blob: 3b811bb505074bcadd9f924b61485d3895eb4e66 [file] [log] [blame]
// SPDX-License-Identifier: GPL-2.0+
/*
* (C) Copyright 2008 - 2009
* Windriver, <www.windriver.com>
* Tom Rix <Tom.Rix@windriver.com>
*
* Copyright 2011 Sebastian Andrzej Siewior <bigeasy@linutronix.de>
*
* Copyright 2014 Linaro, Ltd.
* Rob Herring <robh@kernel.org>
*/
#include <common.h>
#include <cli.h>
#include <config.h>
#include <errno.h>
#include <fastboot.h>
#ifdef CONFIG_FASTBOOT_FLASH_MMC_DEV
#include <fb_mmc.h>
#endif
#ifdef CONFIG_FASTBOOT_FLASH_NAND_DEV
#include <fb_nand.h>
#endif
#ifdef CONFIG_ZIRCON_PARTITIONS
#include <fb_zircon.h>
#endif
#include <g_dnl.h>
#include <inttypes.h>
#include <libabr/abr.h>
#include <malloc.h>
#include <mmc.h>
#include <stdalign.h>
#include <tee/ta_vx.h>
#include <tee/optee.h>
#include <version.h>
#include <zircon/boot_args.h>
#include <zircon/bootimg.h>
#include <zircon/partition.h>
#include <zircon/vboot.h>
#include <zircon/zircon.h>
#include <linux/compiler.h>
#include <linux/ctype.h>
#include <linux/usb/ch9.h>
#include <linux/usb/composite.h>
#include <linux/usb/gadget.h>
#include <asm/arch/bl31_apis.h>
#include <asm/arch/reboot.h>
#include <asm/arch/secure_apb.h>
#include <asm/io.h>
#include <tee/ta_vx_helper.h>
#define DEFAULT_DEVICE_SERIAL "00000000000000"
#define FASTBOOT_VERSION "0.4"
#define FASTBOOT_INTERFACE_CLASS 0xff
#define FASTBOOT_INTERFACE_SUB_CLASS 0x42
#define FASTBOOT_INTERFACE_PROTOCOL 0x03
#define RX_ENDPOINT_MAXIMUM_PACKET_SIZE_2_0 (0x0200)
#define RX_ENDPOINT_MAXIMUM_PACKET_SIZE_1_1 (0x0040)
#define TX_ENDPOINT_MAXIMUM_PACKET_SIZE (0x0040)
#define EP_BUFFER_SIZE 4096
#define FB_ERR(fmt...) printf("[ERR]%sL%d:", __func__, __LINE__), printf(fmt)
#define FB_MSG(fmt...) printf("[MSG]" fmt)
#define FB_WRN(fmt...) printf("[WRN]" fmt)
#ifdef DEBUG
#define FB_DBG(fmt...) printf("[DBG]%sL%d:", __func__, __LINE__), printf(fmt)
#else
#define FB_DBG(...)
#endif
//bootloader minimum version for g12a elaine
//ported from bl30/board/g12a/antirollback.h
#define ANTIROLLBACK_MVN_REG1 (AO_SEC_SD_CFG11)
#define ANTIROLLBACK_MVN_REG2 (AO_SEC_SD_CFG13)
#define antirollback_get_mvn_fip() (readl(ANTIROLLBACK_MVN_REG1) >> 24)
#define antirollback_get_mvn_bl2() (readl(ANTIROLLBACK_MVN_REG2) >> 24)
#define antirollback_get_mvn_bl30() \
((readl(ANTIROLLBACK_MVN_REG2) >> 16) & 0xff)
#define antirollback_get_mvn_bl31() \
((readl(ANTIROLLBACK_MVN_REG1) >> 16) & 0xff)
#define antirollback_get_mvn_bl32() ((readl(ANTIROLLBACK_MVN_REG1) >> 8) & 0xff)
#define antirollback_get_mvn_bl33() (readl(ANTIROLLBACK_MVN_REG1) & 0xff)
/*
* EP_BUFFER_SIZE must always be an integral multiple of maxpacket size
* (64 or 512 or 1024), else we break on certain controllers like DWC3
* that expect bulk OUT requests to be divisible by maxpacket size.
*/
struct f_fastboot {
struct usb_function usb_function;
/* IN/OUT EP's and corresponding requests */
struct usb_ep *in_ep, *out_ep;
struct usb_request *in_req, *out_req;
};
static inline struct f_fastboot *func_to_fastboot(struct usb_function *f)
{
return container_of(f, struct f_fastboot, usb_function);
}
static struct f_fastboot *fastboot_func;
static unsigned int download_size;
static unsigned int download_bytes;
static unsigned int upload_size;
static unsigned int upload_bytes;
static struct usb_endpoint_descriptor fs_ep_in = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = USB_DIR_IN,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.wMaxPacketSize = cpu_to_le16(64),
};
static struct usb_endpoint_descriptor fs_ep_out = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = USB_DIR_OUT,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.wMaxPacketSize = cpu_to_le16(64),
};
static struct usb_endpoint_descriptor hs_ep_in = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = USB_DIR_IN,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.wMaxPacketSize = cpu_to_le16(512),
};
static struct usb_endpoint_descriptor hs_ep_out = {
.bLength = USB_DT_ENDPOINT_SIZE,
.bDescriptorType = USB_DT_ENDPOINT,
.bEndpointAddress = USB_DIR_OUT,
.bmAttributes = USB_ENDPOINT_XFER_BULK,
.wMaxPacketSize = cpu_to_le16(512),
};
static struct usb_interface_descriptor interface_desc = {
.bLength = USB_DT_INTERFACE_SIZE,
.bDescriptorType = USB_DT_INTERFACE,
.bInterfaceNumber = 0x00,
.bAlternateSetting = 0x00,
.bNumEndpoints = 0x02,
.bInterfaceClass = FASTBOOT_INTERFACE_CLASS,
.bInterfaceSubClass = FASTBOOT_INTERFACE_SUB_CLASS,
.bInterfaceProtocol = FASTBOOT_INTERFACE_PROTOCOL,
};
static struct usb_descriptor_header *fb_fs_function[] = {
(struct usb_descriptor_header *)&interface_desc,
(struct usb_descriptor_header *)&fs_ep_in,
(struct usb_descriptor_header *)&fs_ep_out,
};
static struct usb_descriptor_header *fb_hs_function[] = {
(struct usb_descriptor_header *)&interface_desc,
(struct usb_descriptor_header *)&hs_ep_in,
(struct usb_descriptor_header *)&hs_ep_out,
NULL,
};
static struct usb_endpoint_descriptor *
fb_ep_desc(struct usb_gadget *g, struct usb_endpoint_descriptor *fs,
struct usb_endpoint_descriptor *hs)
{
if (gadget_is_dualspeed(g) && g->speed == USB_SPEED_HIGH)
return hs;
return fs;
}
/*
* static strings, in UTF-8
*/
static const char fastboot_name[] = "Fuchsia Fastboot";
static struct usb_string fastboot_string_defs[] = {
[0].s = fastboot_name,
{} /* end of list */
};
static struct usb_gadget_strings stringtab_fastboot = {
.language = 0x0409, /* en-us */
.strings = fastboot_string_defs,
};
static struct usb_gadget_strings *fastboot_strings[] = {
&stringtab_fastboot,
NULL,
};
bool fastboot_host_connected = false;
static const char *s_slot_suffix_list[] = { "a", "b", NULL };
static const char *vx_min_version_slot_list[] = {
"0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "10",
"11", "12", "13", "14", "15", "16", "17", "18", "19", "20", "21",
"22", "23", "24", "25", "26", "27", "28", "29", "30", "31", NULL
};
_Static_assert(ARRAY_SIZE(vx_min_version_slot_list) ==
(TA_VX_MAX_ROLLBACK_LOCATIONS + 1),
"Invalid vx_min_version_slot_list");
static void rx_handler_command(struct usb_ep *ep, struct usb_request *req);
static int strcmp_l1(const char *s1, const char *s2);
static int s_fastboot_busy = 0;
int fastboot_is_busy(void)
{
return s_fastboot_busy;
}
static void fastboot_complete(struct usb_ep *ep, struct usb_request *req)
{
int status = req->status;
if (status) {
FB_ERR("status: %d ep '%s' trans: %d\n", status, ep->name,
req->actual);
return;
}
if (fastboot_is_busy() && fastboot_func) {
struct usb_ep *out_ep = fastboot_func->out_ep;
struct usb_request *out_req = fastboot_func->out_req;
rx_handler_command(out_ep, out_req);
return;
}
}
int fastboot_setup(struct usb_function *f, const struct usb_ctrlrequest *ctrl)
{
u16 w_index = le16_to_cpu(ctrl->wIndex);
u16 w_value = le16_to_cpu(ctrl->wValue);
struct f_fastboot *f_fb = func_to_fastboot(f);
int ret = -EOPNOTSUPP;
switch (ctrl->bRequest) {
case USB_REQ_CLEAR_FEATURE:
if (((ctrl->bRequestType & USB_RECIP_MASK) ==
USB_RECIP_ENDPOINT) &&
(w_value == USB_ENDPOINT_HALT)) {
if (w_index & USB_DIR_IN) {
ret = usb_ep_clear_halt(f_fb->in_ep);
} else {
ret = usb_ep_clear_halt(f_fb->out_ep);
}
}
break;
default:
break;
}
return ret;
}
static int fastboot_bind(struct usb_configuration *c, struct usb_function *f)
{
int id;
struct usb_gadget *gadget = c->cdev->gadget;
struct f_fastboot *f_fb = func_to_fastboot(f);
const char *s;
if (CONFIG_FASTBOOT_BUF_ADDR % alignof(AvbAtxUnlockCredential) != 0 ||
CONFIG_FASTBOOT_BUF_ADDR % alignof(AvbAtxUnlockChallenge) != 0) {
FB_ERR("Fastboot failed: Buffer misaligned\n");
panic("Fastboot Buffer misaligned!");
}
/* DYNAMIC interface numbers assignments */
id = usb_interface_id(c, f);
if (id < 0)
return id;
interface_desc.bInterfaceNumber = id;
id = usb_string_id(c->cdev);
if (id < 0)
return id;
fastboot_string_defs[0].id = id;
interface_desc.iInterface = id;
f_fb->in_ep = usb_ep_autoconfig(gadget, &fs_ep_in);
if (!f_fb->in_ep)
return -ENODEV;
f_fb->in_ep->driver_data = c->cdev;
f_fb->out_ep = usb_ep_autoconfig(gadget, &fs_ep_out);
if (!f_fb->out_ep)
return -ENODEV;
f_fb->out_ep->driver_data = c->cdev;
f->descriptors = fb_fs_function;
if (gadget_is_dualspeed(gadget)) {
/* Assume endpoint addresses are the same for both speeds */
hs_ep_in.bEndpointAddress = fs_ep_in.bEndpointAddress;
hs_ep_out.bEndpointAddress = fs_ep_out.bEndpointAddress;
/* copy HS descriptors */
f->hs_descriptors = fb_hs_function;
}
s = env_get("serial#");
if (s)
g_dnl_set_serialnumber((char *)s);
return 0;
}
static void fastboot_unbind(struct usb_configuration *c, struct usb_function *f)
{
memset(fastboot_func, 0, sizeof(*fastboot_func));
}
static void fastboot_disable(struct usb_function *f)
{
struct f_fastboot *f_fb = func_to_fastboot(f);
usb_ep_disable(f_fb->out_ep);
usb_ep_disable(f_fb->in_ep);
if (f_fb->out_req) {
free(f_fb->out_req->buf);
usb_ep_free_request(f_fb->out_ep, f_fb->out_req);
f_fb->out_req = NULL;
}
if (f_fb->in_req) {
free(f_fb->in_req->buf);
usb_ep_free_request(f_fb->in_ep, f_fb->in_req);
f_fb->in_req = NULL;
}
}
static struct usb_request *fastboot_start_ep(struct usb_ep *ep)
{
struct usb_request *req;
req = usb_ep_alloc_request(ep, 0);
if (!req)
return NULL;
req->length = EP_BUFFER_SIZE;
req->buf = memalign(CONFIG_SYS_CACHELINE_SIZE, EP_BUFFER_SIZE);
if (!req->buf) {
usb_ep_free_request(ep, req);
return NULL;
}
memset(req->buf, 0, req->length);
return req;
}
static int fastboot_set_alt(struct usb_function *f, unsigned interface,
unsigned alt)
{
int ret;
struct usb_composite_dev *cdev = f->config->cdev;
struct usb_gadget *gadget = cdev->gadget;
struct f_fastboot *f_fb = func_to_fastboot(f);
const struct usb_endpoint_descriptor *d;
fastboot_host_connected = true;
debug("%s: func: %s intf: %d alt: %d\n", __func__, f->name, interface,
alt);
d = fb_ep_desc(gadget, &fs_ep_out, &hs_ep_out);
ret = usb_ep_enable(f_fb->out_ep, d);
if (ret) {
puts("failed to enable out ep\n");
return ret;
}
f_fb->out_req = fastboot_start_ep(f_fb->out_ep);
if (!f_fb->out_req) {
puts("failed to alloc out req\n");
ret = -EINVAL;
goto err;
}
f_fb->out_req->complete = rx_handler_command;
d = fb_ep_desc(gadget, &fs_ep_in, &hs_ep_in);
ret = usb_ep_enable(f_fb->in_ep, d);
if (ret) {
puts("failed to enable in ep\n");
goto err;
}
f_fb->in_req = fastboot_start_ep(f_fb->in_ep);
if (!f_fb->in_req) {
puts("failed alloc req in\n");
ret = -EINVAL;
goto err;
}
f_fb->in_req->complete = fastboot_complete;
ret = usb_ep_queue(f_fb->out_ep, f_fb->out_req, 0);
if (ret)
goto err;
return 0;
err:
fastboot_disable(f);
return ret;
}
static int fastboot_add(struct usb_configuration *c)
{
struct f_fastboot *f_fb = fastboot_func;
int status;
debug("%s: cdev: 0x%p\n", __func__, c->cdev);
if (!f_fb) {
f_fb = memalign(CONFIG_SYS_CACHELINE_SIZE, sizeof(*f_fb));
if (!f_fb)
return -ENOMEM;
fastboot_func = f_fb;
memset(f_fb, 0, sizeof(*f_fb));
}
f_fb->usb_function.name = "f_fastboot";
f_fb->usb_function.bind = fastboot_bind;
f_fb->usb_function.unbind = fastboot_unbind;
f_fb->usb_function.set_alt = fastboot_set_alt;
f_fb->usb_function.setup = fastboot_setup;
f_fb->usb_function.disable = fastboot_disable;
f_fb->usb_function.strings = fastboot_strings;
status = usb_add_function(c, &f_fb->usb_function);
if (status) {
free(f_fb);
fastboot_func = f_fb;
}
return status;
}
DECLARE_GADGET_BIND_CALLBACK(usb_dnl_fastboot, fastboot_add);
static int fastboot_tx_write(const char *buffer, unsigned int buffer_size)
{
struct usb_request *in_req = fastboot_func->in_req;
int ret;
memcpy(in_req->buf, buffer, buffer_size);
in_req->length = buffer_size;
usb_ep_dequeue(fastboot_func->in_ep, in_req);
ret = usb_ep_queue(fastboot_func->in_ep, in_req, 0);
if (ret)
FB_ERR("Error %d on queue\n", ret);
return 0;
}
static int fastboot_tx_write_str(const char *buffer)
{
return fastboot_tx_write(buffer, strlen(buffer));
}
void fb_fail(const char *s)
{
char response[FASTBOOT_RESPONSE_LEN] = {};
s_fastboot_busy = 0;
snprintf(response, FASTBOOT_RESPONSE_LEN, "FAIL%s", s ? s : "");
if (fastboot_tx_write(response, strlen(response))) {
FB_ERR("Failed to send 'FAIL' response\n");
}
}
void fb_okay(const char *s)
{
char response[FASTBOOT_RESPONSE_LEN] = {};
s_fastboot_busy = 0;
snprintf(response, FASTBOOT_RESPONSE_LEN, "OKAY%s", s ? s : "");
if (fastboot_tx_write(response, strlen(response))) {
FB_ERR("Failed to send 'OKAY' response\n");
}
}
void fb_info(const char *s)
{
char response[FASTBOOT_RESPONSE_LEN] = {};
s_fastboot_busy = 1;
snprintf(response, FASTBOOT_RESPONSE_LEN, "INFO%s", s ? s : "");
if (fastboot_tx_write(response, strlen(response))) {
FB_ERR("Failed to send 'INFO' response\n");
}
}
void reboot_normal(void)
{
aml_reboot(PSCI_SYS_REBOOT, AMLOGIC_NORMAL_BOOT, 0, 0);
}
void reboot_bootloader(void)
{
aml_reboot(PSCI_SYS_REBOOT, AMLOGIC_FASTBOOT_REBOOT, 0, 0);
}
void reboot_recovery(void)
{
aml_reboot(PSCI_SYS_REBOOT, AMLOGIC_FACTORY_RESET_REBOOT, 0, 0);
}
static void compl_do_reboot_normal(struct usb_ep *ep, struct usb_request *req)
{
reboot_normal();
}
static void compl_do_reboot_bootloader(struct usb_ep *ep,
struct usb_request *req)
{
reboot_bootloader();
}
static void compl_do_reboot_recovery(struct usb_ep *ep, struct usb_request *req)
{
reboot_recovery();
}
static bool fb_require_unlocked_or_fail(void)
{
bool unlocked;
if (zircon_vboot_is_unlocked(&unlocked)) {
fb_fail("Failed to get current lock/unlock state");
return true;
}
if (!unlocked) {
fb_fail("Device must be unlocked to run this command");
return true;
}
return false;
}
#if defined(DEV_BUILD_CONFIG)
static bool fb_run_again_to_confirm_or_fail(void)
{
static uint32_t nth_run = 0;
nth_run++;
if (nth_run % 2) {
fb_fail("RERUN COMMAND TO CONFIRM YOU KNOW WHAT YOU ARE "
"DOING!");
return true;
}
return false;
}
#endif // DEV_BUILD_CONFIG
static void cb_reboot(struct usb_ep *ep, struct usb_request *req)
{
char *cmd = req->buf;
if (!strcmp_l1("reboot-bootloader", cmd)) {
fastboot_func->in_req->complete = compl_do_reboot_bootloader;
} else if (!strcmp_l1("reboot-recovery", cmd)) {
fastboot_func->in_req->complete = compl_do_reboot_recovery;
} else {
fastboot_func->in_req->complete = compl_do_reboot_normal;
}
fb_okay(NULL);
}
static int strcmp_l1(const char *s1, const char *s2)
{
if (!s1 || !s2)
return -1;
return strncmp(s1, s2, strlen(s1));
}
static const char *get_serial(const char *arg)
{
const char *s = env_get("serial#");
if (!s) {
return DEFAULT_DEVICE_SERIAL;
}
return s;
}
#define GETVAR_RESPONSE_BUFFER_LEN FASTBOOT_RESPONSE_LEN
static char getvar_response_buffer[GETVAR_RESPONSE_BUFFER_LEN];
static const char *get_max_download_size(const char *arg)
{
snprintf(getvar_response_buffer, GETVAR_RESPONSE_BUFFER_LEN, "0x%08x",
CONFIG_FASTBOOT_BUF_SIZE);
return getvar_response_buffer;
}
static const char *get_emmc_total_bytes(const char *arg)
{
struct blk_desc *dev_desc;
dev_desc = blk_get_dev("mmc", CONFIG_FASTBOOT_FLASH_MMC_DEV);
if (!dev_desc || dev_desc->type == DEV_TYPE_UNKNOWN) {
return "unknown";
}
snprintf(getvar_response_buffer, GETVAR_RESPONSE_BUFFER_LEN, "0x%llx",
(uint64_t)dev_desc->lba * dev_desc->blksz);
return getvar_response_buffer;
}
static const char *get_emmc_vendor(const char *arg)
{
struct blk_desc *dev_desc;
dev_desc = blk_get_dev("mmc", CONFIG_FASTBOOT_FLASH_MMC_DEV);
if (!dev_desc || dev_desc->type == DEV_TYPE_UNKNOWN) {
return "unknown";
}
snprintf(getvar_response_buffer, GETVAR_RESPONSE_BUFFER_LEN, "%s",
dev_desc->vendor);
return getvar_response_buffer;
}
static const char *get_emmc_product(const char *arg)
{
struct blk_desc *dev_desc;
dev_desc = blk_get_dev("mmc", CONFIG_FASTBOOT_FLASH_MMC_DEV);
if (!dev_desc || dev_desc->type == DEV_TYPE_UNKNOWN) {
return "unknown";
}
snprintf(getvar_response_buffer, GETVAR_RESPONSE_BUFFER_LEN, "%s",
dev_desc->product);
return getvar_response_buffer;
}
static const char *get_emmc_firmware_revision(const char *arg)
{
struct blk_desc *dev_desc;
dev_desc = blk_get_dev("mmc", CONFIG_FASTBOOT_FLASH_MMC_DEV);
if (!dev_desc || dev_desc->type == DEV_TYPE_UNKNOWN) {
return "unknown";
}
snprintf(getvar_response_buffer, GETVAR_RESPONSE_BUFFER_LEN, "%s",
dev_desc->revision);
return getvar_response_buffer;
}
static const char *get_bootloader_board(const char *arg)
{
const char *s = "unknown";
// Convert to public device name
if (!strncmp(BOARD_NAME, "elaine-p2", sizeof(BOARD_NAME))) {
s = "nelson-p2";
} else if (!strncmp(BOARD_NAME, "elaine-b3", sizeof(BOARD_NAME))) {
s = "nelson-b3";
} else if (!strncmp(BOARD_NAME, "elaine-b4", sizeof(BOARD_NAME))) {
s = "nelson-b4";
}
return s;
}
static const char *get_hw_revision(const char *arg)
{
char *hw_id_str = env_get("hw_id");
if (hw_id_str == NULL || hw_id_str[0] == '\0') {
return "unknown";
}
/*
* See Fuchsia //src/devices/board/drivers/nelson/nelson.cc
* and note that the hw revision only cares about the lower three
* GPIOs. The upper two bits are the board options.
*/
const uint32_t hw_id = simple_strtoul(hw_id_str, NULL, 16) & 0x7;
switch (hw_id) {
case 0x0:
return "nelson-p1";
case 0x1:
return "nelson-p2";
case 0x2:
return "nelson-p2";
case 0x3:
return "nelson-b1";
case 0x4:
return "nelson-b2";
case 0x5:
return "nelson-b3";
case 0x6:
return "nelson-b3";
default:
return "unknown";
}
}
static const char *get_current_slot(const char *arg)
{
AbrSlotIndex slot = AbrGetBootSlot(zircon_abr_ops(), false, NULL);
const char *ret = AbrGetSlotSuffix(slot);
//&ret[1] skips the first '_' character. i.e. "_a" is returned as "a".
return ret ? &ret[1] : NULL;
}
static const char *get_slot_last_set_active(const char *arg)
{
AbrSlotIndex slot;
AbrResult res = AbrGetSlotLastMarkedActive(zircon_abr_ops(), &slot);
if (res != kAbrResultOk) {
return NULL;
}
const char *ret = AbrGetSlotSuffix(slot);
//&ret[1] skips the first '_' character. i.e. "_a" is returned as "a".
return ret ? &ret[1] : NULL;
}
static const char *check_slot_successful(const char *arg)
{
int i = 0;
if (!arg) {
return NULL;
}
while (s_slot_suffix_list[i]) {
if (!strcmp_l1(s_slot_suffix_list[i], arg)) {
AbrSlotInfo info;
AbrResult res =
AbrGetSlotInfo(zircon_abr_ops(), i, &info);
if (res != kAbrResultOk) {
return NULL;
}
return info.is_marked_successful ? "yes" : "no";
}
i++;
}
return NULL;
}
static const char *check_slot_unbootable(const char *arg)
{
int i = 0;
if (!arg) {
return NULL;
}
while (s_slot_suffix_list[i]) {
if (!strcmp_l1(s_slot_suffix_list[i], arg)) {
AbrSlotInfo info;
AbrResult res =
AbrGetSlotInfo(zircon_abr_ops(), i, &info);
if (res != kAbrResultOk) {
return NULL;
}
return info.is_bootable ? "no" : "yes";
}
i++;
}
return NULL;
}
static const char *get_slot_retry_count(const char *arg)
{
int i = 0;
if (!arg) {
return NULL;
}
while (s_slot_suffix_list[i]) {
if (!strcmp_l1(s_slot_suffix_list[i], arg)) {
AbrSlotInfo info;
AbrResult res =
AbrGetSlotInfo(zircon_abr_ops(), i, &info);
if (res != kAbrResultOk) {
return NULL;
}
snprintf(getvar_response_buffer,
GETVAR_RESPONSE_BUFFER_LEN, "%d",
info.num_tries_remaining);
return getvar_response_buffer;
}
i++;
}
return NULL;
}
static const char *get_vx_min_version(const char *arg)
{
uint32_t slot = simple_strtoul(arg, NULL, 10);
uint64_t index;
if (ta_vx_read_rollback_index(slot, &index)) {
printf("\nError reading slot #%u\n", slot);
return NULL;
}
snprintf(getvar_response_buffer, GETVAR_RESPONSE_BUFFER_LEN, "%llu",
index);
return getvar_response_buffer;
}
static void append_bl_version(uint32_t ver)
{
size_t cur_length = strlen(getvar_response_buffer);
snprintf(&getvar_response_buffer[cur_length],
GETVAR_RESPONSE_BUFFER_LEN - cur_length, ",%d", ver);
}
static const char *get_bootloader_min_versions(const char *arg)
{
snprintf(getvar_response_buffer, GETVAR_RESPONSE_BUFFER_LEN, "%d",
antirollback_get_mvn_bl2());
append_bl_version(antirollback_get_mvn_fip());
append_bl_version(antirollback_get_mvn_bl30());
append_bl_version(antirollback_get_mvn_bl31());
append_bl_version(antirollback_get_mvn_bl32());
append_bl_version(antirollback_get_mvn_bl33());
return getvar_response_buffer;
}
AvbIOResult
avb_read_permanent_attributes_hash(AvbAtxOps *atx_ops,
uint8_t hash[AVB_SHA256_DIGEST_SIZE]);
static const char *get_vx_perm_attr_set(const char *arg)
{
uint32_t status = 0;
if (ta_vx_get_perm_attr_status(&status)) {
return "unknown";
}
if (status & (VX_PERM_ATTR_PROGRAMMED | VX_PERM_ATTR_HARDCODED)) {
return "yes";
}
return "no";
}
static const char *get_locked_status(const char *arg)
{
bool unlocked;
if (zircon_vboot_is_unlocked(&unlocked)) {
return "unknown";
}
return unlocked ? "no" : "yes";
}
static const char *get_dev_key_enabled(const char *arg)
{
uint32_t vars = 0;
if (ta_vx_getvar_all(&vars)) {
return "error";
}
return !!(vars & VX_VAR_DEV_KEY_ENABLED)? "yes" : "no";
}
static const char *get_rpmb_key_programmed(const char *arg)
{
uint32_t flags = 0;
if (ta_vx_get_rpmb_status(&flags, /* out_write_count= */ NULL)) {
return "error";
}
return (flags & VX_RPMB_AUTH_KEY_PROGRAMMED) ? "yes" : "no";
}
static const char *get_rpmb_key_verified(const char *arg)
{
uint32_t flags = 0;
if (ta_vx_get_rpmb_status(&flags, /* out_write_count= */ NULL)) {
return "error";
}
return (flags & VX_RPMB_AUTH_KEY_VERIFIED) ? "yes" : "no";
}
static const char *get_rpmb_provisioning_allowed(const char *arg)
{
uint32_t flags = 0;
if (ta_vx_get_rpmb_status(&flags, /* out_write_count= */ NULL)) {
return "error";
}
return (flags & VX_RPMB_PROVISIONING_ALLOWED) ? "yes" : "no";
}
static const char *get_rpmb_protection_level(const char *arg)
{
uint32_t flags = 0;
if (ta_vx_get_rpmb_status(&flags, /* out_write_count= */NULL)) {
return "error";
}
return (flags & VX_RPMB_REROUTING_TRAFFIC) ? "100": "1000";
}
static const char *get_rpmb_total_bytes(const char *arg)
{
uint8_t rpmb_size_mult;
struct mmc *mmc = find_mmc_device(CONFIG_FASTBOOT_FLASH_MMC_DEV);
if (!mmc || !mmc->ext_csd)
return "unknown";
/* Per JEDEC spec, RPMB partition size = rpmb_size_mult * 128kB. */
rpmb_size_mult = mmc->ext_csd[168];
snprintf(getvar_response_buffer, GETVAR_RESPONSE_BUFFER_LEN, "0x%x",
rpmb_size_mult * 128 * 1024);
return getvar_response_buffer;
}
static const char *get_rpmb_write_count(const char *arg)
{
uint32_t write_count = 0;
if (ta_vx_get_rpmb_status(/* out_flags= */ NULL, &write_count)) {
return "error";
}
snprintf(getvar_response_buffer, GETVAR_RESPONSE_BUFFER_LEN, "0x%x",
write_count);
return getvar_response_buffer;
}
static const char *vx_perm_attr_locked(const char *arg)
{
uint32_t status = 0;
if (ta_vx_get_perm_attr_status(&status)) {
return "error";
}
return (status & VX_PERM_ATTR_LOCKED) ? "yes" : "no";
}
struct fastboot_var {
const char *name;
const char *value;
const char *(*func)(const char *);
/* list has to be ended with 0 or NULL element */
const char **default_args;
};
// keep items in varlist sorted by their names
static struct fastboot_var varlist[] = {
{
.name = "bootloader-board",
.func = get_bootloader_board,
},
{
.name = "bootloader-min-versions",
.func = get_bootloader_min_versions,
},
{
.name = "current-slot",
.func = get_current_slot,
},
{
.name = "dev-key-enabled",
.func = get_dev_key_enabled,
},
{
.name = "emmc-product",
.func = get_emmc_product,
},
{
.name = "emmc-firmware-revision",
.func = get_emmc_firmware_revision,
},
{
.name = "emmc-total-bytes",
.func = get_emmc_total_bytes,
},
{
.name = "emmc-vendor",
.func = get_emmc_vendor,
},
{
.name = "hw-revision",
.func = get_hw_revision,
},
{
.name = "is-userspace",
.value = "no",
},
{
.name = "slot-last-set-active",
.func = get_slot_last_set_active,
},
{
.name = "max-download-size",
.func = get_max_download_size,
},
{
.name = "product",
.value = "Google Nest Hub",
},
{
.name = "rpmb-key-programmed",
.func = get_rpmb_key_programmed,
},
{
.name = "rpmb-key-verified",
.func = get_rpmb_key_verified,
},
{
.name = "rpmb-protection-level",
.func = get_rpmb_protection_level,
},
{
.name = "rpmb-provisioning-allowed",
.func = get_rpmb_provisioning_allowed,
},
{
.name = "rpmb-total-bytes",
.func = get_rpmb_total_bytes,
},
{
.name = "rpmb-write-count",
.func = get_rpmb_write_count,
},
{
.name = "secure",
.value = "yes",
},
{
.name = "serialno",
.func = get_serial,
},
{
.name = "slot-count",
.value = "2",
},
{
.name = "slot-retry-count",
.func = get_slot_retry_count,
.default_args = s_slot_suffix_list,
},
{
.name = "slot-successful",
.func = check_slot_successful,
.default_args = s_slot_suffix_list,
},
{
.name = "slot-suffixes",
.value = "a,b",
},
{
.name = "slot-unbootable",
.func = check_slot_unbootable,
.default_args = s_slot_suffix_list,
},
{
.name = "version",
.value = FASTBOOT_VERSION,
},
{
.name = "version-bootloader",
.value = U_BOOT_VERSION,
},
{
.name = "bootloader-variant",
.value = BOOTLOADER_BUILD_VARIANT,
},
{
.name = "vx-locked",
.func = get_locked_status,
},
{
.name = "vx-min-version",
.func = get_vx_min_version,
.default_args = vx_min_version_slot_list,
},
{
.name = "vx-perm-attr-set",
.func = get_vx_perm_attr_set,
},
{
.name = "vx-unlockable",
.value = "yes",
},
{
.name = "vx-perm-attr-locked",
.func = vx_perm_attr_locked,
},
};
static void getvar_all(void)
{
/* This prints all variables by keeping the indices in static variables.
* getvar_all() is repeatedly called as long as fb_info() is called.
* After sending all variables and their values via fb_info(), this
* function calls fb_okay(), which terminates this loop and ends
* the handling of `getvar all`.
*/
struct fastboot_var *var;
char response[FASTBOOT_RESPONSE_LEN] = {};
int size = ARRAY_SIZE(varlist);
static int s_getvar_idx = 0;
if (s_getvar_idx >= size) {
s_getvar_idx = 0;
fb_okay(NULL);
return;
}
var = &varlist[s_getvar_idx];
if (!var->func) {
snprintf(response, FASTBOOT_RESPONSE_LEN, "%s: %s", var->name,
var->value);
s_getvar_idx++;
} else if (var->func && !var->default_args) {
const char *result = var->func(NULL);
if (!result) {
result = "FAILED";
}
snprintf(response, FASTBOOT_RESPONSE_LEN, "%s: %s", var->name,
result);
s_getvar_idx++;
} else {
const char **arg = var->default_args;
static int s_arg_idx = 0;
if (arg[s_arg_idx]) {
const char *result = var->func(arg[s_arg_idx]);
if (!result) {
result = "FAILED";
}
snprintf(response, FASTBOOT_RESPONSE_LEN, "%s:%s: %s",
var->name, arg[s_arg_idx], result);
s_arg_idx++;
} else {
s_arg_idx = 0;
s_getvar_idx++;
}
}
fb_info(response);
}
static void cb_getvar(struct usb_ep *ep, struct usb_request *req)
{
char *cmd = req->buf;
char cmdBuf[FASTBOOT_RESPONSE_LEN];
int size = ARRAY_SIZE(varlist);
int i;
char *arg;
memcpy(cmdBuf, cmd, strnlen(cmd, FASTBOOT_RESPONSE_LEN - 1) + 1);
cmd = cmdBuf;
strsep(&cmd, ":");
FB_DBG("cb_getvar: %s\n", cmd);
if (!cmd) {
fb_fail("missing var");
return;
}
if (!strncmp("all", cmd, strlen(cmd))) {
getvar_all();
return;
}
/* 'cmd' may contain arg after ':' delimiter */
arg = strchr(cmd, ':');
if (arg) {
/* split cmd */
*arg = '\0';
arg += 1;
}
for (i = 0; i < size; ++i) {
struct fastboot_var *var = &varlist[i];
if ((strlen(var->name) == strlen(cmd)) &&
!strncmp(var->name, cmd, strlen(cmd))) {
if (!var->func) {
fb_okay(var->value);
} else {
const char *response = var->func(arg);
if (response) {
fb_okay(response);
} else {
fb_fail("Failed to get var");
}
}
return;
}
}
fb_fail("Variable Not Found");
}
static unsigned int rx_bytes_expected(struct usb_ep *ep)
{
int rx_remain = download_size - download_bytes;
unsigned int rem;
unsigned int maxpacket = ep->maxpacket;
if (rx_remain <= 0)
return 0;
else if (rx_remain > EP_BUFFER_SIZE)
return EP_BUFFER_SIZE;
/*
* Some controllers e.g. DWC3 don't like OUT transfers to be
* not ending in maxpacket boundary. So just make them happy by
* always requesting for integral multiple of maxpackets.
* This shouldn't bother controllers that don't care about it.
*/
rem = rx_remain % maxpacket;
if (rem > 0)
rx_remain = rx_remain + (maxpacket - rem);
return rx_remain;
}
#define BYTES_PER_DOT 0x20000
static void rx_handler_dl_image(struct usb_ep *ep, struct usb_request *req)
{
unsigned int transfer_size = download_size - download_bytes;
const unsigned char *buffer = req->buf;
unsigned int buffer_size = req->actual;
unsigned int pre_dot_num, now_dot_num;
if (req->status != 0) {
FB_ERR("Bad status: %d\n", req->status);
return;
}
if (buffer_size < transfer_size)
transfer_size = buffer_size;
memcpy((void *)CONFIG_FASTBOOT_BUF_ADDR + download_bytes, buffer,
transfer_size);
pre_dot_num = download_bytes / BYTES_PER_DOT;
download_bytes += transfer_size;
now_dot_num = download_bytes / BYTES_PER_DOT;
if (pre_dot_num != now_dot_num) {
putc('.');
if (!(now_dot_num % 74))
putc('\n');
}
/* Check if transfer is done */
if (download_bytes >= download_size) {
/*
* Reset global transfer variable, keep download_bytes because
* it will be used in the next possible flashing command
*/
download_size = 0;
req->complete = rx_handler_command;
req->length = EP_BUFFER_SIZE;
fb_okay(NULL);
printf("\ndownloading of %d bytes finished\n", download_bytes);
} else {
req->length = rx_bytes_expected(ep);
}
req->actual = 0;
usb_ep_queue(ep, req, 0);
}
static void cb_download(struct usb_ep *ep, struct usb_request *req)
{
char *cmd = req->buf;
char response[FASTBOOT_RESPONSE_LEN];
strsep(&cmd, ":");
download_size = simple_strtoul(cmd, NULL, 16);
download_bytes = 0;
FB_DBG("Starting download of %d bytes\n", download_size);
if (0 == download_size) {
fb_fail("data invalid size");
} else if (download_size > CONFIG_FASTBOOT_BUF_SIZE) {
download_size = 0;
fb_fail("data too large");
} else {
sprintf(response, "DATA%08x", download_size);
req->complete = rx_handler_dl_image;
req->length = rx_bytes_expected(ep);
fastboot_tx_write_str(response);
}
}
static unsigned int tx_bytes_expected(void)
{
if (upload_bytes >= upload_size) {
return 0;
}
unsigned int tx_remain = upload_size - upload_bytes;
if (tx_remain > EP_BUFFER_SIZE) {
return EP_BUFFER_SIZE;
}
return tx_remain;
}
static void tx_handler_upload_image(struct usb_ep *ep, struct usb_request *req)
{
unsigned int transfer_size = tx_bytes_expected();
if (req->status != 0) {
FB_ERR("Bad status: %d\n", req->status);
return;
}
/* Check if transfer is done */
if (transfer_size == 0) {
FB_MSG("upload of %u bytes finished\n", upload_bytes);
upload_size = 0;
upload_bytes = 0;
fastboot_func->in_req->complete = fastboot_complete;
fb_okay("");
return;
}
if (fastboot_tx_write((void *)CONFIG_FASTBOOT_BUF_ADDR + upload_bytes,
transfer_size)) {
FB_ERR("Failed to upload image.\n");
return;
}
upload_bytes += transfer_size;
FB_DBG("Uploading: %u/%u bytes\n", upload_bytes, upload_size);
}
static void cb_upload(struct usb_ep *ep, struct usb_request *req)
{
char response[FASTBOOT_RESPONSE_LEN];
FB_MSG("cmd cb_upload: starting upload of %u bytes\n", upload_size);
upload_bytes = 0;
if (!upload_size) {
fb_fail("invalid data");
return;
}
snprintf(response, FASTBOOT_RESPONSE_LEN, "DATA%08x", upload_size);
if (fastboot_tx_write_str(response)) {
FB_ERR("Failed to send 'DATA' response.\n");
return;
}
fastboot_func->in_req->complete = tx_handler_upload_image;
}
static void do_bootm_on_complete(struct usb_ep *ep, struct usb_request *req)
{
puts("RAM-booting kernel..\n");
run_command("run ramboot", 0);
/* This only happens if image is somehow faulty so we start over */
do_reset(NULL, 0, 0, NULL);
}
static void cb_boot(struct usb_ep *ep, struct usb_request *req)
{
void *bootimg = (void *)CONFIG_FASTBOOT_BUF_ADDR;
uint32_t bootimg_hdr_version = validate_bootimg(bootimg);
if (bootimg_hdr_version == (uint32_t)(-1)) {
fb_fail("invalid boot image magic");
return;
}
uint32_t kernel_size = get_kernel_size(bootimg, bootimg_hdr_version);
if (kernel_size == (uint32_t)(-1)) {
fb_fail("failed to get kernel size from bootimg");
return;
}
uint32_t kernel_offset =
get_kernel_offset(bootimg, bootimg_hdr_version);
if (kernel_offset == (uint32_t)(-1)) {
fb_fail("failed to get page size from bootimg");
return;
}
if ((uint64_t)kernel_size + (uint64_t)kernel_offset > download_bytes) {
fb_fail("inconsistent boot image");
return;
}
zbi_header_t *zbi =
(zbi_header_t *)((uint8_t *)bootimg + kernel_offset);
size_t zbi_size = sizeof(zbi_header_t) + zbi->length;
if (zbi_size < zbi->length || zbi_size > kernel_size ||
zbi_size > KERNEL_LOADSIZE) {
fb_fail("invalid zbi size");
return;
}
zbi_header_t *zbi_boot_location = (zbi_header_t *)KERNEL_LOADADDR;
size_t capacity = KERNEL_LOADSIZE;
memcpy(zbi_boot_location, zbi, zbi_size);
void *vbmeta = ((uint8_t *)zbi) + zbi_size;
size_t vbmeta_size = kernel_size - zbi_size;
if (vbmeta_size != 0 && vbmeta_size < sizeof(AvbVBMetaImageHeader)) {
fb_fail("vbmeta malformed");
return;
}
// Copy vbmeta to ensure correct alignment.
void *new_vbmeta = (void *)CONFIG_FASTBOOT_BUF_ADDR;
memcpy(new_vbmeta, vbmeta, vbmeta_size);
if (zircon_vboot_preloaded_img_verify(zbi_boot_location, zbi_size,
capacity, vbmeta, vbmeta_size)) {
fb_fail("Failed to validate zbi/vbmeta");
return;
}
if (zircon_fixup_zbi_no_slot(zbi_boot_location, capacity)) {
fb_fail("Failed to fixup the ZBI image");
return;
}
fastboot_func->in_req->complete = do_bootm_on_complete;
fb_okay(NULL);
}
static void do_exit_on_complete(struct usb_ep *ep, struct usb_request *req)
{
run_command(CONFIG_BOOTCOMMAND, 0);
/* This only happens if image is somehow faulty so we start over */
do_reset(NULL, 0, 0, NULL);
}
static void cb_continue(struct usb_ep *ep, struct usb_request *req)
{
fastboot_func->in_req->complete = do_exit_on_complete;
fastboot_tx_write_str("OKAY");
}
static void cb_stage_partition(struct usb_ep *ep, struct usb_request *req)
{
if (fb_require_unlocked_or_fail()) {
return;
}
char *part_name = req->buf;
// skip past "oem stage-partition"
if (!(strsep(&part_name, " ") && strsep(&part_name, " ") &&
part_name)) {
fb_fail("No partition given");
return;
}
zircon_partition *part = zircon_get_partition(part_name);
if (!part) {
FB_ERR("Unable to find partition: %s\n", part_name);
fb_fail("Unable to find partition");
zircon_free_partition(part);
return;
};
if (part->size > CONFIG_FASTBOOT_BUF_SIZE || part->size > U32_MAX) {
FB_ERR("Partition too large\n");
fb_fail("Partition too large");
zircon_free_partition(part);
return;
}
if (part->read(part, 0, (void *)CONFIG_FASTBOOT_BUF_ADDR, part->size)) {
FB_ERR("Unable to read partition: %s\n", part_name);
fb_fail("Unable to read partition");
zircon_free_partition(part);
return;
}
upload_size = part->size;
zircon_free_partition(part);
fb_okay(NULL);
}
#if defined(DEV_BUILD_CONFIG)
static void cb_kill_rpmb_till_reboot(struct usb_ep *ep, struct usb_request *req)
{
int rc;
uint32_t flags = 0;
rc = ta_vx_reroute_rpmb_till_reboot();
if (rc) {
fb_fail("Request somehow got rejected.");
return;
}
rc = ta_vx_get_rpmb_status(&flags, /* out_write_count= */NULL);
if (rc) {
fb_fail("Failed to query RPMB status.");
return;
}
if (!(flags & VX_RPMB_REROUTING_TRAFFIC)) {
fb_fail("Request went through but didn't take effect.");
return;
}
fb_okay(NULL);
}
static void cb_kill_rpmb(struct usb_ep *ep, struct usb_request *req)
{
int rc;
uint32_t flags = 0;
if (fb_run_again_to_confirm_or_fail()) {
return;
}
rc = ta_vx_reroute_rpmb_to_software();
if (rc) {
fb_fail("Rejected. Have you killed RPMB before?");
return;
}
rc = ta_vx_get_rpmb_status(&flags, /* out_write_count= */NULL);
if (rc) {
fb_fail("Failed to query RPMB status.");
return;
}
if (!(flags & VX_RPMB_REROUTING_TRAFFIC)) {
fb_fail("Request went through but didn't take effect!");
return;
}
fb_okay(NULL);
}
static void cb_unkill_rpmb(struct usb_ep *ep, struct usb_request *req)
{
int rc;
uint32_t flags = 0;
static bool just_need_fb_okey = false;
if (just_need_fb_okey) {
just_need_fb_okey = false;
fb_okay(NULL);
return;
}
rc = ta_vx_get_rpmb_status(&flags, /* out_write_count= */NULL);
if (rc) {
fb_fail("Failed to query RPMB status.");
return;
}
if (!(flags & VX_RPMB_REROUTING_TRAFFIC)) {
fb_fail("Your RPMB is alive, maybe kill it first?");
return;
}
if (fb_run_again_to_confirm_or_fail()) {
return;
}
rc = ta_vx_reroute_rpmb_to_hardware();
if (rc) {
fb_fail("Request somehow got rejected.");
return;
}
/* Reboot is required to take effect because it is not safe or reliable
* for TEE to revert rerouting. */
just_need_fb_okey = true;
fb_info("Please reboot device to take effect.");
}
#endif /* defined(DEV_BUILD_CONFIG) */
static void cb_provision_rpmb(struct usb_ep *ep, struct usb_request *req)
{
int rc;
uint32_t flags = 0;
rc = ta_vx_get_rpmb_status(&flags, /* out_write_count= */ NULL);
if (rc) {
fb_fail("Failed to query RPMB status.");
return;
}
/*
* Add status checks merely to keep users better informed. The same
* are also checked in the VX TA.
*/
if (flags & VX_RPMB_AUTH_KEY_PROGRAMMED) {
fb_fail("Authentication key already programmed.");
return;
}
if (!(flags & VX_RPMB_PROVISIONING_ALLOWED)) {
fb_fail("RPMB provisioning permanently disabled.");
return;
}
rc = ta_vx_provision_rpmb();
if (rc) {
fb_fail("RPMB provisioning failed.");
return;
}
fb_okay(NULL);
}
static void cb_vx_get_unlock_challenge(struct usb_ep *ep,
struct usb_request *req)
{
AvbAtxUnlockChallenge *unlock_challenge =
(AvbAtxUnlockChallenge *)CONFIG_FASTBOOT_BUF_ADDR;
int ret = zircon_vboot_generate_unlock_challenge(unlock_challenge);
if (ret) {
FB_ERR("Failed to generate unlock challenge\n");
fb_fail("Failed to generate unlock challenge");
return;
}
upload_size = sizeof(*unlock_challenge);
fb_okay(NULL);
}
static void cb_vx_unlock(struct usb_ep *ep, struct usb_request *req)
{
if (zircon_clear_stored_cmdline()) {
FB_ERR("Failed to clear stored boot args\n");
fb_fail("Failed to clear boot args");
return;
}
bool is_trusted = false;
AvbAtxUnlockCredential *unlock_credential =
(AvbAtxUnlockCredential *)CONFIG_FASTBOOT_BUF_ADDR;
FB_DBG("download_bytes %u - sizeof(AvbAtxUnlockCredential) %lu\n",
download_bytes, sizeof(AvbAtxUnlockCredential));
if (download_bytes != sizeof(AvbAtxUnlockCredential)) {
fb_fail("invalid unlock credential");
return;
}
int ret = zircon_vboot_validate_unlock_credential(unlock_credential,
&is_trusted);
if (ret) {
fb_fail("invalid data");
return;
}
if (!is_trusted) {
fb_fail("wrong unlock credential");
return;
}
if (ta_vx_unlock()) {
FB_ERR("Failed to unlock\n");
fb_fail("Failed to unlock");
return;
}
FB_MSG("Unlocked\n");
fb_okay(NULL);
}
static void cb_vx_lock(struct usb_ep *ep, struct usb_request *req)
{
// ta_vx_lock() will clear any stored boot args.
if (ta_vx_lock()) {
FB_ERR("Failed to lock\n");
fb_fail("Failed to lock");
return;
}
FB_MSG("Locked\n");
fb_okay(NULL);
}
#ifdef CONFIG_TA_VX_TESTS
static void cb_vx_test(struct usb_ep *ep, struct usb_request *req)
{
char *test_name = req->buf;
// skip past "oem vx-test"
strsep(&test_name, " ");
strsep(&test_name, " ");
if (test_name == NULL)
test_name = "";
if (ta_vx_run_tests(test_name)) {
fb_fail("Testing failed. Check serial logs.");
} else {
fb_okay(NULL);
}
}
#endif /* CONFIG_TA_VX_TESTS */
static void cb_testflashread(struct usb_ep *ep, struct usb_request *req)
{
if (fb_require_unlocked_or_fail()) {
return;
}
const char *test_partition =
zircon_slot_idx_to_part_name(kAbrSlotIndexA);
static bool s_testflashread_done = false;
if (s_testflashread_done) {
s_testflashread_done = false;
fb_okay(NULL);
return;
}
char buf[FASTBOOT_RESPONSE_LEN];
zircon_partition *part = zircon_get_partition(test_partition);
if (!part) {
FB_ERR("partition not found\n");
fb_fail("partition not found");
return;
}
uint64_t start_us = timer_get_us();
upload_size = 0;
int ret = part->read(part, 0, (void *)CONFIG_FASTBOOT_BUF_ADDR,
part->size);
uint64_t end_us = timer_get_us();
if (ret < 0) {
fb_fail("nand_read failed");
zircon_free_partition(part);
return;
}
uint64_t diff_ms = (end_us - start_us) / 1000;
snprintf(buf, FASTBOOT_RESPONSE_LEN,
"%" PRIu64 " bytes, %" PRIu64 " ms", part->size, diff_ms);
s_testflashread_done = true;
fb_info(buf);
zircon_free_partition(part);
return;
}
#ifdef CONFIG_FACTORY_BOOT_KVS
#include <factory_boot_kvs.h>
static void cb_factory_boot_kvs_get(struct usb_ep *ep, struct usb_request *req)
{
char *key = req->buf;
char resp[FASTBOOT_RESPONSE_LEN -
4]; /* 4 is a size of fastboot responce status string ('OKAY' for example) */
FbKvsResult ret;
FbKvsValueType type;
size_t size;
if (fb_require_unlocked_or_fail()) {
return;
}
strsep(&key, ":");
if (!key) {
pr_err("missing a key\n");
fb_fail("missing a key; use 'oem factory-boot-kvs-get:<key>'");
return;
}
/* factory_boot kvs has to be already initialized */
ret = FbKvsGetValueSize(key, &size);
if (ret != kFbKvsResultOk) {
snprintf(resp, sizeof(resp),
"Failed to get the value size. ret code: %d", ret);
fb_fail(resp);
return;
}
ret = FbKvsGetValueType(key, &type);
if (ret != kFbKvsResultOk) {
snprintf(resp, sizeof(resp),
"Failed to determine the value type. ret code: %d",
ret);
fb_fail(resp);
return;
}
if (size > CONFIG_FASTBOOT_BUF_SIZE || size > U32_MAX) {
FB_ERR("Value too large\n");
fb_fail("The value is too large");
return;
}
switch (type) {
case kFbKvsTypeString:
ret = FbKvsGetString(key, (char *)CONFIG_FASTBOOT_BUF_ADDR,
&size);
break;
case kFbKvsTypeLong:
ret = FbKvsGetLong(key, (int64_t *)CONFIG_FASTBOOT_BUF_ADDR);
break;
case kFbKvsTypeULong:
ret = FbKvsGetULong(key, (uint64_t *)CONFIG_FASTBOOT_BUF_ADDR);
break;
case kFbKvsTypeData:
ret = FbKvsGetData(key, (uint8_t *)CONFIG_FASTBOOT_BUF_ADDR,
&size);
break;
default:
pr_err("Unsupported value type\n");
fb_fail("Wrong value type.");
return;
}
if (ret != kFbKvsResultOk) {
snprintf(resp, sizeof(resp), "factory_boot kvs ret code: %d",
ret);
fb_fail(resp);
return;
}
upload_size = size;
fb_okay(NULL);
}
#endif /* CONFIG_FACTORY_BOOT_KVS */
static void cb_vx_perm_attr_read_hash(struct usb_ep *ep,
struct usb_request *req)
{
uint8_t *hash = (uint8_t *)CONFIG_FASTBOOT_BUF_ADDR;
/* read hash from OTP */
int rc = avb_read_permanent_attributes_hash(NULL, hash);
if (rc != AVB_IO_RESULT_OK) {
fb_fail("failed to read perm attr hash");
return;
}
upload_size = AVB_SHA256_DIGEST_SIZE;
fb_okay(NULL);
}
static void cb_boot_args(struct usb_ep *ep, struct usb_request *req)
{
if (fb_require_unlocked_or_fail()) {
return;
}
char *args = req->buf;
//skip past oem boot-args
if (!strsep(&args, " ") || !strsep(&args, " ") || !args) {
fb_fail("No boot args given");
return;
}
if (zircon_store_cmdline(args)) {
fb_fail("Failed to add boot args");
return;
}
fb_okay(NULL);
}
#if defined(DEV_BUILD_CONFIG)
static void cb_optee_suppl_cmd_raw_io(struct usb_ep *ep,
struct usb_request *req)
{
// usage: oem optee-supl-cmd-raw-io <"read"|"write"> <off> <len>
const char usage[] = "Usage: optee-supl-cmd-raw-io <read|write> <off> <len>";
char *name = req->buf;
// skip past "oem optee-supl-cmd-raw-io"
if (!(strsep(&name, " ") && strsep(&name, " ") && name)) {
fb_fail(usage);
return;
}
enum optee_suppl_cmd_raw_io_op op = optee_suppl_cmd_raw_io_write;
if (strncmp(name, "read", strlen("read")) == 0) {
op = optee_suppl_cmd_raw_io_read;
} else if (strncmp(name, "write", strlen("write") - 1)) {
fb_fail(usage);
return;
}
// offset
if (!strsep(&name, " ")) {
fb_fail(usage);
return;
}
uint64_t offset = simple_strtoul(name, NULL, 16);
// length
if (!strsep(&name, " ")) {
fb_fail(usage);
return;
}
uint64_t length = simple_strtoul(name, NULL, 16);
int res = optee_suppl_cmd_raw_io_wrapper(
op, (void *)CONFIG_FASTBOOT_BUF_ADDR, offset, length);
if (res) {
fb_fail("IO failed");
return;
}
if (op == optee_suppl_cmd_raw_io_read)
upload_size = length;
fb_okay(NULL);
}
#endif
static void cb_staged_bootloader_file(struct usb_ep *ep,
struct usb_request *req)
{
char *name = req->buf;
// skip past "oem add-staged-bootloader-file"
if (!(strsep(&name, " ") && strsep(&name, " ") && name)) {
fb_fail("No file name given");
return;
}
if (download_bytes == 0) {
fb_fail("Nothing staged");
return;
}
if (zircon_stage_zbi_file(name,
(const uint8_t *)CONFIG_FASTBOOT_BUF_ADDR,
download_bytes)) {
fb_fail("Failed to add ZBI file item");
return;
}
fb_okay(NULL);
}
#ifdef CONFIG_FASTBOOT_FLASH
static void cb_flash(struct usb_ep *ep, struct usb_request *req)
{
char *cmd = req->buf;
strsep(&cmd, ":");
if (!cmd) {
pr_err("missing partition name");
fastboot_tx_write_str("FAILmissing partition name");
return;
}
fb_fail("no flash device defined");
#ifdef CONFIG_ZIRCON_PARTITIONS
fb_zircon_flash_write(cmd, (void *)CONFIG_FASTBOOT_BUF_ADDR,
download_bytes);
#elif CONFIG_FASTBOOT_FLASH_MMC_DEV
fb_mmc_flash_write(cmd, (void *)CONFIG_FASTBOOT_BUF_ADDR,
download_bytes);
#elif CONFIG_FASTBOOT_FLASH_NAND_DEV
fb_nand_flash_write(cmd, (void *)CONFIG_FASTBOOT_BUF_ADDR,
download_bytes);
#endif
}
#endif
#ifdef CONFIG_FASTBOOT_FLASH
static void cb_erase(struct usb_ep *ep, struct usb_request *req)
{
char *cmd = req->buf;
strsep(&cmd, ":");
if (!cmd) {
pr_err("missing partition name");
fb_fail("missing partition name");
return;
}
fb_fail("no flash device defined");
#ifdef CONFIG_ZIRCON_PARTITIONS
fb_zircon_erase(cmd);
#elif CONFIG_FASTBOOT_FLASH_MMC_DEV
fb_mmc_erase(cmd);
#elif CONFIG_FASTBOOT_FLASH_NAND_DEV
fb_nand_erase(cmd);
#endif
}
#endif
static void cb_set_active(struct usb_ep *ep, struct usb_request *req)
{
char *cmd = req->buf;
int i;
FB_DBG("cmd cb_set_active is %s\n", cmd);
strsep(&cmd, ":");
if (!cmd) {
FB_ERR("missing slot name\n");
fb_fail("missing slot name");
return;
}
i = 0;
while (s_slot_suffix_list[i]) {
if (!strcmp_l1(s_slot_suffix_list[i], cmd)) {
AbrResult ret = AbrMarkSlotActive(zircon_abr_ops(), i);
if (ret != kAbrResultOk) {
fb_fail("Failed to set slot");
return;
}
fb_okay(NULL);
return;
}
i++;
}
fb_fail("slot name is invalid");
}
extern void disable_watchdog_petting(void);
static void cb_disable_watchdog_petting(struct usb_ep *ep,
struct usb_request *req)
{
if (fb_require_unlocked_or_fail()) {
return;
}
disable_watchdog_petting();
fb_okay(NULL);
}
#ifdef CONFIG_CLI_ENABLED
// Check for serial confirmation every 100ms for 5 seconds.
#define CLI_CONFIRM_CHECK_PERIOD_USEC (100 * 1000)
#define CLI_CONFIRM_CHECK_ATTEMPTS 50
static void cb_shell(struct usb_ep *ep, struct usb_request *req)
{
if (fb_require_unlocked_or_fail()) {
return;
}
// Send out a few info messages first.
const char *info_messages[] = {
"Press Enter within 5s on the console to enter u-boot shell",
"Once started, fastboot will block until the devices resets"
};
static int info_index = 0;
if (info_index < ARRAY_SIZE(info_messages)) {
fb_info(info_messages[info_index++]);
return;
}
info_index = 0;
// Require confirmation that the user does have serial available, or else
// jumping to the commandline on a remote device would basically brick it.
printf("Entering u-boot commandline shell\n");
printf("Press Enter in the next 5 seconds to confirm ... ");
for (int i = 0; i < CLI_CONFIRM_CHECK_ATTEMPTS; ++i) {
udelay(CLI_CONFIRM_CHECK_PERIOD_USEC);
while (tstc()) {
int c = getc();
if (c == '\r' || c == '\n') {
printf("confirmed\n");
// This never returns, and the host fastboot hangs. We could try
// to get more clever here, but since this is just a dev tool
// it's likely not worth the time.
printf("Use `reboot bootloader` to get back to fastboot\n");
cli_loop();
fb_okay(NULL);
return;
}
}
}
printf("canceled\n");
fb_fail("no serial confirmation given");
}
#endif /* CONFIG_CLI_ENABLED */
struct cmd_dispatch_info {
char *cmd;
void (*cb)(struct usb_ep *ep, struct usb_request *req);
};
static const struct cmd_dispatch_info cmd_dispatch_info[] = {
{
.cmd = "reboot",
.cb = cb_reboot,
},
{
.cmd = "getvar:",
.cb = cb_getvar,
},
{
.cmd = "download:",
.cb = cb_download,
},
{
.cmd = "upload",
.cb = cb_upload,
},
{
.cmd = "boot",
.cb = cb_boot,
},
{
.cmd = "continue",
.cb = cb_continue,
},
{
.cmd = "set_active",
.cb = cb_set_active,
},
#ifdef CONFIG_FASTBOOT_FLASH
{
.cmd = "flash:",
.cb = cb_flash,
},
{
.cmd = "erase:",
.cb = cb_erase,
},
#endif
#if defined(DEV_BUILD_CONFIG)
{
.cmd = "oem kill-rpmb-till-reboot",
.cb = cb_kill_rpmb_till_reboot,
},
{
.cmd = "oem kill-rpmb",
.cb = cb_kill_rpmb,
},
{
.cmd = "oem unkill-rpmb",
.cb = cb_unkill_rpmb,
},
#endif
{
.cmd = "oem stage-partition",
.cb = cb_stage_partition,
},
{
.cmd = "oem provision-rpmb",
.cb = cb_provision_rpmb,
},
{
.cmd = "oem add-staged-bootloader-file",
.cb = cb_staged_bootloader_file,
},
{
.cmd = "oem vx-get-unlock-challenge",
.cb = cb_vx_get_unlock_challenge,
},
{
.cmd = "oem vx-unlock",
.cb = cb_vx_unlock,
},
{
.cmd = "oem vx-lock",
.cb = cb_vx_lock,
},
#ifdef CONFIG_TA_VX_TESTS
{
.cmd = "oem vx-test",
.cb = cb_vx_test,
},
#endif
{
.cmd = "oem test-flash-read",
.cb = cb_testflashread,
},
{
.cmd = "oem boot-args",
.cb = cb_boot_args,
},
{
.cmd = "oem disable-watchdog-petting",
.cb = cb_disable_watchdog_petting,
},
#if defined(DEV_BUILD_CONFIG)
{
.cmd = "oem optee-supl-cmd-raw-io",
.cb = cb_optee_suppl_cmd_raw_io,
},
#endif
#ifdef CONFIG_FACTORY_BOOT_KVS
{
.cmd = "oem factory-boot-kvs-get",
.cb = cb_factory_boot_kvs_get,
},
#endif /* CONFIG_FACTORY_BOOT */
{
.cmd = "oem vx-perm-attr-read-hash",
.cb = cb_vx_perm_attr_read_hash,
},
#ifdef CONFIG_CLI_ENABLED
{
.cmd = "oem shell",
.cb = cb_shell,
},
#endif /* CONFIG_CLI_ENABLED */
};
static void rx_handler_command(struct usb_ep *ep, struct usb_request *req)
{
char *cmdbuf = req->buf;
void (*func_cb)(struct usb_ep * ep, struct usb_request * req) = NULL;
int i;
if (req->status != 0 || req->length == 0)
return;
for (i = 0; i < ARRAY_SIZE(cmd_dispatch_info); i++) {
if (!strcmp_l1(cmd_dispatch_info[i].cmd, cmdbuf)) {
func_cb = cmd_dispatch_info[i].cb;
break;
}
}
if (!func_cb) {
pr_err("unknown command: %.*s", req->actual, cmdbuf);
fastboot_tx_write_str("FAILunknown command");
} else {
if (req->actual < req->length) {
u8 *buf = (u8 *)req->buf;
buf[req->actual] = 0;
func_cb(ep, req);
} else {
pr_err("buffer overflow");
fastboot_tx_write_str("FAILbuffer overflow");
}
}
if ((req->status == 0) && !fastboot_is_busy()) {
*cmdbuf = '\0';
req->actual = 0;
usb_ep_queue(ep, req, 0);
}
}