blob: 526470051c5d2e35a3d57aace3c99f67fd04bff4 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0
/*
* (C) Copyright 2016 Google, Inc
*/
#include <common.h>
#include <clk-uclass.h>
#include <dm.h>
#include <asm/io.h>
#include <asm/arch/scu_ast2500.h>
#include <dm/lists.h>
#include <dt-bindings/clock/ast2500-scu.h>
/*
* MAC Clock Delay settings, taken from Aspeed SDK
*/
#define RGMII_TXCLK_ODLY 8
#define RMII_RXCLK_IDLY 2
/*
* TGMII Clock Duty constants, taken from Aspeed SDK
*/
#define RGMII2_TXCK_DUTY 0x66
#define RGMII1_TXCK_DUTY 0x64
#define D2PLL_DEFAULT_RATE (250 * 1000 * 1000)
DECLARE_GLOBAL_DATA_PTR;
/*
* Clock divider/multiplier configuration struct.
* For H-PLL and M-PLL the formula is
* (Output Frequency) = CLKIN * ((M + 1) / (N + 1)) / (P + 1)
* M - Numerator
* N - Denumerator
* P - Post Divider
* They have the same layout in their control register.
*
* D-PLL and D2-PLL have extra divider (OD + 1), which is not
* yet needed and ignored by clock configurations.
*/
struct ast2500_div_config {
unsigned int num;
unsigned int denum;
unsigned int post_div;
};
/*
* Get the rate of the M-PLL clock from input clock frequency and
* the value of the M-PLL Parameter Register.
*/
static ulong ast2500_get_mpll_rate(ulong clkin, u32 mpll_reg)
{
const ulong num = (mpll_reg & SCU_MPLL_NUM_MASK) >> SCU_MPLL_NUM_SHIFT;
const ulong denum = (mpll_reg & SCU_MPLL_DENUM_MASK)
>> SCU_MPLL_DENUM_SHIFT;
const ulong post_div = (mpll_reg & SCU_MPLL_POST_MASK)
>> SCU_MPLL_POST_SHIFT;
return (clkin * ((num + 1) / (denum + 1))) / (post_div + 1);
}
/*
* Get the rate of the H-PLL clock from input clock frequency and
* the value of the H-PLL Parameter Register.
*/
static ulong ast2500_get_hpll_rate(ulong clkin, u32 hpll_reg)
{
const ulong num = (hpll_reg & SCU_HPLL_NUM_MASK) >> SCU_HPLL_NUM_SHIFT;
const ulong denum = (hpll_reg & SCU_HPLL_DENUM_MASK)
>> SCU_HPLL_DENUM_SHIFT;
const ulong post_div = (hpll_reg & SCU_HPLL_POST_MASK)
>> SCU_HPLL_POST_SHIFT;
return (clkin * ((num + 1) / (denum + 1))) / (post_div + 1);
}
static ulong ast2500_get_clkin(struct ast2500_scu *scu)
{
return readl(&scu->hwstrap) & SCU_HWSTRAP_CLKIN_25MHZ
? 25 * 1000 * 1000 : 24 * 1000 * 1000;
}
/**
* Get current rate or uart clock
*
* @scu SCU registers
* @uart_index UART index, 1-5
*
* @return current setting for uart clock rate
*/
static ulong ast2500_get_uart_clk_rate(struct ast2500_scu *scu, int uart_index)
{
/*
* ast2500 datasheet is very confusing when it comes to UART clocks,
* especially when CLKIN = 25 MHz. The settings are in
* different registers and it is unclear how they interact.
*
* This has only been tested with default settings and CLKIN = 24 MHz.
*/
ulong uart_clkin;
if (readl(&scu->misc_ctrl2) &
(1 << (uart_index - 1 + SCU_MISC2_UARTCLK_SHIFT)))
uart_clkin = 192 * 1000 * 1000;
else
uart_clkin = 24 * 1000 * 1000;
if (readl(&scu->misc_ctrl1) & SCU_MISC_UARTCLK_DIV13)
uart_clkin /= 13;
return uart_clkin;
}
static ulong ast2500_clk_get_rate(struct clk *clk)
{
struct ast2500_clk_priv *priv = dev_get_priv(clk->dev);
ulong clkin = ast2500_get_clkin(priv->scu);
ulong rate;
switch (clk->id) {
case PLL_HPLL:
case ARMCLK:
/*
* This ignores dynamic/static slowdown of ARMCLK and may
* be inaccurate.
*/
rate = ast2500_get_hpll_rate(clkin,
readl(&priv->scu->h_pll_param));
break;
case MCLK_DDR:
rate = ast2500_get_mpll_rate(clkin,
readl(&priv->scu->m_pll_param));
break;
case BCLK_PCLK:
{
ulong apb_div = 4 + 4 * ((readl(&priv->scu->clk_sel1)
& SCU_PCLK_DIV_MASK)
>> SCU_PCLK_DIV_SHIFT);
rate = ast2500_get_hpll_rate(clkin,
readl(&priv->
scu->h_pll_param));
rate = rate / apb_div;
}
break;
case PCLK_UART1:
rate = ast2500_get_uart_clk_rate(priv->scu, 1);
break;
case PCLK_UART2:
rate = ast2500_get_uart_clk_rate(priv->scu, 2);
break;
case PCLK_UART3:
rate = ast2500_get_uart_clk_rate(priv->scu, 3);
break;
case PCLK_UART4:
rate = ast2500_get_uart_clk_rate(priv->scu, 4);
break;
case PCLK_UART5:
rate = ast2500_get_uart_clk_rate(priv->scu, 5);
break;
default:
return -ENOENT;
}
return rate;
}
/*
* @input_rate - the rate of input clock in Hz
* @requested_rate - desired output rate in Hz
* @div - this is an IN/OUT parameter, at input all fields of the config
* need to be set to their maximum allowed values.
* The result (the best config we could find), would also be returned
* in this structure.
*
* @return The clock rate, when the resulting div_config is used.
*/
static ulong ast2500_calc_clock_config(ulong input_rate, ulong requested_rate,
struct ast2500_div_config *cfg)
{
/*
* The assumption is that kHz precision is good enough and
* also enough to avoid overflow when multiplying.
*/
const ulong input_rate_khz = input_rate / 1000;
const ulong rate_khz = requested_rate / 1000;
const struct ast2500_div_config max_vals = *cfg;
struct ast2500_div_config it = { 0, 0, 0 };
ulong delta = rate_khz;
ulong new_rate_khz = 0;
for (; it.denum <= max_vals.denum; ++it.denum) {
for (it.post_div = 0; it.post_div <= max_vals.post_div;
++it.post_div) {
it.num = (rate_khz * (it.post_div + 1) / input_rate_khz)
* (it.denum + 1);
if (it.num > max_vals.num)
continue;
new_rate_khz = (input_rate_khz
* ((it.num + 1) / (it.denum + 1)))
/ (it.post_div + 1);
/* Keep the rate below requested one. */
if (new_rate_khz > rate_khz)
continue;
if (new_rate_khz - rate_khz < delta) {
delta = new_rate_khz - rate_khz;
*cfg = it;
if (delta == 0)
return new_rate_khz * 1000;
}
}
}
return new_rate_khz * 1000;
}
static ulong ast2500_configure_ddr(struct ast2500_scu *scu, ulong rate)
{
ulong clkin = ast2500_get_clkin(scu);
u32 mpll_reg;
struct ast2500_div_config div_cfg = {
.num = (SCU_MPLL_NUM_MASK >> SCU_MPLL_NUM_SHIFT),
.denum = (SCU_MPLL_DENUM_MASK >> SCU_MPLL_DENUM_SHIFT),
.post_div = (SCU_MPLL_POST_MASK >> SCU_MPLL_POST_SHIFT),
};
ast2500_calc_clock_config(clkin, rate, &div_cfg);
mpll_reg = readl(&scu->m_pll_param);
mpll_reg &= ~(SCU_MPLL_POST_MASK | SCU_MPLL_NUM_MASK
| SCU_MPLL_DENUM_MASK);
mpll_reg |= (div_cfg.post_div << SCU_MPLL_POST_SHIFT)
| (div_cfg.num << SCU_MPLL_NUM_SHIFT)
| (div_cfg.denum << SCU_MPLL_DENUM_SHIFT);
ast_scu_unlock(scu);
writel(mpll_reg, &scu->m_pll_param);
ast_scu_lock(scu);
return ast2500_get_mpll_rate(clkin, mpll_reg);
}
static ulong ast2500_configure_mac(struct ast2500_scu *scu, int index)
{
ulong clkin = ast2500_get_clkin(scu);
ulong hpll_rate = ast2500_get_hpll_rate(clkin,
readl(&scu->h_pll_param));
ulong required_rate;
u32 hwstrap;
u32 divisor;
u32 reset_bit;
u32 clkstop_bit;
/*
* According to data sheet, for 10/100 mode the MAC clock frequency
* should be at least 25MHz and for 1000 mode at least 100MHz
*/
hwstrap = readl(&scu->hwstrap);
if (hwstrap & (SCU_HWSTRAP_MAC1_RGMII | SCU_HWSTRAP_MAC2_RGMII))
required_rate = 100 * 1000 * 1000;
else
required_rate = 25 * 1000 * 1000;
divisor = hpll_rate / required_rate;
if (divisor < 4) {
/* Clock can't run fast enough, but let's try anyway */
debug("MAC clock too slow\n");
divisor = 4;
} else if (divisor > 16) {
/* Can't slow down the clock enough, but let's try anyway */
debug("MAC clock too fast\n");
divisor = 16;
}
switch (index) {
case 1:
reset_bit = SCU_SYSRESET_MAC1;
clkstop_bit = SCU_CLKSTOP_MAC1;
break;
case 2:
reset_bit = SCU_SYSRESET_MAC2;
clkstop_bit = SCU_CLKSTOP_MAC2;
break;
default:
return -EINVAL;
}
ast_scu_unlock(scu);
clrsetbits_le32(&scu->clk_sel1, SCU_MACCLK_MASK,
((divisor - 2) / 2) << SCU_MACCLK_SHIFT);
/*
* Disable MAC, start its clock and re-enable it.
* The procedure and the delays (100us & 10ms) are
* specified in the datasheet.
*/
setbits_le32(&scu->sysreset_ctrl1, reset_bit);
udelay(100);
clrbits_le32(&scu->clk_stop_ctrl1, clkstop_bit);
mdelay(10);
clrbits_le32(&scu->sysreset_ctrl1, reset_bit);
writel((RGMII2_TXCK_DUTY << SCU_CLKDUTY_RGMII2TXCK_SHIFT)
| (RGMII1_TXCK_DUTY << SCU_CLKDUTY_RGMII1TXCK_SHIFT),
&scu->clk_duty_sel);
ast_scu_lock(scu);
return required_rate;
}
static ulong ast2500_configure_d2pll(struct ast2500_scu *scu, ulong rate)
{
/*
* The values and the meaning of the next three
* parameters are undocumented. Taken from Aspeed SDK.
*/
const u32 d2_pll_ext_param = 0x2c;
const u32 d2_pll_sip = 0x11;
const u32 d2_pll_sic = 0x18;
u32 clk_delay_settings =
(RMII_RXCLK_IDLY << SCU_MICDS_MAC1RMII_RDLY_SHIFT)
| (RMII_RXCLK_IDLY << SCU_MICDS_MAC2RMII_RDLY_SHIFT)
| (RGMII_TXCLK_ODLY << SCU_MICDS_MAC1RGMII_TXDLY_SHIFT)
| (RGMII_TXCLK_ODLY << SCU_MICDS_MAC2RGMII_TXDLY_SHIFT);
struct ast2500_div_config div_cfg = {
.num = SCU_D2PLL_NUM_MASK >> SCU_D2PLL_NUM_SHIFT,
.denum = SCU_D2PLL_DENUM_MASK >> SCU_D2PLL_DENUM_SHIFT,
.post_div = SCU_D2PLL_POST_MASK >> SCU_D2PLL_POST_SHIFT,
};
ulong clkin = ast2500_get_clkin(scu);
ulong new_rate;
ast_scu_unlock(scu);
writel((d2_pll_ext_param << SCU_D2PLL_EXT1_PARAM_SHIFT)
| SCU_D2PLL_EXT1_OFF
| SCU_D2PLL_EXT1_RESET, &scu->d2_pll_ext_param[0]);
/*
* Select USB2.0 port1 PHY clock as a clock source for GCRT.
* This would disconnect it from D2-PLL.
*/
clrsetbits_le32(&scu->misc_ctrl1, SCU_MISC_D2PLL_OFF,
SCU_MISC_GCRT_USB20CLK);
new_rate = ast2500_calc_clock_config(clkin, rate, &div_cfg);
writel((d2_pll_sip << SCU_D2PLL_SIP_SHIFT)
| (d2_pll_sic << SCU_D2PLL_SIC_SHIFT)
| (div_cfg.num << SCU_D2PLL_NUM_SHIFT)
| (div_cfg.denum << SCU_D2PLL_DENUM_SHIFT)
| (div_cfg.post_div << SCU_D2PLL_POST_SHIFT),
&scu->d2_pll_param);
clrbits_le32(&scu->d2_pll_ext_param[0],
SCU_D2PLL_EXT1_OFF | SCU_D2PLL_EXT1_RESET);
clrsetbits_le32(&scu->misc_ctrl2,
SCU_MISC2_RGMII_HPLL | SCU_MISC2_RMII_MPLL
| SCU_MISC2_RGMII_CLKDIV_MASK |
SCU_MISC2_RMII_CLKDIV_MASK,
(4 << SCU_MISC2_RMII_CLKDIV_SHIFT));
writel(clk_delay_settings | SCU_MICDS_RGMIIPLL, &scu->mac_clk_delay);
writel(clk_delay_settings, &scu->mac_clk_delay_100M);
writel(clk_delay_settings, &scu->mac_clk_delay_10M);
ast_scu_lock(scu);
return new_rate;
}
static ulong ast2500_clk_set_rate(struct clk *clk, ulong rate)
{
struct ast2500_clk_priv *priv = dev_get_priv(clk->dev);
ulong new_rate;
switch (clk->id) {
case PLL_MPLL:
case MCLK_DDR:
new_rate = ast2500_configure_ddr(priv->scu, rate);
break;
case PLL_D2PLL:
new_rate = ast2500_configure_d2pll(priv->scu, rate);
break;
default:
return -ENOENT;
}
return new_rate;
}
static int ast2500_clk_enable(struct clk *clk)
{
struct ast2500_clk_priv *priv = dev_get_priv(clk->dev);
switch (clk->id) {
/*
* For MAC clocks the clock rate is
* configured based on whether RGMII or RMII mode has been selected
* through hardware strapping.
*/
case PCLK_MAC1:
ast2500_configure_mac(priv->scu, 1);
break;
case PCLK_MAC2:
ast2500_configure_mac(priv->scu, 2);
break;
case PLL_D2PLL:
ast2500_configure_d2pll(priv->scu, D2PLL_DEFAULT_RATE);
default:
return -ENOENT;
}
return 0;
}
struct clk_ops ast2500_clk_ops = {
.get_rate = ast2500_clk_get_rate,
.set_rate = ast2500_clk_set_rate,
.enable = ast2500_clk_enable,
};
static int ast2500_clk_probe(struct udevice *dev)
{
struct ast2500_clk_priv *priv = dev_get_priv(dev);
priv->scu = devfdt_get_addr_ptr(dev);
if (IS_ERR(priv->scu))
return PTR_ERR(priv->scu);
return 0;
}
static int ast2500_clk_bind(struct udevice *dev)
{
int ret;
/* The reset driver does not have a device node, so bind it here */
ret = device_bind_driver(gd->dm_root, "ast_sysreset", "reset", &dev);
if (ret)
debug("Warning: No reset driver: ret=%d\n", ret);
return 0;
}
static const struct udevice_id ast2500_clk_ids[] = {
{ .compatible = "aspeed,ast2500-scu" },
{ }
};
U_BOOT_DRIVER(aspeed_ast2500_scu) = {
.name = "aspeed_ast2500_scu",
.id = UCLASS_CLK,
.of_match = ast2500_clk_ids,
.priv_auto_alloc_size = sizeof(struct ast2500_clk_priv),
.ops = &ast2500_clk_ops,
.bind = ast2500_clk_bind,
.probe = ast2500_clk_probe,
};