|  | /* | 
|  | * (C) Copyright 2003 | 
|  | * Gerry Hamel, geh@ti.com, Texas Instruments | 
|  | * | 
|  | * Based on | 
|  | * linux/drivers/usb/device/bi/omap.c | 
|  | * TI OMAP1510 USB bus interface driver | 
|  | * | 
|  | * Author: MontaVista Software, Inc. | 
|  | *	   source@mvista.com | 
|  | *	   (C) Copyright 2002 | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License as published by | 
|  | * the Free Software Foundation; either version 2 of the License, or | 
|  | * (at your option) any later version. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the | 
|  | * GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write to the Free Software | 
|  | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307	 USA | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include <common.h> | 
|  | #include <asm/io.h> | 
|  | #ifdef CONFIG_OMAP_SX1 | 
|  | #include <i2c.h> | 
|  | #endif | 
|  | #include <usbdevice.h> | 
|  | #include <usb/omap1510_udc.h> | 
|  |  | 
|  | #include "ep0.h" | 
|  |  | 
|  |  | 
|  | #define UDC_INIT_MDELAY		     80 /* Device settle delay */ | 
|  | #define UDC_MAX_ENDPOINTS	     31 /* Number of endpoints on this UDC */ | 
|  |  | 
|  | /* Some kind of debugging output... */ | 
|  | #if 1 | 
|  | #define UDCDBG(str) | 
|  | #define UDCDBGA(fmt,args...) | 
|  | #else  /* The bugs still exists... */ | 
|  | #define UDCDBG(str) serial_printf("[%s] %s:%d: " str "\n", __FILE__,__FUNCTION__,__LINE__) | 
|  | #define UDCDBGA(fmt,args...) serial_printf("[%s] %s:%d: " fmt "\n", __FILE__,__FUNCTION__,__LINE__, ##args) | 
|  | #endif | 
|  |  | 
|  | #if 1 | 
|  | #define UDCREG(name) | 
|  | #define UDCREGL(name) | 
|  | #else  /* The bugs still exists... */ | 
|  | #define UDCREG(name)	 serial_printf("%s():%d: %s[%08x]=%.4x\n",__FUNCTION__,__LINE__, (#name), name, inw(name))	/* For 16-bit regs */ | 
|  | #define UDCREGL(name)	 serial_printf("%s():%d: %s[%08x]=%.8x\n",__FUNCTION__,__LINE__, (#name), name, inl(name))	/* For 32-bit regs */ | 
|  | #endif | 
|  |  | 
|  |  | 
|  | static struct urb *ep0_urb = NULL; | 
|  |  | 
|  | static struct usb_device_instance *udc_device;	/* Used in interrupt handler */ | 
|  | static u16 udc_devstat = 0;	/* UDC status (DEVSTAT) */ | 
|  | static u32 udc_interrupts = 0; | 
|  |  | 
|  | static void udc_stall_ep (unsigned int ep_addr); | 
|  |  | 
|  |  | 
|  | static struct usb_endpoint_instance *omap1510_find_ep (int ep) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < udc_device->bus->max_endpoints; i++) { | 
|  | if (udc_device->bus->endpoint_array[i].endpoint_address == ep) | 
|  | return &udc_device->bus->endpoint_array[i]; | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* ************************************************************************** */ | 
|  | /* IO | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * omap1510_prepare_endpoint_for_rx | 
|  | * | 
|  | * This function implements TRM Figure 14-11. | 
|  | * | 
|  | * The endpoint to prepare for transfer is specified as a physical endpoint | 
|  | * number.  For OUT (rx) endpoints 1 through 15, the corresponding endpoint | 
|  | * configuration register is checked to see if the endpoint is ISO or not. | 
|  | * If the OUT endpoint is valid and is non-ISO then its FIFO is enabled. | 
|  | * No action is taken for endpoint 0 or for IN (tx) endpoints 16 through 30. | 
|  | */ | 
|  | static void omap1510_prepare_endpoint_for_rx (int ep_addr) | 
|  | { | 
|  | int ep_num = ep_addr & USB_ENDPOINT_NUMBER_MASK; | 
|  |  | 
|  | UDCDBGA ("omap1510_prepare_endpoint %x", ep_addr); | 
|  | if (((ep_addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT)) { | 
|  | if ((inw (UDC_EP_RX (ep_num)) & | 
|  | (UDC_EPn_RX_Valid | UDC_EPn_RX_Iso)) == | 
|  | UDC_EPn_RX_Valid) { | 
|  | /* rx endpoint is valid, non-ISO, so enable its FIFO */ | 
|  | outw (UDC_EP_Sel | ep_num, UDC_EP_NUM); | 
|  | outw (UDC_Set_FIFO_En, UDC_CTRL); | 
|  | outw (0, UDC_EP_NUM); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* omap1510_configure_endpoints | 
|  | * | 
|  | * This function implements TRM Figure 14-10. | 
|  | */ | 
|  | static void omap1510_configure_endpoints (struct usb_device_instance *device) | 
|  | { | 
|  | int ep; | 
|  | struct usb_bus_instance *bus; | 
|  | struct usb_endpoint_instance *endpoint; | 
|  | unsigned short ep_ptr; | 
|  | unsigned short ep_size; | 
|  | unsigned short ep_isoc; | 
|  | unsigned short ep_doublebuffer; | 
|  | int ep_addr; | 
|  | int packet_size; | 
|  | int buffer_size; | 
|  | int attributes; | 
|  |  | 
|  | bus = device->bus; | 
|  |  | 
|  | /* There is a dedicated 2048 byte buffer for USB packets that may be | 
|  | * arbitrarily partitioned among the endpoints on 8-byte boundaries. | 
|  | * The first 8 bytes are reserved for receiving setup packets on | 
|  | * endpoint 0. | 
|  | */ | 
|  | ep_ptr = 8;		/* reserve the first 8 bytes for the setup fifo */ | 
|  |  | 
|  | for (ep = 0; ep < bus->max_endpoints; ep++) { | 
|  | endpoint = bus->endpoint_array + ep; | 
|  | ep_addr = endpoint->endpoint_address; | 
|  | if ((ep_addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN) { | 
|  | /* IN endpoint */ | 
|  | packet_size = endpoint->tx_packetSize; | 
|  | attributes = endpoint->tx_attributes; | 
|  | } else { | 
|  | /* OUT endpoint */ | 
|  | packet_size = endpoint->rcv_packetSize; | 
|  | attributes = endpoint->rcv_attributes; | 
|  | } | 
|  |  | 
|  | switch (packet_size) { | 
|  | case 0: | 
|  | ep_size = 0; | 
|  | break; | 
|  | case 8: | 
|  | ep_size = 0; | 
|  | break; | 
|  | case 16: | 
|  | ep_size = 1; | 
|  | break; | 
|  | case 32: | 
|  | ep_size = 2; | 
|  | break; | 
|  | case 64: | 
|  | ep_size = 3; | 
|  | break; | 
|  | case 128: | 
|  | ep_size = 4; | 
|  | break; | 
|  | case 256: | 
|  | ep_size = 5; | 
|  | break; | 
|  | case 512: | 
|  | ep_size = 6; | 
|  | break; | 
|  | default: | 
|  | UDCDBGA ("ep 0x%02x has bad packet size %d", | 
|  | ep_addr, packet_size); | 
|  | packet_size = 0; | 
|  | ep_size = 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | switch (attributes & USB_ENDPOINT_XFERTYPE_MASK) { | 
|  | case USB_ENDPOINT_XFER_CONTROL: | 
|  | case USB_ENDPOINT_XFER_BULK: | 
|  | case USB_ENDPOINT_XFER_INT: | 
|  | default: | 
|  | /* A non-isochronous endpoint may optionally be | 
|  | * double-buffered. For now we disable | 
|  | * double-buffering. | 
|  | */ | 
|  | ep_doublebuffer = 0; | 
|  | ep_isoc = 0; | 
|  | if (packet_size > 64) | 
|  | packet_size = 0; | 
|  | if (!ep || !ep_doublebuffer) | 
|  | buffer_size = packet_size; | 
|  | else | 
|  | buffer_size = packet_size * 2; | 
|  | break; | 
|  | case USB_ENDPOINT_XFER_ISOC: | 
|  | /* Isochronous endpoints are always double- | 
|  | * buffered, but the double-buffering bit | 
|  | * in the endpoint configuration register | 
|  | * becomes the msb of the endpoint size so we | 
|  | * set the double-buffering flag to zero. | 
|  | */ | 
|  | ep_doublebuffer = 0; | 
|  | ep_isoc = 1; | 
|  | buffer_size = packet_size * 2; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* check to see if our packet buffer RAM is exhausted */ | 
|  | if ((ep_ptr + buffer_size) > 2048) { | 
|  | UDCDBGA ("out of packet RAM for ep 0x%02x buf size %d", ep_addr, buffer_size); | 
|  | buffer_size = packet_size = 0; | 
|  | } | 
|  |  | 
|  | /* force a default configuration for endpoint 0 since it is | 
|  | * always enabled | 
|  | */ | 
|  | if (!ep && ((packet_size < 8) || (packet_size > 64))) { | 
|  | buffer_size = packet_size = 64; | 
|  | ep_size = 3; | 
|  | } | 
|  |  | 
|  | if (!ep) { | 
|  | /* configure endpoint 0 */ | 
|  | outw ((ep_size << 12) | (ep_ptr >> 3), UDC_EP0); | 
|  | /*UDCDBGA("ep 0 buffer offset 0x%03x packet size 0x%03x", */ | 
|  | /*	ep_ptr, packet_size); */ | 
|  | } else if ((ep_addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN) { | 
|  | /* IN endpoint */ | 
|  | if (packet_size) { | 
|  | outw ((1 << 15) | (ep_doublebuffer << 14) | | 
|  | (ep_size << 12) | (ep_isoc << 11) | | 
|  | (ep_ptr >> 3), | 
|  | UDC_EP_TX (ep_addr & | 
|  | USB_ENDPOINT_NUMBER_MASK)); | 
|  | UDCDBGA ("IN ep %d buffer offset 0x%03x" | 
|  | " packet size 0x%03x", | 
|  | ep_addr & USB_ENDPOINT_NUMBER_MASK, | 
|  | ep_ptr, packet_size); | 
|  | } else { | 
|  | outw (0, | 
|  | UDC_EP_TX (ep_addr & | 
|  | USB_ENDPOINT_NUMBER_MASK)); | 
|  | } | 
|  | } else { | 
|  | /* OUT endpoint */ | 
|  | if (packet_size) { | 
|  | outw ((1 << 15) | (ep_doublebuffer << 14) | | 
|  | (ep_size << 12) | (ep_isoc << 11) | | 
|  | (ep_ptr >> 3), | 
|  | UDC_EP_RX (ep_addr & | 
|  | USB_ENDPOINT_NUMBER_MASK)); | 
|  | UDCDBGA ("OUT ep %d buffer offset 0x%03x" | 
|  | " packet size 0x%03x", | 
|  | ep_addr & USB_ENDPOINT_NUMBER_MASK, | 
|  | ep_ptr, packet_size); | 
|  | } else { | 
|  | outw (0, | 
|  | UDC_EP_RX (ep_addr & | 
|  | USB_ENDPOINT_NUMBER_MASK)); | 
|  | } | 
|  | } | 
|  | ep_ptr += buffer_size; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* omap1510_deconfigure_device | 
|  | * | 
|  | * This function balances omap1510_configure_device. | 
|  | */ | 
|  | static void omap1510_deconfigure_device (void) | 
|  | { | 
|  | int epnum; | 
|  |  | 
|  | UDCDBG ("clear Cfg_Lock"); | 
|  | outw (inw (UDC_SYSCON1) & ~UDC_Cfg_Lock, UDC_SYSCON1); | 
|  | UDCREG (UDC_SYSCON1); | 
|  |  | 
|  | /* deconfigure all endpoints */ | 
|  | for (epnum = 1; epnum <= 15; epnum++) { | 
|  | outw (0, UDC_EP_RX (epnum)); | 
|  | outw (0, UDC_EP_TX (epnum)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* omap1510_configure_device | 
|  | * | 
|  | * This function implements TRM Figure 14-9. | 
|  | */ | 
|  | static void omap1510_configure_device (struct usb_device_instance *device) | 
|  | { | 
|  | omap1510_configure_endpoints (device); | 
|  |  | 
|  |  | 
|  | /* Figure 14-9 indicates we should enable interrupts here, but we have | 
|  | * other routines (udc_all_interrupts, udc_suspended_interrupts) to | 
|  | * do that. | 
|  | */ | 
|  |  | 
|  | UDCDBG ("set Cfg_Lock"); | 
|  | outw (inw (UDC_SYSCON1) | UDC_Cfg_Lock, UDC_SYSCON1); | 
|  | UDCREG (UDC_SYSCON1); | 
|  | } | 
|  |  | 
|  | /* omap1510_write_noniso_tx_fifo | 
|  | * | 
|  | * This function implements TRM Figure 14-30. | 
|  | * | 
|  | * If the endpoint has an active tx_urb, then the next packet of data from the | 
|  | * URB is written to the tx FIFO.  The total amount of data in the urb is given | 
|  | * by urb->actual_length.  The maximum amount of data that can be sent in any | 
|  | * one packet is given by endpoint->tx_packetSize.  The number of data bytes | 
|  | * from this URB that have already been transmitted is given by endpoint->sent. | 
|  | * endpoint->last is updated by this routine with the number of data bytes | 
|  | * transmitted in this packet. | 
|  | * | 
|  | * In accordance with Figure 14-30, the EP_NUM register must already have been | 
|  | * written with the value to select the appropriate tx FIFO before this routine | 
|  | * is called. | 
|  | */ | 
|  | static void omap1510_write_noniso_tx_fifo (struct usb_endpoint_instance | 
|  | *endpoint) | 
|  | { | 
|  | struct urb *urb = endpoint->tx_urb; | 
|  |  | 
|  | if (urb) { | 
|  | unsigned int last, i; | 
|  |  | 
|  | UDCDBGA ("urb->buffer %p, buffer_length %d, actual_length %d", | 
|  | urb->buffer, urb->buffer_length, urb->actual_length); | 
|  | if ((last = | 
|  | MIN (urb->actual_length - endpoint->sent, | 
|  | endpoint->tx_packetSize))) { | 
|  | u8 *cp = urb->buffer + endpoint->sent; | 
|  |  | 
|  | UDCDBGA ("endpoint->sent %d, tx_packetSize %d, last %d", endpoint->sent, endpoint->tx_packetSize, last); | 
|  |  | 
|  | if (((u32) cp & 1) == 0) {	/* word aligned? */ | 
|  | outsw (UDC_DATA, cp, last >> 1); | 
|  | } else {	/* byte aligned. */ | 
|  | for (i = 0; i < (last >> 1); i++) { | 
|  | u16 w = ((u16) cp[2 * i + 1] << 8) | | 
|  | (u16) cp[2 * i]; | 
|  | outw (w, UDC_DATA); | 
|  | } | 
|  | } | 
|  | if (last & 1) { | 
|  | outb (*(cp + last - 1), UDC_DATA); | 
|  | } | 
|  | } | 
|  | endpoint->last = last; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* omap1510_read_noniso_rx_fifo | 
|  | * | 
|  | * This function implements TRM Figure 14-28. | 
|  | * | 
|  | * If the endpoint has an active rcv_urb, then the next packet of data is read | 
|  | * from the rcv FIFO and written to rcv_urb->buffer at offset | 
|  | * rcv_urb->actual_length to append the packet data to the data from any | 
|  | * previous packets for this transfer.	We assume that there is sufficient room | 
|  | * left in the buffer to hold an entire packet of data. | 
|  | * | 
|  | * The return value is the number of bytes read from the FIFO for this packet. | 
|  | * | 
|  | * In accordance with Figure 14-28, the EP_NUM register must already have been | 
|  | * written with the value to select the appropriate rcv FIFO before this routine | 
|  | * is called. | 
|  | */ | 
|  | static int omap1510_read_noniso_rx_fifo (struct usb_endpoint_instance | 
|  | *endpoint) | 
|  | { | 
|  | struct urb *urb = endpoint->rcv_urb; | 
|  | int len = 0; | 
|  |  | 
|  | if (urb) { | 
|  | len = inw (UDC_RXFSTAT); | 
|  |  | 
|  | if (len) { | 
|  | unsigned char *cp = urb->buffer + urb->actual_length; | 
|  |  | 
|  | insw (UDC_DATA, cp, len >> 1); | 
|  | if (len & 1) | 
|  | *(cp + len - 1) = inb (UDC_DATA); | 
|  | } | 
|  | } | 
|  | return len; | 
|  | } | 
|  |  | 
|  | /* omap1510_prepare_for_control_write_status | 
|  | * | 
|  | * This function implements TRM Figure 14-17. | 
|  | * | 
|  | * We have to deal here with non-autodecoded control writes that haven't already | 
|  | * been dealt with by ep0_recv_setup.  The non-autodecoded standard control | 
|  | * write requests are:	set/clear endpoint feature, set configuration, set | 
|  | * interface, and set descriptor.  ep0_recv_setup handles set/clear requests for | 
|  | * ENDPOINT_HALT by halting the endpoint for a set request and resetting the | 
|  | * endpoint for a clear request.  ep0_recv_setup returns an error for | 
|  | * SET_DESCRIPTOR requests which causes them to be terminated with a stall by | 
|  | * the setup handler.  A SET_INTERFACE request is handled by ep0_recv_setup by | 
|  | * generating a DEVICE_SET_INTERFACE event.  This leaves only the | 
|  | * SET_CONFIGURATION event for us to deal with here. | 
|  | * | 
|  | */ | 
|  | static void omap1510_prepare_for_control_write_status (struct urb *urb) | 
|  | { | 
|  | struct usb_device_request *request = &urb->device_request;; | 
|  |  | 
|  | /* check for a SET_CONFIGURATION request */ | 
|  | if (request->bRequest == USB_REQ_SET_CONFIGURATION) { | 
|  | int configuration = le16_to_cpu (request->wValue) & 0xff; | 
|  | unsigned short devstat = inw (UDC_DEVSTAT); | 
|  |  | 
|  | if ((devstat & (UDC_ADD | UDC_CFG)) == UDC_ADD) { | 
|  | /* device is currently in ADDRESSED state */ | 
|  | if (configuration) { | 
|  | /* Assume the specified non-zero configuration | 
|  | * value is valid and switch to the CONFIGURED | 
|  | * state. | 
|  | */ | 
|  | outw (UDC_Dev_Cfg, UDC_SYSCON2); | 
|  | } | 
|  | } else if ((devstat & UDC_CFG) == UDC_CFG) { | 
|  | /* device is currently in CONFIGURED state */ | 
|  | if (!configuration) { | 
|  | /* Switch to ADDRESSED state. */ | 
|  | outw (UDC_Clr_Cfg, UDC_SYSCON2); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* select EP0 tx FIFO */ | 
|  | outw (UDC_EP_Dir | UDC_EP_Sel, UDC_EP_NUM); | 
|  | /* clear endpoint (no data bytes in status stage) */ | 
|  | outw (UDC_Clr_EP, UDC_CTRL); | 
|  | /* enable the EP0 tx FIFO */ | 
|  | outw (UDC_Set_FIFO_En, UDC_CTRL); | 
|  | /* deselect the endpoint */ | 
|  | outw (UDC_EP_Dir, UDC_EP_NUM); | 
|  | } | 
|  |  | 
|  | /* udc_state_transition_up | 
|  | * udc_state_transition_down | 
|  | * | 
|  | * Helper functions to implement device state changes.	The device states and | 
|  | * the events that transition between them are: | 
|  | * | 
|  | *				STATE_ATTACHED | 
|  | *				||	/\ | 
|  | *				\/	|| | 
|  | *	DEVICE_HUB_CONFIGURED			DEVICE_HUB_RESET | 
|  | *				||	/\ | 
|  | *				\/	|| | 
|  | *				STATE_POWERED | 
|  | *				||	/\ | 
|  | *				\/	|| | 
|  | *	DEVICE_RESET				DEVICE_POWER_INTERRUPTION | 
|  | *				||	/\ | 
|  | *				\/	|| | 
|  | *				STATE_DEFAULT | 
|  | *				||	/\ | 
|  | *				\/	|| | 
|  | *	DEVICE_ADDRESS_ASSIGNED			DEVICE_RESET | 
|  | *				||	/\ | 
|  | *				\/	|| | 
|  | *				STATE_ADDRESSED | 
|  | *				||	/\ | 
|  | *				\/	|| | 
|  | *	DEVICE_CONFIGURED			DEVICE_DE_CONFIGURED | 
|  | *				||	/\ | 
|  | *				\/	|| | 
|  | *				STATE_CONFIGURED | 
|  | * | 
|  | * udc_state_transition_up transitions up (in the direction from STATE_ATTACHED | 
|  | * to STATE_CONFIGURED) from the specified initial state to the specified final | 
|  | * state, passing through each intermediate state on the way.  If the initial | 
|  | * state is at or above (i.e. nearer to STATE_CONFIGURED) the final state, then | 
|  | * no state transitions will take place. | 
|  | * | 
|  | * udc_state_transition_down transitions down (in the direction from | 
|  | * STATE_CONFIGURED to STATE_ATTACHED) from the specified initial state to the | 
|  | * specified final state, passing through each intermediate state on the way. | 
|  | * If the initial state is at or below (i.e. nearer to STATE_ATTACHED) the final | 
|  | * state, then no state transitions will take place. | 
|  | * | 
|  | * These functions must only be called with interrupts disabled. | 
|  | */ | 
|  | static void udc_state_transition_up (usb_device_state_t initial, | 
|  | usb_device_state_t final) | 
|  | { | 
|  | if (initial < final) { | 
|  | switch (initial) { | 
|  | case STATE_ATTACHED: | 
|  | usbd_device_event_irq (udc_device, | 
|  | DEVICE_HUB_CONFIGURED, 0); | 
|  | if (final == STATE_POWERED) | 
|  | break; | 
|  | case STATE_POWERED: | 
|  | usbd_device_event_irq (udc_device, DEVICE_RESET, 0); | 
|  | if (final == STATE_DEFAULT) | 
|  | break; | 
|  | case STATE_DEFAULT: | 
|  | usbd_device_event_irq (udc_device, | 
|  | DEVICE_ADDRESS_ASSIGNED, 0); | 
|  | if (final == STATE_ADDRESSED) | 
|  | break; | 
|  | case STATE_ADDRESSED: | 
|  | usbd_device_event_irq (udc_device, DEVICE_CONFIGURED, | 
|  | 0); | 
|  | case STATE_CONFIGURED: | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void udc_state_transition_down (usb_device_state_t initial, | 
|  | usb_device_state_t final) | 
|  | { | 
|  | if (initial > final) { | 
|  | switch (initial) { | 
|  | case STATE_CONFIGURED: | 
|  | usbd_device_event_irq (udc_device, DEVICE_DE_CONFIGURED, 0); | 
|  | if (final == STATE_ADDRESSED) | 
|  | break; | 
|  | case STATE_ADDRESSED: | 
|  | usbd_device_event_irq (udc_device, DEVICE_RESET, 0); | 
|  | if (final == STATE_DEFAULT) | 
|  | break; | 
|  | case STATE_DEFAULT: | 
|  | usbd_device_event_irq (udc_device, DEVICE_POWER_INTERRUPTION, 0); | 
|  | if (final == STATE_POWERED) | 
|  | break; | 
|  | case STATE_POWERED: | 
|  | usbd_device_event_irq (udc_device, DEVICE_HUB_RESET, 0); | 
|  | case STATE_ATTACHED: | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Handle all device state changes. | 
|  | * This function implements TRM Figure 14-21. | 
|  | */ | 
|  | static void omap1510_udc_state_changed (void) | 
|  | { | 
|  | u16 bits; | 
|  | u16 devstat = inw (UDC_DEVSTAT); | 
|  |  | 
|  | UDCDBGA ("state changed, devstat %x, old %x", devstat, udc_devstat); | 
|  |  | 
|  | bits = devstat ^ udc_devstat; | 
|  | if (bits) { | 
|  | if (bits & UDC_ATT) { | 
|  | if (devstat & UDC_ATT) { | 
|  | UDCDBG ("device attached and powered"); | 
|  | udc_state_transition_up (udc_device->device_state, STATE_POWERED); | 
|  | } else { | 
|  | UDCDBG ("device detached or unpowered"); | 
|  | udc_state_transition_down (udc_device->device_state, STATE_ATTACHED); | 
|  | } | 
|  | } | 
|  | if (bits & UDC_USB_Reset) { | 
|  | if (devstat & UDC_USB_Reset) { | 
|  | UDCDBG ("device reset in progess"); | 
|  | udc_state_transition_down (udc_device->device_state, STATE_POWERED); | 
|  | } else { | 
|  | UDCDBG ("device reset completed"); | 
|  | } | 
|  | } | 
|  | if (bits & UDC_DEF) { | 
|  | if (devstat & UDC_DEF) { | 
|  | UDCDBG ("device entering default state"); | 
|  | udc_state_transition_up (udc_device->device_state, STATE_DEFAULT); | 
|  | } else { | 
|  | UDCDBG ("device leaving default state"); | 
|  | udc_state_transition_down (udc_device->device_state, STATE_POWERED); | 
|  | } | 
|  | } | 
|  | if (bits & UDC_SUS) { | 
|  | if (devstat & UDC_SUS) { | 
|  | UDCDBG ("entering suspended state"); | 
|  | usbd_device_event_irq (udc_device, DEVICE_BUS_INACTIVE, 0); | 
|  | } else { | 
|  | UDCDBG ("leaving suspended state"); | 
|  | usbd_device_event_irq (udc_device, DEVICE_BUS_ACTIVITY, 0); | 
|  | } | 
|  | } | 
|  | if (bits & UDC_R_WK_OK) { | 
|  | UDCDBGA ("remote wakeup %s", (devstat & UDC_R_WK_OK) | 
|  | ? "enabled" : "disabled"); | 
|  | } | 
|  | if (bits & UDC_ADD) { | 
|  | if (devstat & UDC_ADD) { | 
|  | UDCDBG ("default -> addressed"); | 
|  | udc_state_transition_up (udc_device->device_state, STATE_ADDRESSED); | 
|  | } else { | 
|  | UDCDBG ("addressed -> default"); | 
|  | udc_state_transition_down (udc_device->device_state, STATE_DEFAULT); | 
|  | } | 
|  | } | 
|  | if (bits & UDC_CFG) { | 
|  | if (devstat & UDC_CFG) { | 
|  | UDCDBG ("device configured"); | 
|  | /* The ep0_recv_setup function generates the | 
|  | * DEVICE_CONFIGURED event when a | 
|  | * USB_REQ_SET_CONFIGURATION setup packet is | 
|  | * received, so we should already be in the | 
|  | * state STATE_CONFIGURED. | 
|  | */ | 
|  | udc_state_transition_up (udc_device->device_state, STATE_CONFIGURED); | 
|  | } else { | 
|  | UDCDBG ("device deconfigured"); | 
|  | udc_state_transition_down (udc_device->device_state, STATE_ADDRESSED); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Clear interrupt source */ | 
|  | outw (UDC_DS_Chg, UDC_IRQ_SRC); | 
|  |  | 
|  | /* Save current DEVSTAT */ | 
|  | udc_devstat = devstat; | 
|  | } | 
|  |  | 
|  | /* Handle SETUP USB interrupt. | 
|  | * This function implements TRM Figure 14-14. | 
|  | */ | 
|  | static void omap1510_udc_setup (struct usb_endpoint_instance *endpoint) | 
|  | { | 
|  | UDCDBG ("-> Entering device setup"); | 
|  |  | 
|  | do { | 
|  | const int setup_pktsize = 8; | 
|  | unsigned char *datap = | 
|  | (unsigned char *) &ep0_urb->device_request; | 
|  |  | 
|  | /* Gain access to EP 0 setup FIFO */ | 
|  | outw (UDC_Setup_Sel, UDC_EP_NUM); | 
|  |  | 
|  | /* Read control request data */ | 
|  | insb (UDC_DATA, datap, setup_pktsize); | 
|  |  | 
|  | UDCDBGA ("EP0 setup read [%x %x %x %x %x %x %x %x]", | 
|  | *(datap + 0), *(datap + 1), *(datap + 2), | 
|  | *(datap + 3), *(datap + 4), *(datap + 5), | 
|  | *(datap + 6), *(datap + 7)); | 
|  |  | 
|  | /* Reset EP0 setup FIFO */ | 
|  | outw (0, UDC_EP_NUM); | 
|  | } while (inw (UDC_IRQ_SRC) & UDC_Setup); | 
|  |  | 
|  | /* Try to process setup packet */ | 
|  | if (ep0_recv_setup (ep0_urb)) { | 
|  | /* Not a setup packet, stall next EP0 transaction */ | 
|  | udc_stall_ep (0); | 
|  | UDCDBG ("can't parse setup packet, still waiting for setup"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Check direction */ | 
|  | if ((ep0_urb->device_request.bmRequestType & USB_REQ_DIRECTION_MASK) | 
|  | == USB_REQ_HOST2DEVICE) { | 
|  | UDCDBG ("control write on EP0"); | 
|  | if (le16_to_cpu (ep0_urb->device_request.wLength)) { | 
|  | /* We don't support control write data stages. | 
|  | * The only standard control write request with a data | 
|  | * stage is SET_DESCRIPTOR, and ep0_recv_setup doesn't | 
|  | * support that so we just stall those requests.  A | 
|  | * function driver might support a non-standard | 
|  | * write request with a data stage, but it isn't | 
|  | * obvious what we would do with the data if we read it | 
|  | * so we'll just stall it.  It seems like the API isn't | 
|  | * quite right here. | 
|  | */ | 
|  | #if 0 | 
|  | /* Here is what we would do if we did support control | 
|  | * write data stages. | 
|  | */ | 
|  | ep0_urb->actual_length = 0; | 
|  | outw (0, UDC_EP_NUM); | 
|  | /* enable the EP0 rx FIFO */ | 
|  | outw (UDC_Set_FIFO_En, UDC_CTRL); | 
|  | #else | 
|  | /* Stall this request */ | 
|  | UDCDBG ("Stalling unsupported EP0 control write data " | 
|  | "stage."); | 
|  | udc_stall_ep (0); | 
|  | #endif | 
|  | } else { | 
|  | omap1510_prepare_for_control_write_status (ep0_urb); | 
|  | } | 
|  | } else { | 
|  | UDCDBG ("control read on EP0"); | 
|  | /* The ep0_recv_setup function has already placed our response | 
|  | * packet data in ep0_urb->buffer and the packet length in | 
|  | * ep0_urb->actual_length. | 
|  | */ | 
|  | endpoint->tx_urb = ep0_urb; | 
|  | endpoint->sent = 0; | 
|  | /* select the EP0 tx FIFO */ | 
|  | outw (UDC_EP_Dir | UDC_EP_Sel, UDC_EP_NUM); | 
|  | /* Write packet data to the FIFO.  omap1510_write_noniso_tx_fifo | 
|  | * will update endpoint->last with the number of bytes written | 
|  | * to the FIFO. | 
|  | */ | 
|  | omap1510_write_noniso_tx_fifo (endpoint); | 
|  | /* enable the FIFO to start the packet transmission */ | 
|  | outw (UDC_Set_FIFO_En, UDC_CTRL); | 
|  | /* deselect the EP0 tx FIFO */ | 
|  | outw (UDC_EP_Dir, UDC_EP_NUM); | 
|  | } | 
|  |  | 
|  | UDCDBG ("<- Leaving device setup"); | 
|  | } | 
|  |  | 
|  | /* Handle endpoint 0 RX interrupt | 
|  | * This routine implements TRM Figure 14-16. | 
|  | */ | 
|  | static void omap1510_udc_ep0_rx (struct usb_endpoint_instance *endpoint) | 
|  | { | 
|  | unsigned short status; | 
|  |  | 
|  | UDCDBG ("RX on EP0"); | 
|  | /* select EP0 rx FIFO */ | 
|  | outw (UDC_EP_Sel, UDC_EP_NUM); | 
|  |  | 
|  | status = inw (UDC_STAT_FLG); | 
|  |  | 
|  | if (status & UDC_ACK) { | 
|  | /* Check direction */ | 
|  | if ((ep0_urb->device_request.bmRequestType | 
|  | & USB_REQ_DIRECTION_MASK) == USB_REQ_HOST2DEVICE) { | 
|  | /* This rx interrupt must be for a control write data | 
|  | * stage packet. | 
|  | * | 
|  | * We don't support control write data stages. | 
|  | * We should never end up here. | 
|  | */ | 
|  |  | 
|  | /* clear the EP0 rx FIFO */ | 
|  | outw (UDC_Clr_EP, UDC_CTRL); | 
|  |  | 
|  | /* deselect the EP0 rx FIFO */ | 
|  | outw (0, UDC_EP_NUM); | 
|  |  | 
|  | UDCDBG ("Stalling unexpected EP0 control write " | 
|  | "data stage packet"); | 
|  | udc_stall_ep (0); | 
|  | } else { | 
|  | /* This rx interrupt must be for a control read status | 
|  | * stage packet. | 
|  | */ | 
|  | UDCDBG ("ACK on EP0 control read status stage packet"); | 
|  | /* deselect EP0 rx FIFO */ | 
|  | outw (0, UDC_EP_NUM); | 
|  | } | 
|  | } else if (status & UDC_STALL) { | 
|  | UDCDBG ("EP0 stall during RX"); | 
|  | /* deselect EP0 rx FIFO */ | 
|  | outw (0, UDC_EP_NUM); | 
|  | } else { | 
|  | /* deselect EP0 rx FIFO */ | 
|  | outw (0, UDC_EP_NUM); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Handle endpoint 0 TX interrupt | 
|  | * This routine implements TRM Figure 14-18. | 
|  | */ | 
|  | static void omap1510_udc_ep0_tx (struct usb_endpoint_instance *endpoint) | 
|  | { | 
|  | unsigned short status; | 
|  | struct usb_device_request *request = &ep0_urb->device_request; | 
|  |  | 
|  | UDCDBG ("TX on EP0"); | 
|  | /* select EP0 TX FIFO */ | 
|  | outw (UDC_EP_Dir | UDC_EP_Sel, UDC_EP_NUM); | 
|  |  | 
|  | status = inw (UDC_STAT_FLG); | 
|  | if (status & UDC_ACK) { | 
|  | /* Check direction */ | 
|  | if ((request->bmRequestType & USB_REQ_DIRECTION_MASK) == | 
|  | USB_REQ_HOST2DEVICE) { | 
|  | /* This tx interrupt must be for a control write status | 
|  | * stage packet. | 
|  | */ | 
|  | UDCDBG ("ACK on EP0 control write status stage packet"); | 
|  | /* deselect EP0 TX FIFO */ | 
|  | outw (UDC_EP_Dir, UDC_EP_NUM); | 
|  | } else { | 
|  | /* This tx interrupt must be for a control read data | 
|  | * stage packet. | 
|  | */ | 
|  | int wLength = le16_to_cpu (request->wLength); | 
|  |  | 
|  | /* Update our count of bytes sent so far in this | 
|  | * transfer. | 
|  | */ | 
|  | endpoint->sent += endpoint->last; | 
|  |  | 
|  | /* We are finished with this transfer if we have sent | 
|  | * all of the bytes in our tx urb (urb->actual_length) | 
|  | * unless we need a zero-length terminating packet.  We | 
|  | * need a zero-length terminating packet if we returned | 
|  | * fewer bytes than were requested (wLength) by the host, | 
|  | * and the number of bytes we returned is an exact | 
|  | * multiple of the packet size endpoint->tx_packetSize. | 
|  | */ | 
|  | if ((endpoint->sent == ep0_urb->actual_length) | 
|  | && ((ep0_urb->actual_length == wLength) | 
|  | || (endpoint->last != | 
|  | endpoint->tx_packetSize))) { | 
|  | /* Done with control read data stage. */ | 
|  | UDCDBG ("control read data stage complete"); | 
|  | /* deselect EP0 TX FIFO */ | 
|  | outw (UDC_EP_Dir, UDC_EP_NUM); | 
|  | /* select EP0 RX FIFO to prepare for control | 
|  | * read status stage. | 
|  | */ | 
|  | outw (UDC_EP_Sel, UDC_EP_NUM); | 
|  | /* clear the EP0 RX FIFO */ | 
|  | outw (UDC_Clr_EP, UDC_CTRL); | 
|  | /* enable the EP0 RX FIFO */ | 
|  | outw (UDC_Set_FIFO_En, UDC_CTRL); | 
|  | /* deselect the EP0 RX FIFO */ | 
|  | outw (0, UDC_EP_NUM); | 
|  | } else { | 
|  | /* We still have another packet of data to send | 
|  | * in this control read data stage or else we | 
|  | * need a zero-length terminating packet. | 
|  | */ | 
|  | UDCDBG ("ACK control read data stage packet"); | 
|  | omap1510_write_noniso_tx_fifo (endpoint); | 
|  | /* enable the EP0 tx FIFO to start transmission */ | 
|  | outw (UDC_Set_FIFO_En, UDC_CTRL); | 
|  | /* deselect EP0 TX FIFO */ | 
|  | outw (UDC_EP_Dir, UDC_EP_NUM); | 
|  | } | 
|  | } | 
|  | } else if (status & UDC_STALL) { | 
|  | UDCDBG ("EP0 stall during TX"); | 
|  | /* deselect EP0 TX FIFO */ | 
|  | outw (UDC_EP_Dir, UDC_EP_NUM); | 
|  | } else { | 
|  | /* deselect EP0 TX FIFO */ | 
|  | outw (UDC_EP_Dir, UDC_EP_NUM); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Handle RX transaction on non-ISO endpoint. | 
|  | * This function implements TRM Figure 14-27. | 
|  | * The ep argument is a physical endpoint number for a non-ISO OUT endpoint | 
|  | * in the range 1 to 15. | 
|  | */ | 
|  | static void omap1510_udc_epn_rx (int ep) | 
|  | { | 
|  | unsigned short status; | 
|  |  | 
|  | /* Check endpoint status */ | 
|  | status = inw (UDC_STAT_FLG); | 
|  |  | 
|  | if (status & UDC_ACK) { | 
|  | int nbytes; | 
|  | struct usb_endpoint_instance *endpoint = | 
|  | omap1510_find_ep (ep); | 
|  |  | 
|  | nbytes = omap1510_read_noniso_rx_fifo (endpoint); | 
|  | usbd_rcv_complete (endpoint, nbytes, 0); | 
|  |  | 
|  | /* enable rx FIFO to prepare for next packet */ | 
|  | outw (UDC_Set_FIFO_En, UDC_CTRL); | 
|  | } else if (status & UDC_STALL) { | 
|  | UDCDBGA ("STALL on RX endpoint %d", ep); | 
|  | } else if (status & UDC_NAK) { | 
|  | UDCDBGA ("NAK on RX ep %d", ep); | 
|  | } else { | 
|  | serial_printf ("omap-bi: RX on ep %d with status %x", ep, | 
|  | status); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Handle TX transaction on non-ISO endpoint. | 
|  | * This function implements TRM Figure 14-29. | 
|  | * The ep argument is a physical endpoint number for a non-ISO IN endpoint | 
|  | * in the range 16 to 30. | 
|  | */ | 
|  | static void omap1510_udc_epn_tx (int ep) | 
|  | { | 
|  | unsigned short status; | 
|  |  | 
|  | /*serial_printf("omap1510_udc_epn_tx( %x )\n",ep); */ | 
|  |  | 
|  | /* Check endpoint status */ | 
|  | status = inw (UDC_STAT_FLG); | 
|  |  | 
|  | if (status & UDC_ACK) { | 
|  | struct usb_endpoint_instance *endpoint = | 
|  | omap1510_find_ep (ep); | 
|  |  | 
|  | /* We need to transmit a terminating zero-length packet now if | 
|  | * we have sent all of the data in this URB and the transfer | 
|  | * size was an exact multiple of the packet size. | 
|  | */ | 
|  | if (endpoint->tx_urb | 
|  | && (endpoint->last == endpoint->tx_packetSize) | 
|  | && (endpoint->tx_urb->actual_length - endpoint->sent - | 
|  | endpoint->last == 0)) { | 
|  | /* Prepare to transmit a zero-length packet. */ | 
|  | endpoint->sent += endpoint->last; | 
|  | /* write 0 bytes of data to FIFO */ | 
|  | omap1510_write_noniso_tx_fifo (endpoint); | 
|  | /* enable tx FIFO to start transmission */ | 
|  | outw (UDC_Set_FIFO_En, UDC_CTRL); | 
|  | } else if (endpoint->tx_urb | 
|  | && endpoint->tx_urb->actual_length) { | 
|  | /* retire the data that was just sent */ | 
|  | usbd_tx_complete (endpoint); | 
|  | /* Check to see if we have more data ready to transmit | 
|  | * now. | 
|  | */ | 
|  | if (endpoint->tx_urb | 
|  | && endpoint->tx_urb->actual_length) { | 
|  | /* write data to FIFO */ | 
|  | omap1510_write_noniso_tx_fifo (endpoint); | 
|  | /* enable tx FIFO to start transmission */ | 
|  | outw (UDC_Set_FIFO_En, UDC_CTRL); | 
|  | } | 
|  | } | 
|  | } else if (status & UDC_STALL) { | 
|  | UDCDBGA ("STALL on TX endpoint %d", ep); | 
|  | } else if (status & UDC_NAK) { | 
|  | UDCDBGA ("NAK on TX endpoint %d", ep); | 
|  | } else { | 
|  | /*serial_printf("omap-bi: TX on ep %d with status %x\n", ep, status); */ | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  |  | 
|  | /* Handle general USB interrupts and dispatch according to type. | 
|  | * This function implements TRM Figure 14-13. | 
|  | */ | 
|  | void omap1510_udc_irq (void) | 
|  | { | 
|  | u16 irq_src = inw (UDC_IRQ_SRC); | 
|  | int valid_irq = 0; | 
|  |  | 
|  | if (!(irq_src & ~UDC_SOF_Flg))	/* ignore SOF interrupts ) */ | 
|  | return; | 
|  |  | 
|  | UDCDBGA ("< IRQ #%d start >- %x", udc_interrupts, irq_src); | 
|  | /*serial_printf("< IRQ #%d start >- %x\n", udc_interrupts, irq_src); */ | 
|  |  | 
|  | if (irq_src & UDC_DS_Chg) { | 
|  | /* Device status changed */ | 
|  | omap1510_udc_state_changed (); | 
|  | valid_irq++; | 
|  | } | 
|  | if (irq_src & UDC_EP0_RX) { | 
|  | /* Endpoint 0 receive */ | 
|  | outw (UDC_EP0_RX, UDC_IRQ_SRC); /* ack interrupt */ | 
|  | omap1510_udc_ep0_rx (udc_device->bus->endpoint_array + 0); | 
|  | valid_irq++; | 
|  | } | 
|  | if (irq_src & UDC_EP0_TX) { | 
|  | /* Endpoint 0 transmit */ | 
|  | outw (UDC_EP0_TX, UDC_IRQ_SRC); /* ack interrupt */ | 
|  | omap1510_udc_ep0_tx (udc_device->bus->endpoint_array + 0); | 
|  | valid_irq++; | 
|  | } | 
|  | if (irq_src & UDC_Setup) { | 
|  | /* Device setup */ | 
|  | omap1510_udc_setup (udc_device->bus->endpoint_array + 0); | 
|  | valid_irq++; | 
|  | } | 
|  | /*if (!valid_irq) */ | 
|  | /*	serial_printf("unknown interrupt, IRQ_SRC %.4x\n", irq_src); */ | 
|  | UDCDBGA ("< IRQ #%d end >", udc_interrupts); | 
|  | udc_interrupts++; | 
|  | } | 
|  |  | 
|  | /* This function implements TRM Figure 14-26. */ | 
|  | void omap1510_udc_noniso_irq (void) | 
|  | { | 
|  | unsigned short epnum; | 
|  | unsigned short irq_src = inw (UDC_IRQ_SRC); | 
|  | int valid_irq = 0; | 
|  |  | 
|  | if (!(irq_src & (UDC_EPn_RX | UDC_EPn_TX))) | 
|  | return; | 
|  |  | 
|  | UDCDBGA ("non-ISO IRQ, IRQ_SRC %x", inw (UDC_IRQ_SRC)); | 
|  |  | 
|  | if (irq_src & UDC_EPn_RX) {	/* Endpoint N OUT transaction */ | 
|  | /* Determine the endpoint number for this interrupt */ | 
|  | epnum = (inw (UDC_EPN_STAT) & 0x0f00) >> 8; | 
|  | UDCDBGA ("RX on ep %x", epnum); | 
|  |  | 
|  | /* acknowledge interrupt */ | 
|  | outw (UDC_EPn_RX, UDC_IRQ_SRC); | 
|  |  | 
|  | if (epnum) { | 
|  | /* select the endpoint FIFO */ | 
|  | outw (UDC_EP_Sel | epnum, UDC_EP_NUM); | 
|  |  | 
|  | omap1510_udc_epn_rx (epnum); | 
|  |  | 
|  | /* deselect the endpoint FIFO */ | 
|  | outw (epnum, UDC_EP_NUM); | 
|  | } | 
|  | valid_irq++; | 
|  | } | 
|  | if (irq_src & UDC_EPn_TX) {	/* Endpoint N IN transaction */ | 
|  | /* Determine the endpoint number for this interrupt */ | 
|  | epnum = (inw (UDC_EPN_STAT) & 0x000f) | USB_DIR_IN; | 
|  | UDCDBGA ("TX on ep %x", epnum); | 
|  |  | 
|  | /* acknowledge interrupt */ | 
|  | outw (UDC_EPn_TX, UDC_IRQ_SRC); | 
|  |  | 
|  | if (epnum) { | 
|  | /* select the endpoint FIFO */ | 
|  | outw (UDC_EP_Sel | UDC_EP_Dir | epnum, UDC_EP_NUM); | 
|  |  | 
|  | omap1510_udc_epn_tx (epnum); | 
|  |  | 
|  | /* deselect the endpoint FIFO */ | 
|  | outw (UDC_EP_Dir | epnum, UDC_EP_NUM); | 
|  | } | 
|  | valid_irq++; | 
|  | } | 
|  | if (!valid_irq) | 
|  | serial_printf (": unknown non-ISO interrupt, IRQ_SRC %.4x\n", | 
|  | irq_src); | 
|  | } | 
|  |  | 
|  | /* | 
|  | ------------------------------------------------------------------------------- | 
|  | */ | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Start of public functions. | 
|  | */ | 
|  |  | 
|  | /* Called to start packet transmission. */ | 
|  | int udc_endpoint_write (struct usb_endpoint_instance *endpoint) | 
|  | { | 
|  | unsigned short epnum = | 
|  | endpoint->endpoint_address & USB_ENDPOINT_NUMBER_MASK; | 
|  |  | 
|  | UDCDBGA ("Starting transmit on ep %x", epnum); | 
|  |  | 
|  | if (endpoint->tx_urb) { | 
|  | /* select the endpoint FIFO */ | 
|  | outw (UDC_EP_Sel | UDC_EP_Dir | epnum, UDC_EP_NUM); | 
|  | /* write data to FIFO */ | 
|  | omap1510_write_noniso_tx_fifo (endpoint); | 
|  | /* enable tx FIFO to start transmission */ | 
|  | outw (UDC_Set_FIFO_En, UDC_CTRL); | 
|  | /* deselect the endpoint FIFO */ | 
|  | outw (UDC_EP_Dir | epnum, UDC_EP_NUM); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Start to initialize h/w stuff */ | 
|  | int udc_init (void) | 
|  | { | 
|  | u16 udc_rev; | 
|  | uchar value; | 
|  | ulong gpio; | 
|  | int i; | 
|  |  | 
|  | /* Let the device settle down before we start */ | 
|  | for (i = 0; i < UDC_INIT_MDELAY; i++) udelay(1000); | 
|  |  | 
|  | udc_device = NULL; | 
|  |  | 
|  | UDCDBG ("starting"); | 
|  |  | 
|  | /* Check peripheral reset. Must be 1 to make sure | 
|  | MPU TIPB peripheral reset is inactive */ | 
|  | UDCREG (ARM_RSTCT2); | 
|  |  | 
|  | /* Set and check clock control. | 
|  | * We might ought to be using the clock control API to do | 
|  | * this instead of fiddling with the clock registers directly | 
|  | * here. | 
|  | */ | 
|  | outw ((1 << 4) | (1 << 5), CLOCK_CTRL); | 
|  | UDCREG (CLOCK_CTRL); | 
|  |  | 
|  | #ifdef CONFIG_OMAP1510 | 
|  | /* This code was originally implemented for OMAP1510 and | 
|  | * therefore is only applicable for OMAP1510 boards. For | 
|  | * OMAP5912 or OMAP16xx the register APLL_CTRL does not | 
|  | * exist and DPLL_CTRL is already configured. | 
|  | */ | 
|  |  | 
|  | /* Set and check APLL */ | 
|  | outw (0x0008, APLL_CTRL); | 
|  | UDCREG (APLL_CTRL); | 
|  | /* Set and check DPLL */ | 
|  | outw (0x2210, DPLL_CTRL); | 
|  | UDCREG (DPLL_CTRL); | 
|  | #endif | 
|  | /* Set and check SOFT | 
|  | * The below line of code has been changed to perform a | 
|  | * read-modify-write instead of a simple write for | 
|  | * configuring the SOFT_REQ register. This allows the code | 
|  | * to be compatible with OMAP5912 and OMAP16xx devices | 
|  | */ | 
|  | outw ((1 << 4) | (1 << 3) | 1 | (inw(SOFT_REQ)), SOFT_REQ); | 
|  |  | 
|  | /* Short delay to wait for DPLL */ | 
|  | udelay (1000); | 
|  |  | 
|  | /* Print banner with device revision */ | 
|  | udc_rev = inw (UDC_REV) & 0xff; | 
|  | #ifdef CONFIG_OMAP1510 | 
|  | printf ("USB:   TI OMAP1510 USB function module rev %d.%d\n", | 
|  | udc_rev >> 4, udc_rev & 0xf); | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_OMAP1610 | 
|  | printf ("USB:   TI OMAP5912 USB function module rev %d.%d\n", | 
|  | udc_rev >> 4, udc_rev & 0xf); | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_OMAP_SX1 | 
|  | i2c_read (0x32, 0x04, 1, &value, 1); | 
|  | value |= 0x04; | 
|  | i2c_write (0x32, 0x04, 1, &value, 1); | 
|  |  | 
|  | i2c_read (0x32, 0x03, 1, &value, 1); | 
|  | value |= 0x01; | 
|  | i2c_write (0x32, 0x03, 1, &value, 1); | 
|  |  | 
|  | gpio = inl(GPIO_PIN_CONTROL_REG); | 
|  | gpio |=  0x0002; /* A_IRDA_OFF */ | 
|  | gpio |=  0x0800; /* A_SWITCH   */ | 
|  | gpio |=  0x8000; /* A_USB_ON   */ | 
|  | outl (gpio, GPIO_PIN_CONTROL_REG); | 
|  |  | 
|  | gpio = inl(GPIO_DIR_CONTROL_REG); | 
|  | gpio &= ~0x0002; /* A_IRDA_OFF */ | 
|  | gpio &= ~0x0800; /* A_SWITCH   */ | 
|  | gpio &= ~0x8000; /* A_USB_ON   */ | 
|  | outl (gpio, GPIO_DIR_CONTROL_REG); | 
|  |  | 
|  | gpio = inl(GPIO_DATA_OUTPUT_REG); | 
|  | gpio |=  0x0002; /* A_IRDA_OFF */ | 
|  | gpio &= ~0x0800; /* A_SWITCH   */ | 
|  | gpio &= ~0x8000; /* A_USB_ON   */ | 
|  | outl (gpio, GPIO_DATA_OUTPUT_REG); | 
|  | #endif | 
|  |  | 
|  | /* The VBUS_MODE bit selects whether VBUS detection is done via | 
|  | * software (1) or hardware (0).  When software detection is | 
|  | * selected, VBUS_CTRL selects whether USB is not connected (0) | 
|  | * or connected (1). | 
|  | */ | 
|  | outl (inl (FUNC_MUX_CTRL_0) | UDC_VBUS_MODE, FUNC_MUX_CTRL_0); | 
|  | outl (inl (FUNC_MUX_CTRL_0) & ~UDC_VBUS_CTRL, FUNC_MUX_CTRL_0); | 
|  | UDCREGL (FUNC_MUX_CTRL_0); | 
|  |  | 
|  | /* | 
|  | * At this point, device is ready for configuration... | 
|  | */ | 
|  |  | 
|  | UDCDBG ("disable USB interrupts"); | 
|  | outw (0, UDC_IRQ_EN); | 
|  | UDCREG (UDC_IRQ_EN); | 
|  |  | 
|  | UDCDBG ("disable USB DMA"); | 
|  | outw (0, UDC_DMA_IRQ_EN); | 
|  | UDCREG (UDC_DMA_IRQ_EN); | 
|  |  | 
|  | UDCDBG ("initialize SYSCON1"); | 
|  | outw (UDC_Self_Pwr | UDC_Pullup_En, UDC_SYSCON1); | 
|  | UDCREG (UDC_SYSCON1); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Stall endpoint */ | 
|  | static void udc_stall_ep (unsigned int ep_addr) | 
|  | { | 
|  | /*int ep_addr = PHYS_EP_TO_EP_ADDR(ep); */ | 
|  | int ep_num = ep_addr & USB_ENDPOINT_NUMBER_MASK; | 
|  |  | 
|  | UDCDBGA ("stall ep_addr %d", ep_addr); | 
|  |  | 
|  | /* REVISIT? | 
|  | * The OMAP TRM section 14.2.4.2 says we must check that the FIFO | 
|  | * is empty before halting the endpoint.  The current implementation | 
|  | * doesn't check that the FIFO is empty. | 
|  | */ | 
|  |  | 
|  | if (!ep_num) { | 
|  | outw (UDC_Stall_Cmd, UDC_SYSCON2); | 
|  | } else if ((ep_addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT) { | 
|  | if (inw (UDC_EP_RX (ep_num)) & UDC_EPn_RX_Valid) { | 
|  | /* we have a valid rx endpoint, so halt it */ | 
|  | outw (UDC_EP_Sel | ep_num, UDC_EP_NUM); | 
|  | outw (UDC_Set_Halt, UDC_CTRL); | 
|  | outw (ep_num, UDC_EP_NUM); | 
|  | } | 
|  | } else { | 
|  | if (inw (UDC_EP_TX (ep_num)) & UDC_EPn_TX_Valid) { | 
|  | /* we have a valid tx endpoint, so halt it */ | 
|  | outw (UDC_EP_Sel | UDC_EP_Dir | ep_num, UDC_EP_NUM); | 
|  | outw (UDC_Set_Halt, UDC_CTRL); | 
|  | outw (ep_num, UDC_EP_NUM); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Reset endpoint */ | 
|  | #if 0 | 
|  | static void udc_reset_ep (unsigned int ep_addr) | 
|  | { | 
|  | /*int ep_addr = PHYS_EP_TO_EP_ADDR(ep); */ | 
|  | int ep_num = ep_addr & USB_ENDPOINT_NUMBER_MASK; | 
|  |  | 
|  | UDCDBGA ("reset ep_addr %d", ep_addr); | 
|  |  | 
|  | if (!ep_num) { | 
|  | /* control endpoint 0 can't be reset */ | 
|  | } else if ((ep_addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_OUT) { | 
|  | UDCDBGA ("UDC_EP_RX(%d) = 0x%04x", ep_num, | 
|  | inw (UDC_EP_RX (ep_num))); | 
|  | if (inw (UDC_EP_RX (ep_num)) & UDC_EPn_RX_Valid) { | 
|  | /* we have a valid rx endpoint, so reset it */ | 
|  | outw (ep_num | UDC_EP_Sel, UDC_EP_NUM); | 
|  | outw (UDC_Reset_EP, UDC_CTRL); | 
|  | outw (ep_num, UDC_EP_NUM); | 
|  | UDCDBGA ("OUT endpoint %d reset", ep_num); | 
|  | } | 
|  | } else { | 
|  | UDCDBGA ("UDC_EP_TX(%d) = 0x%04x", ep_num, | 
|  | inw (UDC_EP_TX (ep_num))); | 
|  | /* Resetting of tx endpoints seems to be causing the USB function | 
|  | * module to fail, which causes problems when the driver is | 
|  | * uninstalled.	 We'll skip resetting tx endpoints for now until | 
|  | * we figure out what the problem is. | 
|  | */ | 
|  | #if 0 | 
|  | if (inw (UDC_EP_TX (ep_num)) & UDC_EPn_TX_Valid) { | 
|  | /* we have a valid tx endpoint, so reset it */ | 
|  | outw (ep_num | UDC_EP_Dir | UDC_EP_Sel, UDC_EP_NUM); | 
|  | outw (UDC_Reset_EP, UDC_CTRL); | 
|  | outw (ep_num | UDC_EP_Dir, UDC_EP_NUM); | 
|  | UDCDBGA ("IN endpoint %d reset", ep_num); | 
|  | } | 
|  | #endif | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* ************************************************************************** */ | 
|  |  | 
|  | /** | 
|  | * udc_check_ep - check logical endpoint | 
|  | * | 
|  | * Return physical endpoint number to use for this logical endpoint or zero if not valid. | 
|  | */ | 
|  | #if 0 | 
|  | int udc_check_ep (int logical_endpoint, int packetsize) | 
|  | { | 
|  | if ((logical_endpoint == 0x80) || | 
|  | ((logical_endpoint & 0x8f) != logical_endpoint)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | switch (packetsize) { | 
|  | case 8: | 
|  | case 16: | 
|  | case 32: | 
|  | case 64: | 
|  | case 128: | 
|  | case 256: | 
|  | case 512: | 
|  | break; | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return EP_ADDR_TO_PHYS_EP (logical_endpoint); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * udc_setup_ep - setup endpoint | 
|  | * | 
|  | * Associate a physical endpoint with endpoint_instance | 
|  | */ | 
|  | void udc_setup_ep (struct usb_device_instance *device, | 
|  | unsigned int ep, struct usb_endpoint_instance *endpoint) | 
|  | { | 
|  | UDCDBGA ("setting up endpoint addr %x", endpoint->endpoint_address); | 
|  |  | 
|  | /* This routine gets called by bi_modinit for endpoint 0 and from | 
|  | * bi_config for all of the other endpoints.  bi_config gets called | 
|  | * during the DEVICE_CREATE, DEVICE_CONFIGURED, and | 
|  | * DEVICE_SET_INTERFACE events.	 We need to reconfigure the OMAP packet | 
|  | * RAM after bi_config scans the selected device configuration and | 
|  | * initializes the endpoint structures, but before this routine enables | 
|  | * the OUT endpoint FIFOs.  Since bi_config calls this routine in a | 
|  | * loop for endpoints 1 through UDC_MAX_ENDPOINTS, we reconfigure our | 
|  | * packet RAM here when ep==1. | 
|  | * I really hate to do this here, but it seems like the API exported | 
|  | * by the USB bus interface controller driver to the usbd-bi module | 
|  | * isn't quite right so there is no good place to do this. | 
|  | */ | 
|  | if (ep == 1) { | 
|  | omap1510_deconfigure_device (); | 
|  | omap1510_configure_device (device); | 
|  | } | 
|  |  | 
|  | if (endpoint && (ep < UDC_MAX_ENDPOINTS)) { | 
|  | int ep_addr = endpoint->endpoint_address; | 
|  |  | 
|  | if (!ep_addr) { | 
|  | /* nothing to do for endpoint 0 */ | 
|  | } else if ((ep_addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN) { | 
|  | /* nothing to do for IN (tx) endpoints */ | 
|  | } else {	/* OUT (rx) endpoint */ | 
|  | if (endpoint->rcv_packetSize) { | 
|  | /*struct urb* urb = &(urb_out_array[ep&0xFF]); */ | 
|  | /*urb->endpoint = endpoint; */ | 
|  | /*urb->device = device; */ | 
|  | /*urb->buffer_length = sizeof(urb->buffer); */ | 
|  |  | 
|  | /*endpoint->rcv_urb = urb; */ | 
|  | omap1510_prepare_endpoint_for_rx (ep_addr); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | * udc_disable_ep - disable endpoint | 
|  | * @ep: | 
|  | * | 
|  | * Disable specified endpoint | 
|  | */ | 
|  | #if 0 | 
|  | void udc_disable_ep (unsigned int ep_addr) | 
|  | { | 
|  | /*int ep_addr = PHYS_EP_TO_EP_ADDR(ep); */ | 
|  | int ep_num = ep_addr & USB_ENDPOINT_NUMBER_MASK; | 
|  | struct usb_endpoint_instance *endpoint = omap1510_find_ep (ep_addr);	/*udc_device->bus->endpoint_array + ep; */ | 
|  |  | 
|  | UDCDBGA ("disable ep_addr %d", ep_addr); | 
|  |  | 
|  | if (!ep_num) { | 
|  | /* nothing to do for endpoint 0 */ ; | 
|  | } else if ((ep_addr & USB_ENDPOINT_DIR_MASK) == USB_DIR_IN) { | 
|  | if (endpoint->tx_packetSize) { | 
|  | /* we have a valid tx endpoint */ | 
|  | /*usbd_flush_tx(endpoint); */ | 
|  | endpoint->tx_urb = NULL; | 
|  | } | 
|  | } else { | 
|  | if (endpoint->rcv_packetSize) { | 
|  | /* we have a valid rx endpoint */ | 
|  | /*usbd_flush_rcv(endpoint); */ | 
|  | endpoint->rcv_urb = NULL; | 
|  | } | 
|  | } | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* ************************************************************************** */ | 
|  |  | 
|  | /** | 
|  | * udc_connected - is the USB cable connected | 
|  | * | 
|  | * Return non-zero if cable is connected. | 
|  | */ | 
|  | #if 0 | 
|  | int udc_connected (void) | 
|  | { | 
|  | return ((inw (UDC_DEVSTAT) & UDC_ATT) == UDC_ATT); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* Turn on the USB connection by enabling the pullup resistor */ | 
|  | void udc_connect (void) | 
|  | { | 
|  | UDCDBG ("connect, enable Pullup"); | 
|  | outl (0x00000018, FUNC_MUX_CTRL_D); | 
|  | } | 
|  |  | 
|  | /* Turn off the USB connection by disabling the pullup resistor */ | 
|  | void udc_disconnect (void) | 
|  | { | 
|  | UDCDBG ("disconnect, disable Pullup"); | 
|  | outl (0x00000000, FUNC_MUX_CTRL_D); | 
|  | } | 
|  |  | 
|  | /* ************************************************************************** */ | 
|  |  | 
|  |  | 
|  | /* | 
|  | * udc_disable_interrupts - disable interrupts | 
|  | * switch off interrupts | 
|  | */ | 
|  | #if 0 | 
|  | void udc_disable_interrupts (struct usb_device_instance *device) | 
|  | { | 
|  | UDCDBG ("disabling all interrupts"); | 
|  | outw (0, UDC_IRQ_EN); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* ************************************************************************** */ | 
|  |  | 
|  | /** | 
|  | * udc_ep0_packetsize - return ep0 packetsize | 
|  | */ | 
|  | #if 0 | 
|  | int udc_ep0_packetsize (void) | 
|  | { | 
|  | return EP0_PACKETSIZE; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* Switch on the UDC */ | 
|  | void udc_enable (struct usb_device_instance *device) | 
|  | { | 
|  | UDCDBGA ("enable device %p, status %d", device, device->status); | 
|  |  | 
|  | /* initialize driver state variables */ | 
|  | udc_devstat = 0; | 
|  |  | 
|  | /* Save the device structure pointer */ | 
|  | udc_device = device; | 
|  |  | 
|  | /* Setup ep0 urb */ | 
|  | if (!ep0_urb) { | 
|  | ep0_urb = | 
|  | usbd_alloc_urb (udc_device, | 
|  | udc_device->bus->endpoint_array); | 
|  | } else { | 
|  | serial_printf ("udc_enable: ep0_urb already allocated %p\n", | 
|  | ep0_urb); | 
|  | } | 
|  |  | 
|  | UDCDBG ("Check clock status"); | 
|  | UDCREG (STATUS_REQ); | 
|  |  | 
|  | /* The VBUS_MODE bit selects whether VBUS detection is done via | 
|  | * software (1) or hardware (0).  When software detection is | 
|  | * selected, VBUS_CTRL selects whether USB is not connected (0) | 
|  | * or connected (1). | 
|  | */ | 
|  | outl (inl (FUNC_MUX_CTRL_0) | UDC_VBUS_CTRL | UDC_VBUS_MODE, | 
|  | FUNC_MUX_CTRL_0); | 
|  | UDCREGL (FUNC_MUX_CTRL_0); | 
|  |  | 
|  | omap1510_configure_device (device); | 
|  | } | 
|  |  | 
|  | /* Switch off the UDC */ | 
|  | void udc_disable (void) | 
|  | { | 
|  | UDCDBG ("disable UDC"); | 
|  |  | 
|  | omap1510_deconfigure_device (); | 
|  |  | 
|  | /* The VBUS_MODE bit selects whether VBUS detection is done via | 
|  | * software (1) or hardware (0).  When software detection is | 
|  | * selected, VBUS_CTRL selects whether USB is not connected (0) | 
|  | * or connected (1). | 
|  | */ | 
|  | outl (inl (FUNC_MUX_CTRL_0) | UDC_VBUS_MODE, FUNC_MUX_CTRL_0); | 
|  | outl (inl (FUNC_MUX_CTRL_0) & ~UDC_VBUS_CTRL, FUNC_MUX_CTRL_0); | 
|  | UDCREGL (FUNC_MUX_CTRL_0); | 
|  |  | 
|  | /* Free ep0 URB */ | 
|  | if (ep0_urb) { | 
|  | /*usbd_dealloc_urb(ep0_urb); */ | 
|  | ep0_urb = NULL; | 
|  | } | 
|  |  | 
|  | /* Reset device pointer. | 
|  | * We ought to do this here to balance the initialization of udc_device | 
|  | * in udc_enable, but some of our other exported functions get called | 
|  | * by the bus interface driver after udc_disable, so we have to hang on | 
|  | * to the device pointer to avoid a null pointer dereference. */ | 
|  | /* udc_device = NULL; */ | 
|  | } | 
|  |  | 
|  | /** | 
|  | * udc_startup - allow udc code to do any additional startup | 
|  | */ | 
|  | void udc_startup_events (struct usb_device_instance *device) | 
|  | { | 
|  | /* The DEVICE_INIT event puts the USB device in the state STATE_INIT. */ | 
|  | usbd_device_event_irq (device, DEVICE_INIT, 0); | 
|  |  | 
|  | /* The DEVICE_CREATE event puts the USB device in the state | 
|  | * STATE_ATTACHED. | 
|  | */ | 
|  | usbd_device_event_irq (device, DEVICE_CREATE, 0); | 
|  |  | 
|  | /* Some USB controller driver implementations signal | 
|  | * DEVICE_HUB_CONFIGURED and DEVICE_RESET events here. | 
|  | * DEVICE_HUB_CONFIGURED causes a transition to the state STATE_POWERED, | 
|  | * and DEVICE_RESET causes a transition to the state STATE_DEFAULT. | 
|  | * The OMAP USB client controller has the capability to detect when the | 
|  | * USB cable is connected to a powered USB bus via the ATT bit in the | 
|  | * DEVSTAT register, so we will defer the DEVICE_HUB_CONFIGURED and | 
|  | * DEVICE_RESET events until later. | 
|  | */ | 
|  |  | 
|  | udc_enable (device); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * udc_irq - do pseudo interrupts | 
|  | */ | 
|  | void udc_irq(void) | 
|  | { | 
|  | /* Loop while we have interrupts. | 
|  | * If we don't do this, the input chain | 
|  | * polling delay is likely to miss | 
|  | * host requests. | 
|  | */ | 
|  | while (inw (UDC_IRQ_SRC) & ~UDC_SOF_Flg) { | 
|  | /* Handle any new IRQs */ | 
|  | omap1510_udc_irq (); | 
|  | omap1510_udc_noniso_irq (); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Flow control */ | 
|  | void udc_set_nak(int epid) | 
|  | { | 
|  | /* TODO: implement this functionality in omap1510 */ | 
|  | } | 
|  |  | 
|  | void udc_unset_nak (int epid) | 
|  | { | 
|  | /* TODO: implement this functionality in omap1510 */ | 
|  | } |