blob: c7c3ba70a4ec95ebb47b0bc4cfba79e32727a617 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+ OR BSD-3-Clause
/*
* Copyright (C) 2018, STMicroelectronics - All Rights Reserved
*/
#include <common.h>
#include <clk.h>
#include <ram.h>
#include <reset.h>
#include <timer.h>
#include <asm/io.h>
#include <asm/arch/ddr.h>
#include <linux/iopoll.h>
#include "stm32mp1_ddr.h"
#include "stm32mp1_ddr_regs.h"
#define RCC_DDRITFCR 0xD8
#define RCC_DDRITFCR_DDRCAPBRST (BIT(14))
#define RCC_DDRITFCR_DDRCAXIRST (BIT(15))
#define RCC_DDRITFCR_DDRCORERST (BIT(16))
#define RCC_DDRITFCR_DPHYAPBRST (BIT(17))
#define RCC_DDRITFCR_DPHYRST (BIT(18))
#define RCC_DDRITFCR_DPHYCTLRST (BIT(19))
struct reg_desc {
const char *name;
u16 offset; /* offset for base address */
u8 par_offset; /* offset for parameter array */
};
#define INVALID_OFFSET 0xFF
#define DDRCTL_REG(x, y) \
{#x,\
offsetof(struct stm32mp1_ddrctl, x),\
offsetof(struct y, x)}
#define DDRPHY_REG(x, y) \
{#x,\
offsetof(struct stm32mp1_ddrphy, x),\
offsetof(struct y, x)}
#define DDRCTL_REG_REG(x) DDRCTL_REG(x, stm32mp1_ddrctrl_reg)
static const struct reg_desc ddr_reg[] = {
DDRCTL_REG_REG(mstr),
DDRCTL_REG_REG(mrctrl0),
DDRCTL_REG_REG(mrctrl1),
DDRCTL_REG_REG(derateen),
DDRCTL_REG_REG(derateint),
DDRCTL_REG_REG(pwrctl),
DDRCTL_REG_REG(pwrtmg),
DDRCTL_REG_REG(hwlpctl),
DDRCTL_REG_REG(rfshctl0),
DDRCTL_REG_REG(rfshctl3),
DDRCTL_REG_REG(crcparctl0),
DDRCTL_REG_REG(zqctl0),
DDRCTL_REG_REG(dfitmg0),
DDRCTL_REG_REG(dfitmg1),
DDRCTL_REG_REG(dfilpcfg0),
DDRCTL_REG_REG(dfiupd0),
DDRCTL_REG_REG(dfiupd1),
DDRCTL_REG_REG(dfiupd2),
DDRCTL_REG_REG(dfiphymstr),
DDRCTL_REG_REG(odtmap),
DDRCTL_REG_REG(dbg0),
DDRCTL_REG_REG(dbg1),
DDRCTL_REG_REG(dbgcmd),
DDRCTL_REG_REG(poisoncfg),
DDRCTL_REG_REG(pccfg),
};
#define DDRCTL_REG_TIMING(x) DDRCTL_REG(x, stm32mp1_ddrctrl_timing)
static const struct reg_desc ddr_timing[] = {
DDRCTL_REG_TIMING(rfshtmg),
DDRCTL_REG_TIMING(dramtmg0),
DDRCTL_REG_TIMING(dramtmg1),
DDRCTL_REG_TIMING(dramtmg2),
DDRCTL_REG_TIMING(dramtmg3),
DDRCTL_REG_TIMING(dramtmg4),
DDRCTL_REG_TIMING(dramtmg5),
DDRCTL_REG_TIMING(dramtmg6),
DDRCTL_REG_TIMING(dramtmg7),
DDRCTL_REG_TIMING(dramtmg8),
DDRCTL_REG_TIMING(dramtmg14),
DDRCTL_REG_TIMING(odtcfg),
};
#define DDRCTL_REG_MAP(x) DDRCTL_REG(x, stm32mp1_ddrctrl_map)
static const struct reg_desc ddr_map[] = {
DDRCTL_REG_MAP(addrmap1),
DDRCTL_REG_MAP(addrmap2),
DDRCTL_REG_MAP(addrmap3),
DDRCTL_REG_MAP(addrmap4),
DDRCTL_REG_MAP(addrmap5),
DDRCTL_REG_MAP(addrmap6),
DDRCTL_REG_MAP(addrmap9),
DDRCTL_REG_MAP(addrmap10),
DDRCTL_REG_MAP(addrmap11),
};
#define DDRCTL_REG_PERF(x) DDRCTL_REG(x, stm32mp1_ddrctrl_perf)
static const struct reg_desc ddr_perf[] = {
DDRCTL_REG_PERF(sched),
DDRCTL_REG_PERF(sched1),
DDRCTL_REG_PERF(perfhpr1),
DDRCTL_REG_PERF(perflpr1),
DDRCTL_REG_PERF(perfwr1),
DDRCTL_REG_PERF(pcfgr_0),
DDRCTL_REG_PERF(pcfgw_0),
DDRCTL_REG_PERF(pcfgqos0_0),
DDRCTL_REG_PERF(pcfgqos1_0),
DDRCTL_REG_PERF(pcfgwqos0_0),
DDRCTL_REG_PERF(pcfgwqos1_0),
DDRCTL_REG_PERF(pcfgr_1),
DDRCTL_REG_PERF(pcfgw_1),
DDRCTL_REG_PERF(pcfgqos0_1),
DDRCTL_REG_PERF(pcfgqos1_1),
DDRCTL_REG_PERF(pcfgwqos0_1),
DDRCTL_REG_PERF(pcfgwqos1_1),
};
#define DDRPHY_REG_REG(x) DDRPHY_REG(x, stm32mp1_ddrphy_reg)
static const struct reg_desc ddrphy_reg[] = {
DDRPHY_REG_REG(pgcr),
DDRPHY_REG_REG(aciocr),
DDRPHY_REG_REG(dxccr),
DDRPHY_REG_REG(dsgcr),
DDRPHY_REG_REG(dcr),
DDRPHY_REG_REG(odtcr),
DDRPHY_REG_REG(zq0cr1),
DDRPHY_REG_REG(dx0gcr),
DDRPHY_REG_REG(dx1gcr),
DDRPHY_REG_REG(dx2gcr),
DDRPHY_REG_REG(dx3gcr),
};
#define DDRPHY_REG_TIMING(x) DDRPHY_REG(x, stm32mp1_ddrphy_timing)
static const struct reg_desc ddrphy_timing[] = {
DDRPHY_REG_TIMING(ptr0),
DDRPHY_REG_TIMING(ptr1),
DDRPHY_REG_TIMING(ptr2),
DDRPHY_REG_TIMING(dtpr0),
DDRPHY_REG_TIMING(dtpr1),
DDRPHY_REG_TIMING(dtpr2),
DDRPHY_REG_TIMING(mr0),
DDRPHY_REG_TIMING(mr1),
DDRPHY_REG_TIMING(mr2),
DDRPHY_REG_TIMING(mr3),
};
#define DDRPHY_REG_CAL(x) DDRPHY_REG(x, stm32mp1_ddrphy_cal)
static const struct reg_desc ddrphy_cal[] = {
DDRPHY_REG_CAL(dx0dllcr),
DDRPHY_REG_CAL(dx0dqtr),
DDRPHY_REG_CAL(dx0dqstr),
DDRPHY_REG_CAL(dx1dllcr),
DDRPHY_REG_CAL(dx1dqtr),
DDRPHY_REG_CAL(dx1dqstr),
DDRPHY_REG_CAL(dx2dllcr),
DDRPHY_REG_CAL(dx2dqtr),
DDRPHY_REG_CAL(dx2dqstr),
DDRPHY_REG_CAL(dx3dllcr),
DDRPHY_REG_CAL(dx3dqtr),
DDRPHY_REG_CAL(dx3dqstr),
};
enum reg_type {
REG_REG,
REG_TIMING,
REG_PERF,
REG_MAP,
REGPHY_REG,
REGPHY_TIMING,
REGPHY_CAL,
REG_TYPE_NB
};
enum base_type {
DDR_BASE,
DDRPHY_BASE,
NONE_BASE
};
struct ddr_reg_info {
const char *name;
const struct reg_desc *desc;
u8 size;
enum base_type base;
};
#define DDRPHY_REG_CAL(x) DDRPHY_REG(x, stm32mp1_ddrphy_cal)
const struct ddr_reg_info ddr_registers[REG_TYPE_NB] = {
[REG_REG] = {
"static", ddr_reg, ARRAY_SIZE(ddr_reg), DDR_BASE},
[REG_TIMING] = {
"timing", ddr_timing, ARRAY_SIZE(ddr_timing), DDR_BASE},
[REG_PERF] = {
"perf", ddr_perf, ARRAY_SIZE(ddr_perf), DDR_BASE},
[REG_MAP] = {
"map", ddr_map, ARRAY_SIZE(ddr_map), DDR_BASE},
[REGPHY_REG] = {
"static", ddrphy_reg, ARRAY_SIZE(ddrphy_reg), DDRPHY_BASE},
[REGPHY_TIMING] = {
"timing", ddrphy_timing, ARRAY_SIZE(ddrphy_timing), DDRPHY_BASE},
[REGPHY_CAL] = {
"cal", ddrphy_cal, ARRAY_SIZE(ddrphy_cal), DDRPHY_BASE},
};
const char *base_name[] = {
[DDR_BASE] = "ctl",
[DDRPHY_BASE] = "phy",
};
static u32 get_base_addr(const struct ddr_info *priv, enum base_type base)
{
if (base == DDRPHY_BASE)
return (u32)priv->phy;
else
return (u32)priv->ctl;
}
static void set_reg(const struct ddr_info *priv,
enum reg_type type,
const void *param)
{
unsigned int i;
unsigned int *ptr, value;
enum base_type base = ddr_registers[type].base;
u32 base_addr = get_base_addr(priv, base);
const struct reg_desc *desc = ddr_registers[type].desc;
debug("init %s\n", ddr_registers[type].name);
for (i = 0; i < ddr_registers[type].size; i++) {
ptr = (unsigned int *)(base_addr + desc[i].offset);
if (desc[i].par_offset == INVALID_OFFSET) {
pr_err("invalid parameter offset for %s", desc[i].name);
} else {
value = *((u32 *)((u32)param +
desc[i].par_offset));
writel(value, ptr);
debug("[0x%x] %s= 0x%08x\n",
(u32)ptr, desc[i].name, value);
}
}
}
static void ddrphy_idone_wait(struct stm32mp1_ddrphy *phy)
{
u32 pgsr;
int ret;
ret = readl_poll_timeout(&phy->pgsr, pgsr,
pgsr & (DDRPHYC_PGSR_IDONE |
DDRPHYC_PGSR_DTERR |
DDRPHYC_PGSR_DTIERR |
DDRPHYC_PGSR_DFTERR |
DDRPHYC_PGSR_RVERR |
DDRPHYC_PGSR_RVEIRR),
1000000);
debug("\n[0x%08x] pgsr = 0x%08x ret=%d\n",
(u32)&phy->pgsr, pgsr, ret);
}
void stm32mp1_ddrphy_init(struct stm32mp1_ddrphy *phy, u32 pir)
{
pir |= DDRPHYC_PIR_INIT;
writel(pir, &phy->pir);
debug("[0x%08x] pir = 0x%08x -> 0x%08x\n",
(u32)&phy->pir, pir, readl(&phy->pir));
/* need to wait 10 configuration clock before start polling */
udelay(10);
/* Wait DRAM initialization and Gate Training Evaluation complete */
ddrphy_idone_wait(phy);
}
/* start quasi dynamic register update */
static void start_sw_done(struct stm32mp1_ddrctl *ctl)
{
clrbits_le32(&ctl->swctl, DDRCTRL_SWCTL_SW_DONE);
}
/* wait quasi dynamic register update */
static void wait_sw_done_ack(struct stm32mp1_ddrctl *ctl)
{
int ret;
u32 swstat;
setbits_le32(&ctl->swctl, DDRCTRL_SWCTL_SW_DONE);
ret = readl_poll_timeout(&ctl->swstat, swstat,
swstat & DDRCTRL_SWSTAT_SW_DONE_ACK,
1000000);
if (ret)
panic("Timeout initialising DRAM : DDR->swstat = %x\n",
swstat);
debug("[0x%08x] swstat = 0x%08x\n", (u32)&ctl->swstat, swstat);
}
/* wait quasi dynamic register update */
static void wait_operating_mode(struct ddr_info *priv, int mode)
{
u32 stat, val, mask, val2 = 0, mask2 = 0;
int ret;
mask = DDRCTRL_STAT_OPERATING_MODE_MASK;
val = mode;
/* self-refresh due to software => check also STAT.selfref_type */
if (mode == DDRCTRL_STAT_OPERATING_MODE_SR) {
mask |= DDRCTRL_STAT_SELFREF_TYPE_MASK;
stat |= DDRCTRL_STAT_SELFREF_TYPE_SR;
} else if (mode == DDRCTRL_STAT_OPERATING_MODE_NORMAL) {
/* normal mode: handle also automatic self refresh */
mask2 = DDRCTRL_STAT_OPERATING_MODE_MASK |
DDRCTRL_STAT_SELFREF_TYPE_MASK;
val2 = DDRCTRL_STAT_OPERATING_MODE_SR |
DDRCTRL_STAT_SELFREF_TYPE_ASR;
}
ret = readl_poll_timeout(&priv->ctl->stat, stat,
((stat & mask) == val) ||
(mask2 && ((stat & mask2) == val2)),
1000000);
if (ret)
panic("Timeout DRAM : DDR->stat = %x\n", stat);
debug("[0x%08x] stat = 0x%08x\n", (u32)&priv->ctl->stat, stat);
}
void stm32mp1_refresh_disable(struct stm32mp1_ddrctl *ctl)
{
start_sw_done(ctl);
/* quasi-dynamic register update*/
setbits_le32(&ctl->rfshctl3, DDRCTRL_RFSHCTL3_DIS_AUTO_REFRESH);
clrbits_le32(&ctl->pwrctl, DDRCTRL_PWRCTL_POWERDOWN_EN);
clrbits_le32(&ctl->dfimisc, DDRCTRL_DFIMISC_DFI_INIT_COMPLETE_EN);
wait_sw_done_ack(ctl);
}
void stm32mp1_refresh_restore(struct stm32mp1_ddrctl *ctl,
u32 rfshctl3, u32 pwrctl)
{
start_sw_done(ctl);
if (!(rfshctl3 & DDRCTRL_RFSHCTL3_DIS_AUTO_REFRESH))
clrbits_le32(&ctl->rfshctl3, DDRCTRL_RFSHCTL3_DIS_AUTO_REFRESH);
if (pwrctl & DDRCTRL_PWRCTL_POWERDOWN_EN)
setbits_le32(&ctl->pwrctl, DDRCTRL_PWRCTL_POWERDOWN_EN);
setbits_le32(&ctl->dfimisc, DDRCTRL_DFIMISC_DFI_INIT_COMPLETE_EN);
wait_sw_done_ack(ctl);
}
/* board-specific DDR power initializations. */
__weak int board_ddr_power_init(void)
{
return 0;
}
__maybe_unused
void stm32mp1_ddr_init(struct ddr_info *priv,
const struct stm32mp1_ddr_config *config)
{
u32 pir;
int ret;
ret = board_ddr_power_init();
if (ret)
panic("ddr power init failed\n");
debug("name = %s\n", config->info.name);
debug("speed = %d MHz\n", config->info.speed);
debug("size = 0x%x\n", config->info.size);
/*
* 1. Program the DWC_ddr_umctl2 registers
* 1.1 RESETS: presetn, core_ddrc_rstn, aresetn
*/
/* Assert All DDR part */
setbits_le32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCAPBRST);
setbits_le32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCAXIRST);
setbits_le32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCORERST);
setbits_le32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYAPBRST);
setbits_le32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYRST);
setbits_le32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYCTLRST);
/* 1.2. start CLOCK */
if (stm32mp1_ddr_clk_enable(priv, config->info.speed))
panic("invalid DRAM clock : %d MHz\n",
config->info.speed);
/* 1.3. deassert reset */
/* de-assert PHY rstn and ctl_rstn via DPHYRST and DPHYCTLRST */
clrbits_le32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYRST);
clrbits_le32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYCTLRST);
/* De-assert presetn once the clocks are active
* and stable via DDRCAPBRST bit
*/
clrbits_le32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCAPBRST);
/* 1.4. wait 4 cycles for synchronization */
asm(" nop");
asm(" nop");
asm(" nop");
asm(" nop");
/* 1.5. initialize registers ddr_umctl2 */
/* Stop uMCTL2 before PHY is ready */
clrbits_le32(&priv->ctl->dfimisc, DDRCTRL_DFIMISC_DFI_INIT_COMPLETE_EN);
debug("[0x%08x] dfimisc = 0x%08x\n",
(u32)&priv->ctl->dfimisc, readl(&priv->ctl->dfimisc));
set_reg(priv, REG_REG, &config->c_reg);
set_reg(priv, REG_TIMING, &config->c_timing);
set_reg(priv, REG_MAP, &config->c_map);
/* skip CTRL init, SDRAM init is done by PHY PUBL */
clrsetbits_le32(&priv->ctl->init0,
DDRCTRL_INIT0_SKIP_DRAM_INIT_MASK,
DDRCTRL_INIT0_SKIP_DRAM_INIT_NORMAL);
set_reg(priv, REG_PERF, &config->c_perf);
/* 2. deassert reset signal core_ddrc_rstn, aresetn and presetn */
clrbits_le32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCORERST);
clrbits_le32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DDRCAXIRST);
clrbits_le32(priv->rcc + RCC_DDRITFCR, RCC_DDRITFCR_DPHYAPBRST);
/* 3. start PHY init by accessing relevant PUBL registers
* (DXGCR, DCR, PTR*, MR*, DTPR*)
*/
set_reg(priv, REGPHY_REG, &config->p_reg);
set_reg(priv, REGPHY_TIMING, &config->p_timing);
set_reg(priv, REGPHY_CAL, &config->p_cal);
/* 4. Monitor PHY init status by polling PUBL register PGSR.IDONE
* Perform DDR PHY DRAM initialization and Gate Training Evaluation
*/
ddrphy_idone_wait(priv->phy);
/* 5. Indicate to PUBL that controller performs SDRAM initialization
* by setting PIR.INIT and PIR CTLDINIT and pool PGSR.IDONE
* DRAM init is done by PHY, init0.skip_dram.init = 1
*/
pir = DDRPHYC_PIR_DLLSRST | DDRPHYC_PIR_DLLLOCK | DDRPHYC_PIR_ZCAL |
DDRPHYC_PIR_ITMSRST | DDRPHYC_PIR_DRAMINIT | DDRPHYC_PIR_ICPC;
if (config->c_reg.mstr & DDRCTRL_MSTR_DDR3)
pir |= DDRPHYC_PIR_DRAMRST; /* only for DDR3 */
stm32mp1_ddrphy_init(priv->phy, pir);
/* 6. SET DFIMISC.dfi_init_complete_en to 1 */
/* Enable quasi-dynamic register programming*/
start_sw_done(priv->ctl);
setbits_le32(&priv->ctl->dfimisc, DDRCTRL_DFIMISC_DFI_INIT_COMPLETE_EN);
wait_sw_done_ack(priv->ctl);
/* 7. Wait for DWC_ddr_umctl2 to move to normal operation mode
* by monitoring STAT.operating_mode signal
*/
/* wait uMCTL2 ready */
wait_operating_mode(priv, DDRCTRL_STAT_OPERATING_MODE_NORMAL);
debug("DDR DQS training : ");
/* 8. Disable Auto refresh and power down by setting
* - RFSHCTL3.dis_au_refresh = 1
* - PWRCTL.powerdown_en = 0
* - DFIMISC.dfiinit_complete_en = 0
*/
stm32mp1_refresh_disable(priv->ctl);
/* 9. Program PUBL PGCR to enable refresh during training and rank to train
* not done => keep the programed value in PGCR
*/
/* 10. configure PUBL PIR register to specify which training step to run */
/* warning : RVTRN is not supported by this PUBL */
stm32mp1_ddrphy_init(priv->phy, DDRPHYC_PIR_QSTRN);
/* 11. monitor PUB PGSR.IDONE to poll cpmpletion of training sequence */
ddrphy_idone_wait(priv->phy);
/* 12. set back registers in step 8 to the orginal values if desidered */
stm32mp1_refresh_restore(priv->ctl, config->c_reg.rfshctl3,
config->c_reg.pwrctl);
/* enable uMCTL2 AXI port 0 and 1 */
setbits_le32(&priv->ctl->pctrl_0, DDRCTRL_PCTRL_N_PORT_EN);
setbits_le32(&priv->ctl->pctrl_1, DDRCTRL_PCTRL_N_PORT_EN);
}