|  | /* | 
|  | * This implementation is based on code from uClibc-0.9.30.3 but was | 
|  | * modified and extended for use within U-Boot. | 
|  | * | 
|  | * Copyright (C) 2010 Wolfgang Denk <wd@denx.de> | 
|  | * | 
|  | * Original license header: | 
|  | * | 
|  | * Copyright (C) 1993, 1995, 1996, 1997, 2002 Free Software Foundation, Inc. | 
|  | * This file is part of the GNU C Library. | 
|  | * Contributed by Ulrich Drepper <drepper@gnu.ai.mit.edu>, 1993. | 
|  | * | 
|  | * The GNU C Library is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU Lesser General Public | 
|  | * License as published by the Free Software Foundation; either | 
|  | * version 2.1 of the License, or (at your option) any later version. | 
|  | * | 
|  | * The GNU C Library is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | * Lesser General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU Lesser General Public | 
|  | * License along with the GNU C Library; if not, write to the Free | 
|  | * Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA | 
|  | * 02111-1307 USA. | 
|  | */ | 
|  |  | 
|  | #include <errno.h> | 
|  | #include <malloc.h> | 
|  |  | 
|  | #ifdef USE_HOSTCC		/* HOST build */ | 
|  | # include <string.h> | 
|  | # include <assert.h> | 
|  |  | 
|  | # ifndef debug | 
|  | #  ifdef DEBUG | 
|  | #   define debug(fmt,args...)	printf(fmt ,##args) | 
|  | #  else | 
|  | #   define debug(fmt,args...) | 
|  | #  endif | 
|  | # endif | 
|  | #else				/* U-Boot build */ | 
|  | # include <common.h> | 
|  | # include <linux/string.h> | 
|  | #endif | 
|  |  | 
|  | #ifndef	CONFIG_ENV_MAX_ENTRIES	/* maximum number of entries */ | 
|  | #define	CONFIG_ENV_MAX_ENTRIES 512 | 
|  | #endif | 
|  |  | 
|  | #include "search.h" | 
|  |  | 
|  | /* | 
|  | * [Aho,Sethi,Ullman] Compilers: Principles, Techniques and Tools, 1986 | 
|  | * [Knuth]            The Art of Computer Programming, part 3 (6.4) | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * The non-reentrant version use a global space for storing the hash table. | 
|  | */ | 
|  | static struct hsearch_data htab; | 
|  |  | 
|  | /* | 
|  | * The reentrant version has no static variables to maintain the state. | 
|  | * Instead the interface of all functions is extended to take an argument | 
|  | * which describes the current status. | 
|  | */ | 
|  | typedef struct _ENTRY { | 
|  | unsigned int used; | 
|  | ENTRY entry; | 
|  | } _ENTRY; | 
|  |  | 
|  |  | 
|  | /* | 
|  | * hcreate() | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * For the used double hash method the table size has to be a prime. To | 
|  | * correct the user given table size we need a prime test.  This trivial | 
|  | * algorithm is adequate because | 
|  | * a)  the code is (most probably) called a few times per program run and | 
|  | * b)  the number is small because the table must fit in the core | 
|  | * */ | 
|  | static int isprime(unsigned int number) | 
|  | { | 
|  | /* no even number will be passed */ | 
|  | unsigned int div = 3; | 
|  |  | 
|  | while (div * div < number && number % div != 0) | 
|  | div += 2; | 
|  |  | 
|  | return number % div != 0; | 
|  | } | 
|  |  | 
|  | int hcreate(size_t nel) | 
|  | { | 
|  | return hcreate_r(nel, &htab); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Before using the hash table we must allocate memory for it. | 
|  | * Test for an existing table are done. We allocate one element | 
|  | * more as the found prime number says. This is done for more effective | 
|  | * indexing as explained in the comment for the hsearch function. | 
|  | * The contents of the table is zeroed, especially the field used | 
|  | * becomes zero. | 
|  | */ | 
|  | int hcreate_r(size_t nel, struct hsearch_data *htab) | 
|  | { | 
|  | /* Test for correct arguments.  */ | 
|  | if (htab == NULL) { | 
|  | __set_errno(EINVAL); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* There is still another table active. Return with error. */ | 
|  | if (htab->table != NULL) | 
|  | return 0; | 
|  |  | 
|  | /* Change nel to the first prime number not smaller as nel. */ | 
|  | nel |= 1;		/* make odd */ | 
|  | while (!isprime(nel)) | 
|  | nel += 2; | 
|  |  | 
|  | htab->size = nel; | 
|  | htab->filled = 0; | 
|  |  | 
|  | /* allocate memory and zero out */ | 
|  | htab->table = (_ENTRY *) calloc(htab->size + 1, sizeof(_ENTRY)); | 
|  | if (htab->table == NULL) | 
|  | return 0; | 
|  |  | 
|  | /* everything went alright */ | 
|  | return 1; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * hdestroy() | 
|  | */ | 
|  | void hdestroy(void) | 
|  | { | 
|  | hdestroy_r(&htab); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * After using the hash table it has to be destroyed. The used memory can | 
|  | * be freed and the local static variable can be marked as not used. | 
|  | */ | 
|  | void hdestroy_r(struct hsearch_data *htab) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | /* Test for correct arguments.  */ | 
|  | if (htab == NULL) { | 
|  | __set_errno(EINVAL); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* free used memory */ | 
|  | for (i = 1; i <= htab->size; ++i) { | 
|  | if (htab->table[i].used) { | 
|  | ENTRY *ep = &htab->table[i].entry; | 
|  |  | 
|  | free(ep->key); | 
|  | free(ep->data); | 
|  | } | 
|  | } | 
|  | free(htab->table); | 
|  |  | 
|  | /* the sign for an existing table is an value != NULL in htable */ | 
|  | htab->table = NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * hsearch() | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * This is the search function. It uses double hashing with open addressing. | 
|  | * The argument item.key has to be a pointer to an zero terminated, most | 
|  | * probably strings of chars. The function for generating a number of the | 
|  | * strings is simple but fast. It can be replaced by a more complex function | 
|  | * like ajw (see [Aho,Sethi,Ullman]) if the needs are shown. | 
|  | * | 
|  | * We use an trick to speed up the lookup. The table is created by hcreate | 
|  | * with one more element available. This enables us to use the index zero | 
|  | * special. This index will never be used because we store the first hash | 
|  | * index in the field used where zero means not used. Every other value | 
|  | * means used. The used field can be used as a first fast comparison for | 
|  | * equality of the stored and the parameter value. This helps to prevent | 
|  | * unnecessary expensive calls of strcmp. | 
|  | * | 
|  | * This implementation differs from the standard library version of | 
|  | * this function in a number of ways: | 
|  | * | 
|  | * - While the standard version does not make any assumptions about | 
|  | *   the type of the stored data objects at all, this implementation | 
|  | *   works with NUL terminated strings only. | 
|  | * - Instead of storing just pointers to the original objects, we | 
|  | *   create local copies so the caller does not need to care about the | 
|  | *   data any more. | 
|  | * - The standard implementation does not provide a way to update an | 
|  | *   existing entry.  This version will create a new entry or update an | 
|  | *   existing one when both "action == ENTER" and "item.data != NULL". | 
|  | * - Instead of returning 1 on success, we return the index into the | 
|  | *   internal hash table, which is also guaranteed to be positive. | 
|  | *   This allows us direct access to the found hash table slot for | 
|  | *   example for functions like hdelete(). | 
|  | */ | 
|  |  | 
|  | ENTRY *hsearch(ENTRY item, ACTION action) | 
|  | { | 
|  | ENTRY *result; | 
|  |  | 
|  | (void) hsearch_r(item, action, &result, &htab); | 
|  |  | 
|  | return result; | 
|  | } | 
|  |  | 
|  | int hsearch_r(ENTRY item, ACTION action, ENTRY ** retval, | 
|  | struct hsearch_data *htab) | 
|  | { | 
|  | unsigned int hval; | 
|  | unsigned int count; | 
|  | unsigned int len = strlen(item.key); | 
|  | unsigned int idx; | 
|  |  | 
|  | /* Compute an value for the given string. Perhaps use a better method. */ | 
|  | hval = len; | 
|  | count = len; | 
|  | while (count-- > 0) { | 
|  | hval <<= 4; | 
|  | hval += item.key[count]; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * First hash function: | 
|  | * simply take the modul but prevent zero. | 
|  | */ | 
|  | hval %= htab->size; | 
|  | if (hval == 0) | 
|  | ++hval; | 
|  |  | 
|  | /* The first index tried. */ | 
|  | idx = hval; | 
|  |  | 
|  | if (htab->table[idx].used) { | 
|  | /* | 
|  | * Further action might be required according to the | 
|  | * action value. | 
|  | */ | 
|  | unsigned hval2; | 
|  |  | 
|  | if (htab->table[idx].used == hval | 
|  | && strcmp(item.key, htab->table[idx].entry.key) == 0) { | 
|  | /* Overwrite existing value? */ | 
|  | if ((action == ENTER) && (item.data != NULL)) { | 
|  | free(htab->table[idx].entry.data); | 
|  | htab->table[idx].entry.data = | 
|  | strdup(item.data); | 
|  | if (!htab->table[idx].entry.data) { | 
|  | __set_errno(ENOMEM); | 
|  | *retval = NULL; | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | /* return found entry */ | 
|  | *retval = &htab->table[idx].entry; | 
|  | return idx; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Second hash function: | 
|  | * as suggested in [Knuth] | 
|  | */ | 
|  | hval2 = 1 + hval % (htab->size - 2); | 
|  |  | 
|  | do { | 
|  | /* | 
|  | * Because SIZE is prime this guarantees to | 
|  | * step through all available indices. | 
|  | */ | 
|  | if (idx <= hval2) | 
|  | idx = htab->size + idx - hval2; | 
|  | else | 
|  | idx -= hval2; | 
|  |  | 
|  | /* | 
|  | * If we visited all entries leave the loop | 
|  | * unsuccessfully. | 
|  | */ | 
|  | if (idx == hval) | 
|  | break; | 
|  |  | 
|  | /* If entry is found use it. */ | 
|  | if ((htab->table[idx].used == hval) | 
|  | && strcmp(item.key, htab->table[idx].entry.key) == 0) { | 
|  | /* Overwrite existing value? */ | 
|  | if ((action == ENTER) && (item.data != NULL)) { | 
|  | free(htab->table[idx].entry.data); | 
|  | htab->table[idx].entry.data = | 
|  | strdup(item.data); | 
|  | if (!htab->table[idx].entry.data) { | 
|  | __set_errno(ENOMEM); | 
|  | *retval = NULL; | 
|  | return 0; | 
|  | } | 
|  | } | 
|  | /* return found entry */ | 
|  | *retval = &htab->table[idx].entry; | 
|  | return idx; | 
|  | } | 
|  | } | 
|  | while (htab->table[idx].used); | 
|  | } | 
|  |  | 
|  | /* An empty bucket has been found. */ | 
|  | if (action == ENTER) { | 
|  | /* | 
|  | * If table is full and another entry should be | 
|  | * entered return with error. | 
|  | */ | 
|  | if (htab->filled == htab->size) { | 
|  | __set_errno(ENOMEM); | 
|  | *retval = NULL; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Create new entry; | 
|  | * create copies of item.key and item.data | 
|  | */ | 
|  | htab->table[idx].used = hval; | 
|  | htab->table[idx].entry.key = strdup(item.key); | 
|  | htab->table[idx].entry.data = strdup(item.data); | 
|  | if (!htab->table[idx].entry.key || | 
|  | !htab->table[idx].entry.data) { | 
|  | __set_errno(ENOMEM); | 
|  | *retval = NULL; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | ++htab->filled; | 
|  |  | 
|  | /* return new entry */ | 
|  | *retval = &htab->table[idx].entry; | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | __set_errno(ESRCH); | 
|  | *retval = NULL; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * hdelete() | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * The standard implementation of hsearch(3) does not provide any way | 
|  | * to delete any entries from the hash table.  We extend the code to | 
|  | * do that. | 
|  | */ | 
|  |  | 
|  | int hdelete(const char *key) | 
|  | { | 
|  | return hdelete_r(key, &htab); | 
|  | } | 
|  |  | 
|  | int hdelete_r(const char *key, struct hsearch_data *htab) | 
|  | { | 
|  | ENTRY e, *ep; | 
|  | int idx; | 
|  |  | 
|  | debug("hdelete: DELETE key \"%s\"\n", key); | 
|  |  | 
|  | e.key = (char *)key; | 
|  |  | 
|  | if ((idx = hsearch_r(e, FIND, &ep, htab)) == 0) { | 
|  | __set_errno(ESRCH); | 
|  | return 0;	/* not found */ | 
|  | } | 
|  |  | 
|  | /* free used ENTRY */ | 
|  | debug("hdelete: DELETING key \"%s\"\n", key); | 
|  |  | 
|  | free(ep->key); | 
|  | free(ep->data); | 
|  | htab->table[idx].used = 0; | 
|  |  | 
|  | --htab->filled; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * hexport() | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Export the data stored in the hash table in linearized form. | 
|  | * | 
|  | * Entries are exported as "name=value" strings, separated by an | 
|  | * arbitrary (non-NUL, of course) separator character. This allows to | 
|  | * use this function both when formatting the U-Boot environment for | 
|  | * external storage (using '\0' as separator), but also when using it | 
|  | * for the "printenv" command to print all variables, simply by using | 
|  | * as '\n" as separator. This can also be used for new features like | 
|  | * exporting the environment data as text file, including the option | 
|  | * for later re-import. | 
|  | * | 
|  | * The entries in the result list will be sorted by ascending key | 
|  | * values. | 
|  | * | 
|  | * If the separator character is different from NUL, then any | 
|  | * separator characters and backslash characters in the values will | 
|  | * be escaped by a preceeding backslash in output. This is needed for | 
|  | * example to enable multi-line values, especially when the output | 
|  | * shall later be parsed (for example, for re-import). | 
|  | * | 
|  | * There are several options how the result buffer is handled: | 
|  | * | 
|  | * *resp  size | 
|  | * ----------- | 
|  | *  NULL    0	A string of sufficient length will be allocated. | 
|  | *  NULL   >0	A string of the size given will be | 
|  | *		allocated. An error will be returned if the size is | 
|  | *		not sufficient.  Any unused bytes in the string will | 
|  | *		be '\0'-padded. | 
|  | * !NULL    0	The user-supplied buffer will be used. No length | 
|  | *		checking will be performed, i. e. it is assumed that | 
|  | *		the buffer size will always be big enough. DANGEROUS. | 
|  | * !NULL   >0	The user-supplied buffer will be used. An error will | 
|  | *		be returned if the size is not sufficient.  Any unused | 
|  | *		bytes in the string will be '\0'-padded. | 
|  | */ | 
|  |  | 
|  | ssize_t hexport(const char sep, char **resp, size_t size) | 
|  | { | 
|  | return hexport_r(&htab, sep, resp, size); | 
|  | } | 
|  |  | 
|  | static int cmpkey(const void *p1, const void *p2) | 
|  | { | 
|  | ENTRY *e1 = *(ENTRY **) p1; | 
|  | ENTRY *e2 = *(ENTRY **) p2; | 
|  |  | 
|  | return (strcmp(e1->key, e2->key)); | 
|  | } | 
|  |  | 
|  | ssize_t hexport_r(struct hsearch_data *htab, const char sep, | 
|  | char **resp, size_t size) | 
|  | { | 
|  | ENTRY *list[htab->size]; | 
|  | char *res, *p; | 
|  | size_t totlen; | 
|  | int i, n; | 
|  |  | 
|  | /* Test for correct arguments.  */ | 
|  | if ((resp == NULL) || (htab == NULL)) { | 
|  | __set_errno(EINVAL); | 
|  | return (-1); | 
|  | } | 
|  |  | 
|  | debug("EXPORT  table = %p, htab.size = %d, htab.filled = %d, size = %d\n", | 
|  | htab, htab->size, htab->filled, size); | 
|  | /* | 
|  | * Pass 1: | 
|  | * search used entries, | 
|  | * save addresses and compute total length | 
|  | */ | 
|  | for (i = 1, n = 0, totlen = 0; i <= htab->size; ++i) { | 
|  |  | 
|  | if (htab->table[i].used) { | 
|  | ENTRY *ep = &htab->table[i].entry; | 
|  |  | 
|  | list[n++] = ep; | 
|  |  | 
|  | totlen += strlen(ep->key) + 2; | 
|  |  | 
|  | if (sep == '\0') { | 
|  | totlen += strlen(ep->data); | 
|  | } else {	/* check if escapes are needed */ | 
|  | char *s = ep->data; | 
|  |  | 
|  | while (*s) { | 
|  | ++totlen; | 
|  | /* add room for needed escape chars */ | 
|  | if ((*s == sep) || (*s == '\\')) | 
|  | ++totlen; | 
|  | ++s; | 
|  | } | 
|  | } | 
|  | totlen += 2;	/* for '=' and 'sep' char */ | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef DEBUG | 
|  | /* Pass 1a: print unsorted list */ | 
|  | printf("Unsorted: n=%d\n", n); | 
|  | for (i = 0; i < n; ++i) { | 
|  | printf("\t%3d: %p ==> %-10s => %s\n", | 
|  | i, list[i], list[i]->key, list[i]->data); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* Sort list by keys */ | 
|  | qsort(list, n, sizeof(ENTRY *), cmpkey); | 
|  |  | 
|  | /* Check if the user supplied buffer size is sufficient */ | 
|  | if (size) { | 
|  | if (size < totlen + 1) {	/* provided buffer too small */ | 
|  | debug("### buffer too small: %d, but need %d\n", | 
|  | size, totlen + 1); | 
|  | __set_errno(ENOMEM); | 
|  | return (-1); | 
|  | } | 
|  | } else { | 
|  | size = totlen + 1; | 
|  | } | 
|  |  | 
|  | /* Check if the user provided a buffer */ | 
|  | if (*resp) { | 
|  | /* yes; clear it */ | 
|  | res = *resp; | 
|  | memset(res, '\0', size); | 
|  | } else { | 
|  | /* no, allocate and clear one */ | 
|  | *resp = res = calloc(1, size); | 
|  | if (res == NULL) { | 
|  | __set_errno(ENOMEM); | 
|  | return (-1); | 
|  | } | 
|  | } | 
|  | /* | 
|  | * Pass 2: | 
|  | * export sorted list of result data | 
|  | */ | 
|  | for (i = 0, p = res; i < n; ++i) { | 
|  | char *s; | 
|  |  | 
|  | s = list[i]->key; | 
|  | while (*s) | 
|  | *p++ = *s++; | 
|  | *p++ = '='; | 
|  |  | 
|  | s = list[i]->data; | 
|  |  | 
|  | while (*s) { | 
|  | if ((*s == sep) || (*s == '\\')) | 
|  | *p++ = '\\';	/* escape */ | 
|  | *p++ = *s++; | 
|  | } | 
|  | *p++ = sep; | 
|  | } | 
|  | *p = '\0';		/* terminate result */ | 
|  |  | 
|  | return size; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * himport() | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Import linearized data into hash table. | 
|  | * | 
|  | * This is the inverse function to hexport(): it takes a linear list | 
|  | * of "name=value" pairs and creates hash table entries from it. | 
|  | * | 
|  | * Entries without "value", i. e. consisting of only "name" or | 
|  | * "name=", will cause this entry to be deleted from the hash table. | 
|  | * | 
|  | * The "flag" argument can be used to control the behaviour: when the | 
|  | * H_NOCLEAR bit is set, then an existing hash table will kept, i. e. | 
|  | * new data will be added to an existing hash table; otherwise, old | 
|  | * data will be discarded and a new hash table will be created. | 
|  | * | 
|  | * The separator character for the "name=value" pairs can be selected, | 
|  | * so we both support importing from externally stored environment | 
|  | * data (separated by NUL characters) and from plain text files | 
|  | * (entries separated by newline characters). | 
|  | * | 
|  | * To allow for nicely formatted text input, leading white space | 
|  | * (sequences of SPACE and TAB chars) is ignored, and entries starting | 
|  | * (after removal of any leading white space) with a '#' character are | 
|  | * considered comments and ignored. | 
|  | * | 
|  | * [NOTE: this means that a variable name cannot start with a '#' | 
|  | * character.] | 
|  | * | 
|  | * When using a non-NUL separator character, backslash is used as | 
|  | * escape character in the value part, allowing for example for | 
|  | * multi-line values. | 
|  | * | 
|  | * In theory, arbitrary separator characters can be used, but only | 
|  | * '\0' and '\n' have really been tested. | 
|  | */ | 
|  |  | 
|  | int himport(const char *env, size_t size, const char sep, int flag) | 
|  | { | 
|  | return himport_r(&htab, env, size, sep, flag); | 
|  | } | 
|  |  | 
|  | int himport_r(struct hsearch_data *htab, | 
|  | const char *env, size_t size, const char sep, int flag) | 
|  | { | 
|  | char *data, *sp, *dp, *name, *value; | 
|  |  | 
|  | /* Test for correct arguments.  */ | 
|  | if (htab == NULL) { | 
|  | __set_errno(EINVAL); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* we allocate new space to make sure we can write to the array */ | 
|  | if ((data = malloc(size)) == NULL) { | 
|  | debug("himport_r: can't malloc %d bytes\n", size); | 
|  | __set_errno(ENOMEM); | 
|  | return 0; | 
|  | } | 
|  | memcpy(data, env, size); | 
|  | dp = data; | 
|  |  | 
|  | if ((flag & H_NOCLEAR) == 0) { | 
|  | /* Destroy old hash table if one exists */ | 
|  | debug("Destroy Hash Table: %p table = %p\n", htab, | 
|  | htab->table); | 
|  | if (htab->table) | 
|  | hdestroy_r(htab); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Create new hash table (if needed).  The computation of the hash | 
|  | * table size is based on heuristics: in a sample of some 70+ | 
|  | * existing systems we found an average size of 39+ bytes per entry | 
|  | * in the environment (for the whole key=value pair). Assuming a | 
|  | * size of 8 per entry (= safety factor of ~5) should provide enough | 
|  | * safety margin for any existing environment definitions and still | 
|  | * allow for more than enough dynamic additions. Note that the | 
|  | * "size" argument is supposed to give the maximum enviroment size | 
|  | * (CONFIG_ENV_SIZE).  This heuristics will result in | 
|  | * unreasonably large numbers (and thus memory footprint) for | 
|  | * big flash environments (>8,000 entries for 64 KB | 
|  | * envrionment size), so we clip it to a reasonable value | 
|  | * (which can be overwritten in the board config file if | 
|  | * needed). | 
|  | */ | 
|  |  | 
|  | if (!htab->table) { | 
|  | int nent = size / 8; | 
|  |  | 
|  | if (nent > CONFIG_ENV_MAX_ENTRIES) | 
|  | nent = CONFIG_ENV_MAX_ENTRIES; | 
|  |  | 
|  | debug("Create Hash Table: N=%d\n", nent); | 
|  |  | 
|  | if (hcreate_r(nent, htab) == 0) { | 
|  | free(data); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Parse environment; allow for '\0' and 'sep' as separators */ | 
|  | do { | 
|  | ENTRY e, *rv; | 
|  |  | 
|  | /* skip leading white space */ | 
|  | while ((*dp == ' ') || (*dp == '\t')) | 
|  | ++dp; | 
|  |  | 
|  | /* skip comment lines */ | 
|  | if (*dp == '#') { | 
|  | while (*dp && (*dp != sep)) | 
|  | ++dp; | 
|  | ++dp; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* parse name */ | 
|  | for (name = dp; *dp != '=' && *dp && *dp != sep; ++dp) | 
|  | ; | 
|  |  | 
|  | /* deal with "name" and "name=" entries (delete var) */ | 
|  | if (*dp == '\0' || *(dp + 1) == '\0' || | 
|  | *dp == sep || *(dp + 1) == sep) { | 
|  | if (*dp == '=') | 
|  | *dp++ = '\0'; | 
|  | *dp++ = '\0';	/* terminate name */ | 
|  |  | 
|  | debug("DELETE CANDIDATE: \"%s\"\n", name); | 
|  |  | 
|  | if (hdelete_r(name, htab) == 0) | 
|  | debug("DELETE ERROR ##############################\n"); | 
|  |  | 
|  | continue; | 
|  | } | 
|  | *dp++ = '\0';	/* terminate name */ | 
|  |  | 
|  | /* parse value; deal with escapes */ | 
|  | for (value = sp = dp; *dp && (*dp != sep); ++dp) { | 
|  | if ((*dp == '\\') && *(dp + 1)) | 
|  | ++dp; | 
|  | *sp++ = *dp; | 
|  | } | 
|  | *sp++ = '\0';	/* terminate value */ | 
|  | ++dp; | 
|  |  | 
|  | /* enter into hash table */ | 
|  | e.key = name; | 
|  | e.data = value; | 
|  |  | 
|  | hsearch_r(e, ENTER, &rv, htab); | 
|  | if (rv == NULL) { | 
|  | printf("himport_r: can't insert \"%s=%s\" into hash table\n", | 
|  | name, value); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | debug("INSERT: table %p, filled %d/%d rv %p ==> name=\"%s\" value=\"%s\"\n", | 
|  | htab, htab->filled, htab->size, | 
|  | rv, name, value); | 
|  | } while ((dp < data + size) && *dp);	/* size check needed for text */ | 
|  | /* without '\0' termination */ | 
|  | debug("INSERT: free(data = %p)\n", data); | 
|  | free(data); | 
|  |  | 
|  | debug("INSERT: done\n"); | 
|  | return 1;		/* everything OK */ | 
|  | } |