.nrow_addr - 12) << 8) | 
|  | | (spd.ncol_addr - 8) ); | 
|  | debug("cs1_bnds = 0x%08x\n",ddr->csbnds[1].csbnds); | 
|  | debug("cs1_config = 0x%08x\n",ddr->cs_config[1]); | 
|  | } | 
|  |  | 
|  | #else | 
|  | ddr->csbnds[2].csbnds = (banksize(spd.row_dens) >> 24) - 1; | 
|  | ddr->cs_config[2] = ( 1 << 31 | 
|  | | (odt_rd_cfg << 20) | 
|  | | (odt_wr_cfg << 16) | 
|  | | ((spd.nbanks == 8 ? 1 : 0) << 14) | 
|  | | ((spd.nrow_addr - 12) << 8) | 
|  | | (spd.ncol_addr - 8) ); | 
|  | debug("\n"); | 
|  | debug("cs2_bnds = 0x%08x\n",ddr->csbnds[2].csbnds); | 
|  | debug("cs2_config = 0x%08x\n",ddr->cs_config[2]); | 
|  |  | 
|  | if (n_ranks == 2) { | 
|  | ddr->csbnds[3].csbnds = ( (banksize(spd.row_dens) >> 8) | 
|  | | ((banksize(spd.row_dens) >> 23) - 1) ); | 
|  | ddr->cs_config[3] = ( 1<<31 | 
|  | | (odt_rd_cfg << 20) | 
|  | | (odt_wr_cfg << 16) | 
|  | | ((spd.nbanks == 8 ? 1 : 0) << 14) | 
|  | | ((spd.nrow_addr - 12) << 8) | 
|  | | (spd.ncol_addr - 8) ); | 
|  | debug("cs3_bnds = 0x%08x\n",ddr->csbnds[3].csbnds); | 
|  | debug("cs3_config = 0x%08x\n",ddr->cs_config[3]); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Figure out memory size in Megabytes. | 
|  | */ | 
|  | memsize = n_ranks * banksize(spd.row_dens) / 0x100000; | 
|  |  | 
|  | /* | 
|  | * First supported LAW size is 16M, at LAWAR_SIZE_16M == 23. | 
|  | */ | 
|  | law_size = 19 + __ilog2(memsize); | 
|  |  | 
|  | /* | 
|  | * Set up LAWBAR for all of DDR. | 
|  | */ | 
|  | ecm->bar = CONFIG_SYS_DDR_SDRAM_BASE & 0xfffff000; | 
|  | ecm->ar  = (LAWAR_EN | LAWAR_TRGT_IF_DDR | (LAWAR_SIZE & law_size)); | 
|  | debug("DDR:bar=0x%08x\n", ecm->bar); | 
|  | debug("DDR:ar=0x%08x\n", ecm->ar); | 
|  |  | 
|  | /* | 
|  | * Find the largest CAS by locating the highest 1 bit | 
|  | * in the spd.cas_lat field.  Translate it to a DDR | 
|  | * controller field value: | 
|  | * | 
|  | *	CAS Lat	DDR I	DDR II	Ctrl | 
|  | *	Clocks	SPD Bit	SPD Bit	Value | 
|  | *	-------	-------	-------	----- | 
|  | *	1.0	0		0001 | 
|  | *	1.5	1		0010 | 
|  | *	2.0	2	2	0011 | 
|  | *	2.5	3		0100 | 
|  | *	3.0	4	3	0101 | 
|  | *	3.5	5		0110 | 
|  | *	4.0	6	4	0111 | 
|  | *	4.5			1000 | 
|  | *	5.0		5	1001 | 
|  | */ | 
|  | caslat = __ilog2(spd.cas_lat); | 
|  | if ((spd.mem_type == SPD_MEMTYPE_DDR) | 
|  | && (caslat > 6)) { | 
|  | printf("DDR I: Invalid SPD CAS Latency: 0x%x.\n", spd.cas_lat); | 
|  | return 0; | 
|  | } else if (spd.mem_type == SPD_MEMTYPE_DDR2 | 
|  | && (caslat < 2 || caslat > 5)) { | 
|  | printf("DDR II: Invalid SPD CAS Latency: 0x%x.\n", | 
|  | spd.cas_lat); | 
|  | return 0; | 
|  | } | 
|  | debug("DDR: caslat SPD bit is %d\n", caslat); | 
|  |  | 
|  | max_bus_clk = 1000 *10 / (((spd.clk_cycle & 0xF0) >> 4) * 10 | 
|  | + (spd.clk_cycle & 0x0f)); | 
|  | max_data_rate = max_bus_clk * 2; | 
|  |  | 
|  | debug("DDR:Module maximum data rate is: %d MHz\n", max_data_rate); | 
|  |  | 
|  | ddrc_clk = gd->mem_clk / 1000000; | 
|  | effective_data_rate = 0; | 
|  |  | 
|  | if (max_data_rate >= 460) { /* it is DDR2-800, 667, 533 */ | 
|  | if (spd.cas_lat & 0x08) | 
|  | caslat = 3; | 
|  | else | 
|  | caslat = 4; | 
|  | if (ddrc_clk <= 460 && ddrc_clk > 350) | 
|  | effective_data_rate = 400; | 
|  | else if (ddrc_clk <=350 && ddrc_clk > 280) | 
|  | effective_data_rate = 333; | 
|  | else if (ddrc_clk <= 280 && ddrc_clk > 230) | 
|  | effective_data_rate = 266; | 
|  | else | 
|  | effective_data_rate = 200; | 
|  | } else if (max_data_rate >= 390 && max_data_rate < 460) { /* it is DDR 400 */ | 
|  | if (ddrc_clk <= 460 && ddrc_clk > 350) { | 
|  | /* DDR controller clk at 350~460 */ | 
|  | effective_data_rate = 400; /* 5ns */ | 
|  | caslat = caslat; | 
|  | } else if (ddrc_clk <= 350 && ddrc_clk > 280) { | 
|  | /* DDR controller clk at 280~350 */ | 
|  | effective_data_rate = 333; /* 6ns */ | 
|  | if (spd.clk_cycle2 == 0x60) | 
|  | caslat = caslat - 1; | 
|  | else | 
|  | caslat = caslat; | 
|  | } else if (ddrc_clk <= 280 && ddrc_clk > 230) { | 
|  | /* DDR controller clk at 230~280 */ | 
|  | effective_data_rate = 266; /* 7.5ns */ | 
|  | if (spd.clk_cycle3 == 0x75) | 
|  | caslat = caslat - 2; | 
|  | else if (spd.clk_cycle2 == 0x75) | 
|  | caslat = caslat - 1; | 
|  | else | 
|  | caslat = caslat; | 
|  | } else if (ddrc_clk <= 230 && ddrc_clk > 90) { | 
|  | /* DDR controller clk at 90~230 */ | 
|  | effective_data_rate = 200; /* 10ns */ | 
|  | if (spd.clk_cycle3 == 0xa0) | 
|  | caslat = caslat - 2; | 
|  | else if (spd.clk_cycle2 == 0xa0) | 
|  | caslat = caslat - 1; | 
|  | else | 
|  | caslat = caslat; | 
|  | } | 
|  | } else if (max_data_rate >= 323) { /* it is DDR 333 */ | 
|  | if (ddrc_clk <= 350 && ddrc_clk > 280) { | 
|  | /* DDR controller clk at 280~350 */ | 
|  | effective_data_rate = 333; /* 6ns */ | 
|  | caslat = caslat; | 
|  | } else if (ddrc_clk <= 280 && ddrc_clk > 230) { | 
|  | /* DDR controller clk at 230~280 */ | 
|  | effective_data_rate = 266; /* 7.5ns */ | 
|  | if (spd.clk_cycle2 == 0x75) | 
|  | caslat = caslat - 1; | 
|  | else | 
|  | caslat = caslat; | 
|  | } else if (ddrc_clk <= 230 && ddrc_clk > 90) { | 
|  | /* DDR controller clk at 90~230 */ | 
|  | effective_data_rate = 200; /* 10ns */ | 
|  | if (spd.clk_cycle3 == 0xa0) | 
|  | caslat = caslat - 2; | 
|  | else if (spd.clk_cycle2 == 0xa0) | 
|  | caslat = caslat - 1; | 
|  | else | 
|  | caslat = caslat; | 
|  | } | 
|  | } else if (max_data_rate >= 256) { /* it is DDR 266 */ | 
|  | if (ddrc_clk <= 350 && ddrc_clk > 280) { | 
|  | /* DDR controller clk at 280~350 */ | 
|  | printf("DDR: DDR controller freq is more than " | 
|  | "max data rate of the module\n"); | 
|  | return 0; | 
|  | } else if (ddrc_clk <= 280 && ddrc_clk > 230) { | 
|  | /* DDR controller clk at 230~280 */ | 
|  | effective_data_rate = 266; /* 7.5ns */ | 
|  | caslat = caslat; | 
|  | } else if (ddrc_clk <= 230 && ddrc_clk > 90) { | 
|  | /* DDR controller clk at 90~230 */ | 
|  | effective_data_rate = 200; /* 10ns */ | 
|  | if (spd.clk_cycle2 == 0xa0) | 
|  | caslat = caslat - 1; | 
|  | } | 
|  | } else if (max_data_rate >= 190) { /* it is DDR 200 */ | 
|  | if (ddrc_clk <= 350 && ddrc_clk > 230) { | 
|  | /* DDR controller clk at 230~350 */ | 
|  | printf("DDR: DDR controller freq is more than " | 
|  | "max data rate of the module\n"); | 
|  | return 0; | 
|  | } else if (ddrc_clk <= 230 && ddrc_clk > 90) { | 
|  | /* DDR controller clk at 90~230 */ | 
|  | effective_data_rate = 200; /* 10ns */ | 
|  | caslat = caslat; | 
|  | } | 
|  | } | 
|  |  | 
|  | debug("DDR:Effective data rate is: %dMHz\n", effective_data_rate); | 
|  | debug("DDR:The MSB 1 of CAS Latency is: %d\n", caslat); | 
|  |  | 
|  | /* | 
|  | * Errata DDR6 work around: input enable 2 cycles earlier. | 
|  | * including MPC834x Rev1.0/1.1 and MPC8360 Rev1.1/1.2. | 
|  | */ | 
|  | if(PVR_MAJ(pvr) <= 1 && spd.mem_type == SPD_MEMTYPE_DDR){ | 
|  | if (caslat == 2) | 
|  | ddr->debug_reg = 0x201c0000; /* CL=2 */ | 
|  | else if (caslat == 3) | 
|  | ddr->debug_reg = 0x202c0000; /* CL=2.5 */ | 
|  | else if (caslat == 4) | 
|  | ddr->debug_reg = 0x202c0000; /* CL=3.0 */ | 
|  |  | 
|  | __asm__ __volatile__ ("sync"); | 
|  |  | 
|  | debug("Errata DDR6 (debug_reg=0x%08x)\n", ddr->debug_reg); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Convert caslat clocks to DDR controller value. | 
|  | * Force caslat_ctrl to be DDR Controller field-sized. | 
|  | */ | 
|  | if (spd.mem_type == SPD_MEMTYPE_DDR) { | 
|  | caslat_ctrl = (caslat + 1) & 0x07; | 
|  | } else { | 
|  | caslat_ctrl =  (2 * caslat - 1) & 0x0f; | 
|  | } | 
|  |  | 
|  | debug("DDR: effective data rate is %d MHz\n", effective_data_rate); | 
|  | debug("DDR: caslat SPD bit is %d, controller field is 0x%x\n", | 
|  | caslat, caslat_ctrl); | 
|  |  | 
|  | /* | 
|  | * Timing Config 0. | 
|  | * Avoid writing for DDR I. | 
|  | */ | 
|  | if (spd.mem_type == SPD_MEMTYPE_DDR2) { | 
|  | unsigned char taxpd_clk = 8;		/* By the book. */ | 
|  | unsigned char tmrd_clk = 2;		/* By the book. */ | 
|  | unsigned char act_pd_exit = 2;		/* Empirical? */ | 
|  | unsigned char pre_pd_exit = 6;		/* Empirical? */ | 
|  |  | 
|  | ddr->timing_cfg_0 = (0 | 
|  | | ((act_pd_exit & 0x7) << 20)	/* ACT_PD_EXIT */ | 
|  | | ((pre_pd_exit & 0x7) << 16)	/* PRE_PD_EXIT */ | 
|  | | ((taxpd_clk & 0xf) << 8)	/* ODT_PD_EXIT */ | 
|  | | ((tmrd_clk & 0xf) << 0)	/* MRS_CYC */ | 
|  | ); | 
|  | debug("DDR: timing_cfg_0 = 0x%08x\n", ddr->timing_cfg_0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For DDR I, WRREC(Twr) and WRTORD(Twtr) are not in SPD, | 
|  | * use conservative value. | 
|  | * For DDR II, they are bytes 36 and 37, in quarter nanos. | 
|  | */ | 
|  |  | 
|  | if (spd.mem_type == SPD_MEMTYPE_DDR) { | 
|  | twr_clk = 3;	/* Clocks */ | 
|  | twtr_clk = 1;	/* Clocks */ | 
|  | } else { | 
|  | twr_clk = picos_to_clk(spd.twr * 250); | 
|  | twtr_clk = picos_to_clk(spd.twtr * 250); | 
|  | if (twtr_clk < 2) | 
|  | twtr_clk = 2; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Calculate Trfc, in picos. | 
|  | * DDR I:  Byte 42 straight up in ns. | 
|  | * DDR II: Byte 40 and 42 swizzled some, in ns. | 
|  | */ | 
|  | if (spd.mem_type == SPD_MEMTYPE_DDR) { | 
|  | trfc = spd.trfc * 1000;		/* up to ps */ | 
|  | } else { | 
|  | unsigned int byte40_table_ps[8] = { | 
|  | 0, | 
|  | 250, | 
|  | 330, | 
|  | 500, | 
|  | 660, | 
|  | 750, | 
|  | 0, | 
|  | 0 | 
|  | }; | 
|  |  | 
|  | trfc = (((spd.trctrfc_ext & 0x1) * 256) + spd.trfc) * 1000 | 
|  | + byte40_table_ps[(spd.trctrfc_ext >> 1) & 0x7]; | 
|  | } | 
|  | trfc_clk = picos_to_clk(trfc); | 
|  |  | 
|  | /* | 
|  | * Trcd, Byte 29, from quarter nanos to ps and clocks. | 
|  | */ | 
|  | trcd_clk = picos_to_clk(spd.trcd * 250) & 0x7; | 
|  |  | 
|  | /* | 
|  | * Convert trfc_clk to DDR controller fields.  DDR I should | 
|  | * fit in the REFREC field (16-19) of TIMING_CFG_1, but the | 
|  | * 83xx controller has an extended REFREC field of three bits. | 
|  | * The controller automatically adds 8 clocks to this value, | 
|  | * so preadjust it down 8 first before splitting it up. | 
|  | */ | 
|  | trfc_low = (trfc_clk - 8) & 0xf; | 
|  | trfc_high = ((trfc_clk - 8) >> 4) & 0x3; | 
|  |  | 
|  | ddr->timing_cfg_1 = | 
|  | (((picos_to_clk(spd.trp * 250) & 0x07) << 28 ) |	/* PRETOACT */ | 
|  | ((picos_to_clk(spd.tras * 1000) & 0x0f ) << 24 ) | /* ACTTOPRE */ | 
|  | (trcd_clk << 20 ) |				/* ACTTORW */ | 
|  | (caslat_ctrl << 16 ) |				/* CASLAT */ | 
|  | (trfc_low << 12 ) |				/* REFEC */ | 
|  | ((twr_clk & 0x07) << 8) |				/* WRRREC */ | 
|  | ((picos_to_clk(spd.trrd * 250) & 0x07) << 4) |	/* ACTTOACT */ | 
|  | ((twtr_clk & 0x07) << 0)				/* WRTORD */ | 
|  | ); | 
|  |  | 
|  | /* | 
|  | * Additive Latency | 
|  | * For DDR I, 0. | 
|  | * For DDR II, with ODT enabled, use "a value" less than ACTTORW, | 
|  | * which comes from Trcd, and also note that: | 
|  | *	add_lat + caslat must be >= 4 | 
|  | */ | 
|  | add_lat = 0; | 
|  | if (spd.mem_type == SPD_MEMTYPE_DDR2 | 
|  | && (odt_wr_cfg || odt_rd_cfg) | 
|  | && (caslat < 4)) { | 
|  | add_lat = 4 - caslat; | 
|  | if ((add_lat + caslat) < 4) { | 
|  | add_lat = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Write Data Delay | 
|  | * Historically 0x2 == 4/8 clock delay. | 
|  | * Empirically, 0x3 == 6/8 clock delay is suggested for DDR I 266. | 
|  | */ | 
|  | wr_data_delay = 2; | 
|  |  | 
|  | /* | 
|  | * Write Latency | 
|  | * Read to Precharge | 
|  | * Minimum CKE Pulse Width. | 
|  | * Four Activate Window | 
|  | */ | 
|  | if (spd.mem_type == SPD_MEMTYPE_DDR) { | 
|  | /* | 
|  | * This is a lie.  It should really be 1, but if it is | 
|  | * set to 1, bits overlap into the old controller's | 
|  | * otherwise unused ACSM field.  If we leave it 0, then | 
|  | * the HW will magically treat it as 1 for DDR 1.  Oh Yea. | 
|  | */ | 
|  | wr_lat = 0; | 
|  |  | 
|  | trtp_clk = 2;		/* By the book. */ | 
|  | cke_min_clk = 1;	/* By the book. */ | 
|  | four_act = 1;		/* By the book. */ | 
|  |  | 
|  | } else { | 
|  | wr_lat = caslat - 1; | 
|  |  | 
|  | /* Convert SPD value from quarter nanos to picos. */ | 
|  | trtp_clk = picos_to_clk(spd.trtp * 250); | 
|  | if (trtp_clk < 2) | 
|  | trtp_clk = 2; | 
|  | trtp_clk += add_lat; | 
|  |  | 
|  | cke_min_clk = 3;	/* By the book. */ | 
|  | four_act = picos_to_clk(37500);	/* By the book. 1k pages? */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Empirically set ~MCAS-to-preamble override for DDR 2. | 
|  | * Your milage will vary. | 
|  | */ | 
|  | cpo = 0; | 
|  | if (spd.mem_type == SPD_MEMTYPE_DDR2) { | 
|  | if (effective_data_rate == 266) { | 
|  | cpo = 0x4;		/* READ_LAT + 1/2 */ | 
|  | } else if (effective_data_rate == 333) { | 
|  | cpo = 0x6;		/* READ_LAT + 1 */ | 
|  | } else if (effective_data_rate == 400) { | 
|  | cpo = 0x7;		/* READ_LAT + 5/4 */ | 
|  | } else { | 
|  | /* Automatic calibration */ | 
|  | cpo = 0x1f; | 
|  | } | 
|  | } | 
|  |  | 
|  | ddr->timing_cfg_2 = (0 | 
|  | | ((add_lat & 0x7) << 28)		/* ADD_LAT */ | 
|  | | ((cpo & 0x1f) << 23)			/* CPO */ | 
|  | | ((wr_lat & 0x7) << 19)		/* WR_LAT */ | 
|  | | ((trtp_clk & 0x7) << 13)		/* RD_TO_PRE */ | 
|  | | ((wr_data_delay & 0x7) << 10)		/* WR_DATA_DELAY */ | 
|  | | ((cke_min_clk & 0x7) << 6)		/* CKE_PLS */ | 
|  | | ((four_act & 0x1f) << 0)		/* FOUR_ACT */ | 
|  | ); | 
|  |  | 
|  | debug("DDR:timing_cfg_1=0x%08x\n", ddr->timing_cfg_1); | 
|  | debug("DDR:timing_cfg_2=0x%08x\n", ddr->timing_cfg_2); | 
|  |  | 
|  | /* Check DIMM data bus width */ | 
|  | if (spd.dataw_lsb < 64) { | 
|  | if (spd.mem_type == SPD_MEMTYPE_DDR) | 
|  | burstlen = 0x03; /* 32 bit data bus, burst len is 8 */ | 
|  | else | 
|  | burstlen = 0x02; /* 32 bit data bus, burst len is 4 */ | 
|  | debug("\n   DDR DIMM: data bus width is 32 bit"); | 
|  | } else { | 
|  | burstlen = 0x02; /* Others act as 64 bit bus, burst len is 4 */ | 
|  | debug("\n   DDR DIMM: data bus width is 64 bit"); | 
|  | } | 
|  |  | 
|  | /* Is this an ECC DDR chip? */ | 
|  | if (spd.config == 0x02) | 
|  | debug(" with ECC\n"); | 
|  | else | 
|  | debug(" without ECC\n"); | 
|  |  | 
|  | /* Burst length is always 4 for 64 bit data bus, 8 for 32 bit data bus, | 
|  | Burst type is sequential | 
|  | */ | 
|  | if (spd.mem_type == SPD_MEMTYPE_DDR) { | 
|  | switch (caslat) { | 
|  | case 1: | 
|  | ddr->sdram_mode = 0x50 | burstlen; /* CL=1.5 */ | 
|  | break; | 
|  | case 2: | 
|  | ddr->sdram_mode = 0x20 | burstlen; /* CL=2.0 */ | 
|  | break; | 
|  | case 3: | 
|  | ddr->sdram_mode = 0x60 | burstlen; /* CL=2.5 */ | 
|  | break; | 
|  | case 4: | 
|  | ddr->sdram_mode = 0x30 | burstlen; /* CL=3.0 */ | 
|  | break; | 
|  | default: | 
|  | printf("DDR:only CL 1.5, 2.0, 2.5, 3.0 is supported\n"); | 
|  | return 0; | 
|  | } | 
|  | } else { | 
|  | mode_odt_enable = 0x0;                  /* Default disabled */ | 
|  | if (odt_wr_cfg || odt_rd_cfg) { | 
|  | /* | 
|  | * Bits 6 and 2 in Extended MRS(1) | 
|  | * Bit 2 == 0x04 == 75 Ohm, with 2 DIMM modules. | 
|  | * Bit 6 == 0x40 == 150 Ohm, with 1 DIMM module. | 
|  | */ | 
|  | mode_odt_enable = 0x40;         /* 150 Ohm */ | 
|  | } | 
|  |  | 
|  | ddr->sdram_mode = | 
|  | (0 | 
|  | | (1 << (16 + 10))             /* DQS Differential disable */ | 
|  | | (add_lat << (16 + 3))        /* Additive Latency in EMRS1 */ | 
|  | | (mode_odt_enable << 16)      /* ODT Enable in EMRS1 */ | 
|  | | ((twr_clk - 1) << 9)         /* Write Recovery Autopre */ | 
|  | | (caslat << 4)                /* caslat */ | 
|  | | (burstlen << 0)              /* Burst length */ | 
|  | ); | 
|  | } | 
|  | debug("DDR:sdram_mode=0x%08x\n", ddr->sdram_mode); | 
|  |  | 
|  | /* | 
|  | * Clear EMRS2 and EMRS3. | 
|  | */ | 
|  | ddr->sdram_mode2 = 0; | 
|  | debug("DDR: sdram_mode2 = 0x%08x\n", ddr->sdram_mode2); | 
|  |  | 
|  | switch (spd.refresh) { | 
|  | case 0x00: | 
|  | case 0x80: | 
|  | refresh_clk = picos_to_clk(15625000); | 
|  | break; | 
|  | case 0x01: | 
|  | case 0x81: | 
|  | refresh_clk = picos_to_clk(3900000); | 
|  | break; | 
|  | case 0x02: | 
|  | case 0x82: | 
|  | refresh_clk = picos_to_clk(7800000); | 
|  | break; | 
|  | case 0x03: | 
|  | case 0x83: | 
|  | refresh_clk = picos_to_clk(31300000); | 
|  | break; | 
|  | case 0x04: | 
|  | case 0x84: | 
|  | refresh_clk = picos_to_clk(62500000); | 
|  | break; | 
|  | case 0x05: | 
|  | case 0x85: | 
|  | refresh_clk = picos_to_clk(125000000); | 
|  | break; | 
|  | default: | 
|  | refresh_clk = 0x512; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set BSTOPRE to 0x100 for page mode | 
|  | * If auto-charge is used, set BSTOPRE = 0 | 
|  | */ | 
|  | ddr->sdram_interval = ((refresh_clk & 0x3fff) << 16) | 0x100; | 
|  | debug("DDR:sdram_interval=0x%08x\n", ddr->sdram_interval); | 
|  |  | 
|  | /* | 
|  | * SDRAM Cfg 2 | 
|  | */ | 
|  | odt_cfg = 0; | 
|  | #ifndef CONFIG_NEVER_ASSERT_ODT_TO_CPU | 
|  | if (odt_rd_cfg | odt_wr_cfg) { | 
|  | odt_cfg = 0x2;		/* ODT to IOs during reads */ | 
|  | } | 
|  | #endif | 
|  | if (spd.mem_type == SPD_MEMTYPE_DDR2) { | 
|  | ddr->sdram_cfg2 = (0 | 
|  | | (0 << 26)	/* True DQS */ | 
|  | | (odt_cfg << 21)	/* ODT only read */ | 
|  | | (1 << 12)	/* 1 refresh at a time */ | 
|  | ); | 
|  |  | 
|  | debug("DDR: sdram_cfg2  = 0x%08x\n", ddr->sdram_cfg2); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_SYS_DDR_SDRAM_CLK_CNTL	/* Optional platform specific value */ | 
|  | ddr->sdram_clk_cntl = CONFIG_SYS_DDR_SDRAM_CLK_CNTL; | 
|  | #endif | 
|  | debug("DDR:sdram_clk_cntl=0x%08x\n", ddr->sdram_clk_cntl); | 
|  |  | 
|  | asm("sync;isync"); | 
|  |  | 
|  | udelay(600); | 
|  |  | 
|  | /* | 
|  | * Figure out the settings for the sdram_cfg register. Build up | 
|  | * the value in 'sdram_cfg' before writing since the write into | 
|  | * the register will actually enable the memory controller, and all | 
|  | * settings must be done before enabling. | 
|  | * | 
|  | * sdram_cfg[0]   = 1 (ddr sdram logic enable) | 
|  | * sdram_cfg[1]   = 1 (self-refresh-enable) | 
|  | * sdram_cfg[5:7] = (SDRAM type = DDR SDRAM) | 
|  | *			010 DDR 1 SDRAM | 
|  | *			011 DDR 2 SDRAM | 
|  | * sdram_cfg[12] = 0 (32_BE =0 , 64 bit bus mode) | 
|  | * sdram_cfg[13] = 0 (8_BE =0, 4-beat bursts) | 
|  | */ | 
|  | if (spd.mem_type == SPD_MEMTYPE_DDR) | 
|  | sdram_type = SDRAM_CFG_SDRAM_TYPE_DDR1; | 
|  | else | 
|  | sdram_type = SDRAM_CFG_SDRAM_TYPE_DDR2; | 
|  |  | 
|  | sdram_cfg = (0 | 
|  | | SDRAM_CFG_MEM_EN		/* DDR enable */ | 
|  | | SDRAM_CFG_SREN		/* Self refresh */ | 
|  | | sdram_type		/* SDRAM type */ | 
|  | ); | 
|  |  | 
|  | /* sdram_cfg[3] = RD_EN - registered DIMM enable */ | 
|  | if (spd.mod_attr & 0x02) | 
|  | sdram_cfg |= SDRAM_CFG_RD_EN; | 
|  |  | 
|  | /* The DIMM is 32bit width */ | 
|  | if (spd.dataw_lsb < 64) { | 
|  | if (spd.mem_type == SPD_MEMTYPE_DDR) | 
|  | sdram_cfg |= SDRAM_CFG_32_BE | SDRAM_CFG_8_BE; | 
|  | if (spd.mem_type == SPD_MEMTYPE_DDR2) | 
|  | sdram_cfg |= SDRAM_CFG_32_BE; | 
|  | } | 
|  |  | 
|  | ddrc_ecc_enable = 0; | 
|  |  | 
|  | #if defined(CONFIG_DDR_ECC) | 
|  | /* Enable ECC with sdram_cfg[2] */ | 
|  | if (spd.config == 0x02) { | 
|  | sdram_cfg |= 0x20000000; | 
|  | ddrc_ecc_enable = 1; | 
|  | /* disable error detection */ | 
|  | ddr->err_disable = ~ECC_ERROR_ENABLE; | 
|  | /* set single bit error threshold to maximum value, | 
|  | * reset counter to zero */ | 
|  | ddr->err_sbe = (255 << ECC_ERROR_MAN_SBET_SHIFT) | | 
|  | (0 << ECC_ERROR_MAN_SBEC_SHIFT); | 
|  | } | 
|  |  | 
|  | debug("DDR:err_disable=0x%08x\n", ddr->err_disable); | 
|  | debug("DDR:err_sbe=0x%08x\n", ddr->err_sbe); | 
|  | #endif | 
|  | debug("   DDRC ECC mode: %s\n", ddrc_ecc_enable ? "ON":"OFF"); | 
|  |  | 
|  | #if defined(CONFIG_DDR_2T_TIMING) | 
|  | /* | 
|  | * Enable 2T timing by setting sdram_cfg[16]. | 
|  | */ | 
|  | sdram_cfg |= SDRAM_CFG_2T_EN; | 
|  | #endif | 
|  | /* Enable controller, and GO! */ | 
|  | ddr->sdram_cfg = sdram_cfg; | 
|  | asm("sync;isync"); | 
|  | udelay(500); | 
|  |  | 
|  | debug("DDR:sdram_cfg=0x%08x\n", ddr->sdram_cfg); | 
|  | return memsize; /*in MBytes*/ | 
|  | } | 
|  | #endif /* CONFIG_SPD_EEPROM */ | 
|  |  | 
|  | #if defined(CONFIG_DDR_ECC) && !defined(CONFIG_ECC_INIT_VIA_DDRCONTROLLER) | 
|  | /* | 
|  | * Use timebase counter, get_timer() is not availabe | 
|  | * at this point of initialization yet. | 
|  | */ | 
|  | static __inline__ unsigned long get_tbms (void) | 
|  | { | 
|  | unsigned long tbl; | 
|  | unsigned long tbu1, tbu2; | 
|  | unsigned long ms; | 
|  | unsigned long long tmp; | 
|  |  | 
|  | ulong tbclk = get_tbclk(); | 
|  |  | 
|  | /* get the timebase ticks */ | 
|  | do { | 
|  | asm volatile ("mftbu %0":"=r" (tbu1):); | 
|  | asm volatile ("mftb %0":"=r" (tbl):); | 
|  | asm volatile ("mftbu %0":"=r" (tbu2):); | 
|  | } while (tbu1 != tbu2); | 
|  |  | 
|  | /* convert ticks to ms */ | 
|  | tmp = (unsigned long long)(tbu1); | 
|  | tmp = (tmp << 32); | 
|  | tmp += (unsigned long long)(tbl); | 
|  | ms = tmp/(tbclk/1000); | 
|  |  | 
|  | return ms; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize all of memory for ECC, then enable errors. | 
|  | */ | 
|  | void ddr_enable_ecc(unsigned int dram_size) | 
|  | { | 
|  | volatile immap_t *immap = (immap_t *)CONFIG_SYS_IMMR; | 
|  | volatile ddr83xx_t *ddr= &immap->ddr; | 
|  | unsigned long t_start, t_end; | 
|  | register u64 *p; | 
|  | register uint size; | 
|  | unsigned int pattern[2]; | 
|  |  | 
|  | icache_enable(); | 
|  | t_start = get_tbms(); | 
|  | pattern[0] = 0xdeadbeef; | 
|  | pattern[1] = 0xdeadbeef; | 
|  |  | 
|  | #if defined(CONFIG_DDR_ECC_INIT_VIA_DMA) | 
|  | dma_meminit(pattern[0], dram_size); | 
|  | #else | 
|  | debug("ddr init: CPU FP write method\n"); | 
|  | size = dram_size; | 
|  | for (p = 0; p < (u64*)(size); p++) { | 
|  | ppcDWstore((u32*)p, pattern); | 
|  | } | 
|  | __asm__ __volatile__ ("sync"); | 
|  | #endif | 
|  |  | 
|  | t_end = get_tbms(); | 
|  | icache_disable(); | 
|  |  | 
|  | debug("\nREADY!!\n"); | 
|  | debug("ddr init duration: %ld ms\n", t_end - t_start); | 
|  |  | 
|  | /* Clear All ECC Errors */ | 
|  | if ((ddr->err_detect & ECC_ERROR_DETECT_MME) == ECC_ERROR_DETECT_MME) | 
|  | ddr->err_detect |= ECC_ERROR_DETECT_MME; | 
|  | if ((ddr->err_detect & ECC_ERROR_DETECT_MBE) == ECC_ERROR_DETECT_MBE) | 
|  | ddr->err_detect |= ECC_ERROR_DETECT_MBE; | 
|  | if ((ddr->err_detect & ECC_ERROR_DETECT_SBE) == ECC_ERROR_DETECT_SBE) | 
|  | ddr->err_detect |= ECC_ERROR_DETECT_SBE; | 
|  | if ((ddr->err_detect & ECC_ERROR_DETECT_MSE) == ECC_ERROR_DETECT_MSE) | 
|  | ddr->err_detect |= ECC_ERROR_DETECT_MSE; | 
|  |  | 
|  | /* Disable ECC-Interrupts */ | 
|  | ddr->err_int_en &= ECC_ERR_INT_DISABLE; | 
|  |  | 
|  | /* Enable errors for ECC */ | 
|  | ddr->err_disable &= ECC_ERROR_ENABLE; | 
|  |  | 
|  | __asm__ __volatile__ ("sync"); | 
|  | __asm__ __volatile__ ("isync"); | 
|  | } | 
|  | #endif	/* CONFIG_DDR_ECC */ |