| /* | 
 |  * ECC algorithm for M-systems disk on chip. We use the excellent Reed | 
 |  * Solmon code of Phil Karn (karn@ka9q.ampr.org) available under the | 
 |  * GNU GPL License. The rest is simply to convert the disk on chip | 
 |  * syndrom into a standard syndom. | 
 |  * | 
 |  * Author: Fabrice Bellard (fabrice.bellard@netgem.com) | 
 |  * Copyright (C) 2000 Netgem S.A. | 
 |  * | 
 |  * $Id: docecc.c,v 1.4 2001/10/02 15:05:13 dwmw2 Exp $ | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or modify | 
 |  * it under the terms of the GNU General Public License as published by | 
 |  * the Free Software Foundation; either version 2 of the License, or | 
 |  * (at your option) any later version. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, | 
 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 |  * GNU General Public License for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public License | 
 |  * along with this program; if not, write to the Free Software | 
 |  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA | 
 |  */ | 
 |  | 
 | #include <config.h> | 
 | #include <common.h> | 
 | #include <malloc.h> | 
 |  | 
 | #undef ECC_DEBUG | 
 | #undef PSYCHO_DEBUG | 
 |  | 
 | #include <linux/mtd/doc2000.h> | 
 |  | 
 | /* need to undef it (from asm/termbits.h) */ | 
 | #undef B0 | 
 |  | 
 | #define MM 10 /* Symbol size in bits */ | 
 | #define KK (1023-4) /* Number of data symbols per block */ | 
 | #define B0 510 /* First root of generator polynomial, alpha form */ | 
 | #define PRIM 1 /* power of alpha used to generate roots of generator poly */ | 
 | #define	NN ((1 << MM) - 1) | 
 |  | 
 | typedef unsigned short dtype; | 
 |  | 
 | /* 1+x^3+x^10 */ | 
 | static const int Pp[MM+1] = { 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1 }; | 
 |  | 
 | /* This defines the type used to store an element of the Galois Field | 
 |  * used by the code. Make sure this is something larger than a char if | 
 |  * if anything larger than GF(256) is used. | 
 |  * | 
 |  * Note: unsigned char will work up to GF(256) but int seems to run | 
 |  * faster on the Pentium. | 
 |  */ | 
 | typedef int gf; | 
 |  | 
 | /* No legal value in index form represents zero, so | 
 |  * we need a special value for this purpose | 
 |  */ | 
 | #define A0	(NN) | 
 |  | 
 | /* Compute x % NN, where NN is 2**MM - 1, | 
 |  * without a slow divide | 
 |  */ | 
 | static inline gf | 
 | modnn(int x) | 
 | { | 
 |   while (x >= NN) { | 
 |     x -= NN; | 
 |     x = (x >> MM) + (x & NN); | 
 |   } | 
 |   return x; | 
 | } | 
 |  | 
 | #define	CLEAR(a,n) {\ | 
 | int ci;\ | 
 | for(ci=(n)-1;ci >=0;ci--)\ | 
 | (a)[ci] = 0;\ | 
 | } | 
 |  | 
 | #define	COPY(a,b,n) {\ | 
 | int ci;\ | 
 | for(ci=(n)-1;ci >=0;ci--)\ | 
 | (a)[ci] = (b)[ci];\ | 
 | } | 
 |  | 
 | #define	COPYDOWN(a,b,n) {\ | 
 | int ci;\ | 
 | for(ci=(n)-1;ci >=0;ci--)\ | 
 | (a)[ci] = (b)[ci];\ | 
 | } | 
 |  | 
 | #define Ldec 1 | 
 |  | 
 | /* generate GF(2**m) from the irreducible polynomial p(X) in Pp[0]..Pp[m] | 
 |    lookup tables:  index->polynomial form   alpha_to[] contains j=alpha**i; | 
 | 		   polynomial form -> index form  index_of[j=alpha**i] = i | 
 |    alpha=2 is the primitive element of GF(2**m) | 
 |    HARI's COMMENT: (4/13/94) alpha_to[] can be used as follows: | 
 | 	Let @ represent the primitive element commonly called "alpha" that | 
 |    is the root of the primitive polynomial p(x). Then in GF(2^m), for any | 
 |    0 <= i <= 2^m-2, | 
 | 	@^i = a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1) | 
 |    where the binary vector (a(0),a(1),a(2),...,a(m-1)) is the representation | 
 |    of the integer "alpha_to[i]" with a(0) being the LSB and a(m-1) the MSB. Thus for | 
 |    example the polynomial representation of @^5 would be given by the binary | 
 |    representation of the integer "alpha_to[5]". | 
 | 		   Similarily, index_of[] can be used as follows: | 
 | 	As above, let @ represent the primitive element of GF(2^m) that is | 
 |    the root of the primitive polynomial p(x). In order to find the power | 
 |    of @ (alpha) that has the polynomial representation | 
 | 	a(0) + a(1) @ + a(2) @^2 + ... + a(m-1) @^(m-1) | 
 |    we consider the integer "i" whose binary representation with a(0) being LSB | 
 |    and a(m-1) MSB is (a(0),a(1),...,a(m-1)) and locate the entry | 
 |    "index_of[i]". Now, @^index_of[i] is that element whose polynomial | 
 |     representation is (a(0),a(1),a(2),...,a(m-1)). | 
 |    NOTE: | 
 | 	The element alpha_to[2^m-1] = 0 always signifying that the | 
 |    representation of "@^infinity" = 0 is (0,0,0,...,0). | 
 | 	Similarily, the element index_of[0] = A0 always signifying | 
 |    that the power of alpha which has the polynomial representation | 
 |    (0,0,...,0) is "infinity". | 
 |  | 
 | */ | 
 |  | 
 | static void | 
 | generate_gf(dtype Alpha_to[NN + 1], dtype Index_of[NN + 1]) | 
 | { | 
 |   register int i, mask; | 
 |  | 
 |   mask = 1; | 
 |   Alpha_to[MM] = 0; | 
 |   for (i = 0; i < MM; i++) { | 
 |     Alpha_to[i] = mask; | 
 |     Index_of[Alpha_to[i]] = i; | 
 |     /* If Pp[i] == 1 then, term @^i occurs in poly-repr of @^MM */ | 
 |     if (Pp[i] != 0) | 
 |       Alpha_to[MM] ^= mask;	/* Bit-wise EXOR operation */ | 
 |     mask <<= 1;	/* single left-shift */ | 
 |   } | 
 |   Index_of[Alpha_to[MM]] = MM; | 
 |   /* | 
 |    * Have obtained poly-repr of @^MM. Poly-repr of @^(i+1) is given by | 
 |    * poly-repr of @^i shifted left one-bit and accounting for any @^MM | 
 |    * term that may occur when poly-repr of @^i is shifted. | 
 |    */ | 
 |   mask >>= 1; | 
 |   for (i = MM + 1; i < NN; i++) { | 
 |     if (Alpha_to[i - 1] >= mask) | 
 |       Alpha_to[i] = Alpha_to[MM] ^ ((Alpha_to[i - 1] ^ mask) << 1); | 
 |     else | 
 |       Alpha_to[i] = Alpha_to[i - 1] << 1; | 
 |     Index_of[Alpha_to[i]] = i; | 
 |   } | 
 |   Index_of[0] = A0; | 
 |   Alpha_to[NN] = 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Performs ERRORS+ERASURES decoding of RS codes. bb[] is the content | 
 |  * of the feedback shift register after having processed the data and | 
 |  * the ECC. | 
 |  * | 
 |  * Return number of symbols corrected, or -1 if codeword is illegal | 
 |  * or uncorrectable. If eras_pos is non-null, the detected error locations | 
 |  * are written back. NOTE! This array must be at least NN-KK elements long. | 
 |  * The corrected data are written in eras_val[]. They must be xor with the data | 
 |  * to retrieve the correct data : data[erase_pos[i]] ^= erase_val[i] . | 
 |  * | 
 |  * First "no_eras" erasures are declared by the calling program. Then, the | 
 |  * maximum # of errors correctable is t_after_eras = floor((NN-KK-no_eras)/2). | 
 |  * If the number of channel errors is not greater than "t_after_eras" the | 
 |  * transmitted codeword will be recovered. Details of algorithm can be found | 
 |  * in R. Blahut's "Theory ... of Error-Correcting Codes". | 
 |  | 
 |  * Warning: the eras_pos[] array must not contain duplicate entries; decoder failure | 
 |  * will result. The decoder *could* check for this condition, but it would involve | 
 |  * extra time on every decoding operation. | 
 |  * */ | 
 | static int | 
 | eras_dec_rs(dtype Alpha_to[NN + 1], dtype Index_of[NN + 1], | 
 | 	    gf bb[NN - KK + 1], gf eras_val[NN-KK], int eras_pos[NN-KK], | 
 | 	    int no_eras) | 
 | { | 
 |   int deg_lambda, el, deg_omega; | 
 |   int i, j, r,k; | 
 |   gf u,q,tmp,num1,num2,den,discr_r; | 
 |   gf lambda[NN-KK + 1], s[NN-KK + 1];	/* Err+Eras Locator poly | 
 | 					 * and syndrome poly */ | 
 |   gf b[NN-KK + 1], t[NN-KK + 1], omega[NN-KK + 1]; | 
 |   gf root[NN-KK], reg[NN-KK + 1], loc[NN-KK]; | 
 |   int syn_error, count; | 
 |  | 
 |   syn_error = 0; | 
 |   for(i=0;i<NN-KK;i++) | 
 |       syn_error |= bb[i]; | 
 |  | 
 |   if (!syn_error) { | 
 |     /* if remainder is zero, data[] is a codeword and there are no | 
 |      * errors to correct. So return data[] unmodified | 
 |      */ | 
 |     count = 0; | 
 |     goto finish; | 
 |   } | 
 |  | 
 |   for(i=1;i<=NN-KK;i++){ | 
 |     s[i] = bb[0]; | 
 |   } | 
 |   for(j=1;j<NN-KK;j++){ | 
 |     if(bb[j] == 0) | 
 |       continue; | 
 |     tmp = Index_of[bb[j]]; | 
 |  | 
 |     for(i=1;i<=NN-KK;i++) | 
 |       s[i] ^= Alpha_to[modnn(tmp + (B0+i-1)*PRIM*j)]; | 
 |   } | 
 |  | 
 |   /* undo the feedback register implicit multiplication and convert | 
 |      syndromes to index form */ | 
 |  | 
 |   for(i=1;i<=NN-KK;i++) { | 
 |       tmp = Index_of[s[i]]; | 
 |       if (tmp != A0) | 
 | 	  tmp = modnn(tmp + 2 * KK * (B0+i-1)*PRIM); | 
 |       s[i] = tmp; | 
 |   } | 
 |  | 
 |   CLEAR(&lambda[1],NN-KK); | 
 |   lambda[0] = 1; | 
 |  | 
 |   if (no_eras > 0) { | 
 |     /* Init lambda to be the erasure locator polynomial */ | 
 |     lambda[1] = Alpha_to[modnn(PRIM * eras_pos[0])]; | 
 |     for (i = 1; i < no_eras; i++) { | 
 |       u = modnn(PRIM*eras_pos[i]); | 
 |       for (j = i+1; j > 0; j--) { | 
 | 	tmp = Index_of[lambda[j - 1]]; | 
 | 	if(tmp != A0) | 
 | 	  lambda[j] ^= Alpha_to[modnn(u + tmp)]; | 
 |       } | 
 |     } | 
 | #ifdef ECC_DEBUG | 
 |     /* Test code that verifies the erasure locator polynomial just constructed | 
 |        Needed only for decoder debugging. */ | 
 |  | 
 |     /* find roots of the erasure location polynomial */ | 
 |     for(i=1;i<=no_eras;i++) | 
 |       reg[i] = Index_of[lambda[i]]; | 
 |     count = 0; | 
 |     for (i = 1,k=NN-Ldec; i <= NN; i++,k = modnn(NN+k-Ldec)) { | 
 |       q = 1; | 
 |       for (j = 1; j <= no_eras; j++) | 
 | 	if (reg[j] != A0) { | 
 | 	  reg[j] = modnn(reg[j] + j); | 
 | 	  q ^= Alpha_to[reg[j]]; | 
 | 	} | 
 |       if (q != 0) | 
 | 	continue; | 
 |       /* store root and error location number indices */ | 
 |       root[count] = i; | 
 |       loc[count] = k; | 
 |       count++; | 
 |     } | 
 |     if (count != no_eras) { | 
 |       printf("\n lambda(x) is WRONG\n"); | 
 |       count = -1; | 
 |       goto finish; | 
 |     } | 
 | #ifdef PSYCHO_DEBUG | 
 |     printf("\n Erasure positions as determined by roots of Eras Loc Poly:\n"); | 
 |     for (i = 0; i < count; i++) | 
 |       printf("%d ", loc[i]); | 
 |     printf("\n"); | 
 | #endif | 
 | #endif | 
 |   } | 
 |   for(i=0;i<NN-KK+1;i++) | 
 |     b[i] = Index_of[lambda[i]]; | 
 |  | 
 |   /* | 
 |    * Begin Berlekamp-Massey algorithm to determine error+erasure | 
 |    * locator polynomial | 
 |    */ | 
 |   r = no_eras; | 
 |   el = no_eras; | 
 |   while (++r <= NN-KK) {	/* r is the step number */ | 
 |     /* Compute discrepancy at the r-th step in poly-form */ | 
 |     discr_r = 0; | 
 |     for (i = 0; i < r; i++){ | 
 |       if ((lambda[i] != 0) && (s[r - i] != A0)) { | 
 | 	discr_r ^= Alpha_to[modnn(Index_of[lambda[i]] + s[r - i])]; | 
 |       } | 
 |     } | 
 |     discr_r = Index_of[discr_r];	/* Index form */ | 
 |     if (discr_r == A0) { | 
 |       /* 2 lines below: B(x) <-- x*B(x) */ | 
 |       COPYDOWN(&b[1],b,NN-KK); | 
 |       b[0] = A0; | 
 |     } else { | 
 |       /* 7 lines below: T(x) <-- lambda(x) - discr_r*x*b(x) */ | 
 |       t[0] = lambda[0]; | 
 |       for (i = 0 ; i < NN-KK; i++) { | 
 | 	if(b[i] != A0) | 
 | 	  t[i+1] = lambda[i+1] ^ Alpha_to[modnn(discr_r + b[i])]; | 
 | 	else | 
 | 	  t[i+1] = lambda[i+1]; | 
 |       } | 
 |       if (2 * el <= r + no_eras - 1) { | 
 | 	el = r + no_eras - el; | 
 | 	/* | 
 | 	 * 2 lines below: B(x) <-- inv(discr_r) * | 
 | 	 * lambda(x) | 
 | 	 */ | 
 | 	for (i = 0; i <= NN-KK; i++) | 
 | 	  b[i] = (lambda[i] == 0) ? A0 : modnn(Index_of[lambda[i]] - discr_r + NN); | 
 |       } else { | 
 | 	/* 2 lines below: B(x) <-- x*B(x) */ | 
 | 	COPYDOWN(&b[1],b,NN-KK); | 
 | 	b[0] = A0; | 
 |       } | 
 |       COPY(lambda,t,NN-KK+1); | 
 |     } | 
 |   } | 
 |  | 
 |   /* Convert lambda to index form and compute deg(lambda(x)) */ | 
 |   deg_lambda = 0; | 
 |   for(i=0;i<NN-KK+1;i++){ | 
 |     lambda[i] = Index_of[lambda[i]]; | 
 |     if(lambda[i] != A0) | 
 |       deg_lambda = i; | 
 |   } | 
 |   /* | 
 |    * Find roots of the error+erasure locator polynomial by Chien | 
 |    * Search | 
 |    */ | 
 |   COPY(®[1],&lambda[1],NN-KK); | 
 |   count = 0;		/* Number of roots of lambda(x) */ | 
 |   for (i = 1,k=NN-Ldec; i <= NN; i++,k = modnn(NN+k-Ldec)) { | 
 |     q = 1; | 
 |     for (j = deg_lambda; j > 0; j--){ | 
 |       if (reg[j] != A0) { | 
 | 	reg[j] = modnn(reg[j] + j); | 
 | 	q ^= Alpha_to[reg[j]]; | 
 |       } | 
 |     } | 
 |     if (q != 0) | 
 |       continue; | 
 |     /* store root (index-form) and error location number */ | 
 |     root[count] = i; | 
 |     loc[count] = k; | 
 |     /* If we've already found max possible roots, | 
 |      * abort the search to save time | 
 |      */ | 
 |     if(++count == deg_lambda) | 
 |       break; | 
 |   } | 
 |   if (deg_lambda != count) { | 
 |     /* | 
 |      * deg(lambda) unequal to number of roots => uncorrectable | 
 |      * error detected | 
 |      */ | 
 |     count = -1; | 
 |     goto finish; | 
 |   } | 
 |   /* | 
 |    * Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo | 
 |    * x**(NN-KK)). in index form. Also find deg(omega). | 
 |    */ | 
 |   deg_omega = 0; | 
 |   for (i = 0; i < NN-KK;i++){ | 
 |     tmp = 0; | 
 |     j = (deg_lambda < i) ? deg_lambda : i; | 
 |     for(;j >= 0; j--){ | 
 |       if ((s[i + 1 - j] != A0) && (lambda[j] != A0)) | 
 | 	tmp ^= Alpha_to[modnn(s[i + 1 - j] + lambda[j])]; | 
 |     } | 
 |     if(tmp != 0) | 
 |       deg_omega = i; | 
 |     omega[i] = Index_of[tmp]; | 
 |   } | 
 |   omega[NN-KK] = A0; | 
 |  | 
 |   /* | 
 |    * Compute error values in poly-form. num1 = omega(inv(X(l))), num2 = | 
 |    * inv(X(l))**(B0-1) and den = lambda_pr(inv(X(l))) all in poly-form | 
 |    */ | 
 |   for (j = count-1; j >=0; j--) { | 
 |     num1 = 0; | 
 |     for (i = deg_omega; i >= 0; i--) { | 
 |       if (omega[i] != A0) | 
 | 	num1  ^= Alpha_to[modnn(omega[i] + i * root[j])]; | 
 |     } | 
 |     num2 = Alpha_to[modnn(root[j] * (B0 - 1) + NN)]; | 
 |     den = 0; | 
 |  | 
 |     /* lambda[i+1] for i even is the formal derivative lambda_pr of lambda[i] */ | 
 |     for (i = min(deg_lambda,NN-KK-1) & ~1; i >= 0; i -=2) { | 
 |       if(lambda[i+1] != A0) | 
 | 	den ^= Alpha_to[modnn(lambda[i+1] + i * root[j])]; | 
 |     } | 
 |     if (den == 0) { | 
 | #ifdef ECC_DEBUG | 
 |       printf("\n ERROR: denominator = 0\n"); | 
 | #endif | 
 |       /* Convert to dual- basis */ | 
 |       count = -1; | 
 |       goto finish; | 
 |     } | 
 |     /* Apply error to data */ | 
 |     if (num1 != 0) { | 
 | 	eras_val[j] = Alpha_to[modnn(Index_of[num1] + Index_of[num2] + NN - Index_of[den])]; | 
 |     } else { | 
 | 	eras_val[j] = 0; | 
 |     } | 
 |   } | 
 |  finish: | 
 |   for(i=0;i<count;i++) | 
 |       eras_pos[i] = loc[i]; | 
 |   return count; | 
 | } | 
 |  | 
 | /***************************************************************************/ | 
 | /* The DOC specific code begins here */ | 
 |  | 
 | #define SECTOR_SIZE 512 | 
 | /* The sector bytes are packed into NB_DATA MM bits words */ | 
 | #define NB_DATA (((SECTOR_SIZE + 1) * 8 + 6) / MM) | 
 |  | 
 | /* | 
 |  * Correct the errors in 'sector[]' by using 'ecc1[]' which is the | 
 |  * content of the feedback shift register applyied to the sector and | 
 |  * the ECC. Return the number of errors corrected (and correct them in | 
 |  * sector), or -1 if error | 
 |  */ | 
 | int doc_decode_ecc(unsigned char sector[SECTOR_SIZE], unsigned char ecc1[6]) | 
 | { | 
 |     int parity, i, nb_errors; | 
 |     gf bb[NN - KK + 1]; | 
 |     gf error_val[NN-KK]; | 
 |     int error_pos[NN-KK], pos, bitpos, index, val; | 
 |     dtype *Alpha_to, *Index_of; | 
 |  | 
 |     /* init log and exp tables here to save memory. However, it is slower */ | 
 |     Alpha_to = malloc((NN + 1) * sizeof(dtype)); | 
 |     if (!Alpha_to) | 
 | 	return -1; | 
 |  | 
 |     Index_of = malloc((NN + 1) * sizeof(dtype)); | 
 |     if (!Index_of) { | 
 | 	free(Alpha_to); | 
 | 	return -1; | 
 |     } | 
 |  | 
 |     generate_gf(Alpha_to, Index_of); | 
 |  | 
 |     parity = ecc1[1]; | 
 |  | 
 |     bb[0] =  (ecc1[4] & 0xff) | ((ecc1[5] & 0x03) << 8); | 
 |     bb[1] = ((ecc1[5] & 0xfc) >> 2) | ((ecc1[2] & 0x0f) << 6); | 
 |     bb[2] = ((ecc1[2] & 0xf0) >> 4) | ((ecc1[3] & 0x3f) << 4); | 
 |     bb[3] = ((ecc1[3] & 0xc0) >> 6) | ((ecc1[0] & 0xff) << 2); | 
 |  | 
 |     nb_errors = eras_dec_rs(Alpha_to, Index_of, bb, | 
 | 			    error_val, error_pos, 0); | 
 |     if (nb_errors <= 0) | 
 | 	goto the_end; | 
 |  | 
 |     /* correct the errors */ | 
 |     for(i=0;i<nb_errors;i++) { | 
 | 	pos = error_pos[i]; | 
 | 	if (pos >= NB_DATA && pos < KK) { | 
 | 	    nb_errors = -1; | 
 | 	    goto the_end; | 
 | 	} | 
 | 	if (pos < NB_DATA) { | 
 | 	    /* extract bit position (MSB first) */ | 
 | 	    pos = 10 * (NB_DATA - 1 - pos) - 6; | 
 | 	    /* now correct the following 10 bits. At most two bytes | 
 | 	       can be modified since pos is even */ | 
 | 	    index = (pos >> 3) ^ 1; | 
 | 	    bitpos = pos & 7; | 
 | 	    if ((index >= 0 && index < SECTOR_SIZE) || | 
 | 		index == (SECTOR_SIZE + 1)) { | 
 | 		val = error_val[i] >> (2 + bitpos); | 
 | 		parity ^= val; | 
 | 		if (index < SECTOR_SIZE) | 
 | 		    sector[index] ^= val; | 
 | 	    } | 
 | 	    index = ((pos >> 3) + 1) ^ 1; | 
 | 	    bitpos = (bitpos + 10) & 7; | 
 | 	    if (bitpos == 0) | 
 | 		bitpos = 8; | 
 | 	    if ((index >= 0 && index < SECTOR_SIZE) || | 
 | 		index == (SECTOR_SIZE + 1)) { | 
 | 		val = error_val[i] << (8 - bitpos); | 
 | 		parity ^= val; | 
 | 		if (index < SECTOR_SIZE) | 
 | 		    sector[index] ^= val; | 
 | 	    } | 
 | 	} | 
 |     } | 
 |  | 
 |     /* use parity to test extra errors */ | 
 |     if ((parity & 0xff) != 0) | 
 | 	nb_errors = -1; | 
 |  | 
 |  the_end: | 
 |     free(Alpha_to); | 
 |     free(Index_of); | 
 |     return nb_errors; | 
 | } |