| /* | 
 |  * Driver for NAND support, Rick Bronson | 
 |  * borrowed heavily from: | 
 |  * (c) 1999 Machine Vision Holdings, Inc. | 
 |  * (c) 1999, 2000 David Woodhouse <dwmw2@infradead.org> | 
 |  * | 
 |  * Added 16-bit nand support | 
 |  * (C) 2004 Texas Instruments | 
 |  */ | 
 |  | 
 | #include <common.h> | 
 | #include <command.h> | 
 | #include <malloc.h> | 
 | #include <asm/io.h> | 
 | #include <watchdog.h> | 
 |  | 
 | #ifdef CONFIG_SHOW_BOOT_PROGRESS | 
 | # include <status_led.h> | 
 | # define SHOW_BOOT_PROGRESS(arg)	show_boot_progress(arg) | 
 | #else | 
 | # define SHOW_BOOT_PROGRESS(arg) | 
 | #endif | 
 |  | 
 | #if (CONFIG_COMMANDS & CFG_CMD_NAND) | 
 |  | 
 | #include <linux/mtd/nand.h> | 
 | #include <linux/mtd/nand_ids.h> | 
 | #include <jffs2/jffs2.h> | 
 |  | 
 | #ifdef CONFIG_OMAP1510 | 
 | void archflashwp(void *archdata, int wp); | 
 | #endif | 
 |  | 
 | #define ROUND_DOWN(value,boundary)      ((value) & (~((boundary)-1))) | 
 |  | 
 | /* | 
 |  * Definition of the out of band configuration structure | 
 |  */ | 
 | struct nand_oob_config { | 
 | 	int ecc_pos[6];		/* position of ECC bytes inside oob */ | 
 | 	int badblock_pos;	/* position of bad block flag inside oob -1 = inactive */ | 
 | 	int eccvalid_pos;	/* position of ECC valid flag inside oob -1 = inactive */ | 
 | } oob_config = { {0}, 0, 0}; | 
 |  | 
 | #undef	NAND_DEBUG | 
 | #undef	PSYCHO_DEBUG | 
 |  | 
 | /* ****************** WARNING ********************* | 
 |  * When ALLOW_ERASE_BAD_DEBUG is non-zero the erase command will | 
 |  * erase (or at least attempt to erase) blocks that are marked | 
 |  * bad. This can be very handy if you are _sure_ that the block | 
 |  * is OK, say because you marked a good block bad to test bad | 
 |  * block handling and you are done testing, or if you have | 
 |  * accidentally marked blocks bad. | 
 |  * | 
 |  * Erasing factory marked bad blocks is a _bad_ idea. If the | 
 |  * erase succeeds there is no reliable way to find them again, | 
 |  * and attempting to program or erase bad blocks can affect | 
 |  * the data in _other_ (good) blocks. | 
 |  */ | 
 | #define	 ALLOW_ERASE_BAD_DEBUG 0 | 
 |  | 
 | #define CONFIG_MTD_NAND_ECC  /* enable ECC */ | 
 | #define CONFIG_MTD_NAND_ECC_JFFS2 | 
 |  | 
 | /* bits for nand_rw() `cmd'; or together as needed */ | 
 | #define NANDRW_READ	0x01 | 
 | #define NANDRW_WRITE	0x00 | 
 | #define NANDRW_JFFS2	0x02 | 
 | #define NANDRW_JFFS2_SKIP	0x04 | 
 |  | 
 | /* | 
 |  * Function Prototypes | 
 |  */ | 
 | static void nand_print(struct nand_chip *nand); | 
 | int nand_rw (struct nand_chip* nand, int cmd, | 
 | 	    size_t start, size_t len, | 
 | 	    size_t * retlen, u_char * buf); | 
 | int nand_erase(struct nand_chip* nand, size_t ofs, size_t len, int clean); | 
 | static int nand_read_ecc(struct nand_chip *nand, size_t start, size_t len, | 
 | 		 size_t * retlen, u_char *buf, u_char *ecc_code); | 
 | static int nand_write_ecc (struct nand_chip* nand, size_t to, size_t len, | 
 | 			   size_t * retlen, const u_char * buf, u_char * ecc_code); | 
 | static void nand_print_bad(struct nand_chip *nand); | 
 | static int nand_read_oob(struct nand_chip* nand, size_t ofs, size_t len, | 
 | 		 size_t * retlen, u_char * buf); | 
 | static int nand_write_oob(struct nand_chip* nand, size_t ofs, size_t len, | 
 | 		 size_t * retlen, const u_char * buf); | 
 | static int NanD_WaitReady(struct nand_chip *nand, int ale_wait); | 
 | #ifdef CONFIG_MTD_NAND_ECC | 
 | static int nand_correct_data (u_char *dat, u_char *read_ecc, u_char *calc_ecc); | 
 | static void nand_calculate_ecc (const u_char *dat, u_char *ecc_code); | 
 | #endif | 
 |  | 
 | struct nand_chip nand_dev_desc[CFG_MAX_NAND_DEVICE] = {{0}}; | 
 |  | 
 | /* Current NAND Device	*/ | 
 | static int curr_device = -1; | 
 |  | 
 | /* ------------------------------------------------------------------------- */ | 
 |  | 
 | int do_nand (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]) | 
 | { | 
 |     int rcode = 0; | 
 |  | 
 |     switch (argc) { | 
 |     case 0: | 
 |     case 1: | 
 | 	printf ("Usage:\n%s\n", cmdtp->usage); | 
 | 	return 1; | 
 |     case 2: | 
 | 	if (strcmp(argv[1],"info") == 0) { | 
 | 		int i; | 
 |  | 
 | 		putc ('\n'); | 
 |  | 
 | 		for (i=0; i<CFG_MAX_NAND_DEVICE; ++i) { | 
 | 			if(nand_dev_desc[i].ChipID == NAND_ChipID_UNKNOWN) | 
 | 				continue; /* list only known devices */ | 
 | 			printf ("Device %d: ", i); | 
 | 			nand_print(&nand_dev_desc[i]); | 
 | 		} | 
 | 		return 0; | 
 |  | 
 | 	} else if (strcmp(argv[1],"device") == 0) { | 
 | 		if ((curr_device < 0) || (curr_device >= CFG_MAX_NAND_DEVICE)) { | 
 | 			puts ("\nno devices available\n"); | 
 | 			return 1; | 
 | 		} | 
 | 		printf ("\nDevice %d: ", curr_device); | 
 | 		nand_print(&nand_dev_desc[curr_device]); | 
 | 		return 0; | 
 |  | 
 | 	} else if (strcmp(argv[1],"bad") == 0) { | 
 | 		if ((curr_device < 0) || (curr_device >= CFG_MAX_NAND_DEVICE)) { | 
 | 			puts ("\nno devices available\n"); | 
 | 			return 1; | 
 | 		} | 
 | 		printf ("\nDevice %d bad blocks:\n", curr_device); | 
 | 		nand_print_bad(&nand_dev_desc[curr_device]); | 
 | 		return 0; | 
 |  | 
 | 	} | 
 | 	printf ("Usage:\n%s\n", cmdtp->usage); | 
 | 	return 1; | 
 |     case 3: | 
 | 	if (strcmp(argv[1],"device") == 0) { | 
 | 		int dev = (int)simple_strtoul(argv[2], NULL, 10); | 
 |  | 
 | 		printf ("\nDevice %d: ", dev); | 
 | 		if (dev >= CFG_MAX_NAND_DEVICE) { | 
 | 			puts ("unknown device\n"); | 
 | 			return 1; | 
 | 		} | 
 | 		nand_print(&nand_dev_desc[dev]); | 
 | 		/*nand_print (dev);*/ | 
 |  | 
 | 		if (nand_dev_desc[dev].ChipID == NAND_ChipID_UNKNOWN) { | 
 | 			return 1; | 
 | 		} | 
 |  | 
 | 		curr_device = dev; | 
 |  | 
 | 		puts ("... is now current device\n"); | 
 |  | 
 | 		return 0; | 
 | 	} | 
 | 	else if (strcmp(argv[1],"erase") == 0 && strcmp(argv[2], "clean") == 0) { | 
 | 		struct nand_chip* nand = &nand_dev_desc[curr_device]; | 
 | 		ulong off = 0; | 
 | 		ulong size = nand->totlen; | 
 | 		int ret; | 
 |  | 
 | 		printf ("\nNAND erase: device %d offset %ld, size %ld ... ", | 
 | 			curr_device, off, size); | 
 |  | 
 | 		ret = nand_erase (nand, off, size, 1); | 
 |  | 
 | 		printf("%s\n", ret ? "ERROR" : "OK"); | 
 |  | 
 | 		return ret; | 
 | 	} | 
 |  | 
 | 	printf ("Usage:\n%s\n", cmdtp->usage); | 
 | 	return 1; | 
 |     default: | 
 | 	/* at least 4 args */ | 
 |  | 
 | 	if (strncmp(argv[1], "read", 4) == 0 || | 
 | 	    strncmp(argv[1], "write", 5) == 0) { | 
 | 		ulong addr = simple_strtoul(argv[2], NULL, 16); | 
 | 		ulong off  = simple_strtoul(argv[3], NULL, 16); | 
 | 		ulong size = simple_strtoul(argv[4], NULL, 16); | 
 | 		int cmd    = (strncmp(argv[1], "read", 4) == 0) ? | 
 | 				NANDRW_READ : NANDRW_WRITE; | 
 | 		int ret, total; | 
 | 		char* cmdtail = strchr(argv[1], '.'); | 
 |  | 
 | 		if (cmdtail && !strncmp(cmdtail, ".oob", 2)) { | 
 | 			/* read out-of-band data */ | 
 | 			if (cmd & NANDRW_READ) { | 
 | 				ret = nand_read_oob(nand_dev_desc + curr_device, | 
 | 						    off, size, &total, | 
 | 						    (u_char*)addr); | 
 | 			} | 
 | 			else { | 
 | 				ret = nand_write_oob(nand_dev_desc + curr_device, | 
 | 						     off, size, &total, | 
 | 						     (u_char*)addr); | 
 | 			} | 
 | 			return ret; | 
 | 		} | 
 | 		else if (cmdtail && !strncmp(cmdtail, ".jffs2", 2)) | 
 | 			cmd |= NANDRW_JFFS2;	/* skip bad blocks */ | 
 | 		else if (cmdtail && !strncmp(cmdtail, ".jffs2s", 2)) { | 
 | 			cmd |= NANDRW_JFFS2;	/* skip bad blocks (on read too) */ | 
 | 			if (cmd & NANDRW_READ) | 
 | 				cmd |= NANDRW_JFFS2_SKIP;	/* skip bad blocks (on read too) */ | 
 | 		} | 
 | #ifdef SXNI855T | 
 | 		/* need ".e" same as ".j" for compatibility with older units */ | 
 | 		else if (cmdtail && !strcmp(cmdtail, ".e")) | 
 | 			cmd |= NANDRW_JFFS2;	/* skip bad blocks */ | 
 | #endif | 
 | #ifdef CFG_NAND_SKIP_BAD_DOT_I | 
 | 		/* need ".i" same as ".jffs2s" for compatibility with older units (esd) */ | 
 | 		/* ".i" for image -> read skips bad block (no 0xff) */ | 
 | 		else if (cmdtail && !strcmp(cmdtail, ".i")) | 
 | 			cmd |= NANDRW_JFFS2;	/* skip bad blocks (on read too) */ | 
 | 			if (cmd & NANDRW_READ) | 
 | 				cmd |= NANDRW_JFFS2_SKIP;	/* skip bad blocks (on read too) */ | 
 | #endif /* CFG_NAND_SKIP_BAD_DOT_I */ | 
 | 		else if (cmdtail) { | 
 | 			printf ("Usage:\n%s\n", cmdtp->usage); | 
 | 			return 1; | 
 | 		} | 
 |  | 
 | 		printf ("\nNAND %s: device %d offset %ld, size %ld ... ", | 
 | 			(cmd & NANDRW_READ) ? "read" : "write", | 
 | 			curr_device, off, size); | 
 |  | 
 | 		ret = nand_rw(nand_dev_desc + curr_device, cmd, off, size, | 
 | 			     &total, (u_char*)addr); | 
 |  | 
 | 		printf (" %d bytes %s: %s\n", total, | 
 | 			(cmd & NANDRW_READ) ? "read" : "written", | 
 | 			ret ? "ERROR" : "OK"); | 
 |  | 
 | 		return ret; | 
 | 	} else if (strcmp(argv[1],"erase") == 0 && | 
 | 		   (argc == 4 || strcmp("clean", argv[2]) == 0)) { | 
 | 		int clean = argc == 5; | 
 | 		ulong off = simple_strtoul(argv[2 + clean], NULL, 16); | 
 | 		ulong size = simple_strtoul(argv[3 + clean], NULL, 16); | 
 | 		int ret; | 
 |  | 
 | 		printf ("\nNAND erase: device %d offset %ld, size %ld ... ", | 
 | 			curr_device, off, size); | 
 |  | 
 | 		ret = nand_erase (nand_dev_desc + curr_device, off, size, clean); | 
 |  | 
 | 		printf("%s\n", ret ? "ERROR" : "OK"); | 
 |  | 
 | 		return ret; | 
 | 	} else { | 
 | 		printf ("Usage:\n%s\n", cmdtp->usage); | 
 | 		rcode = 1; | 
 | 	} | 
 |  | 
 | 	return rcode; | 
 |     } | 
 | } | 
 |  | 
 | U_BOOT_CMD( | 
 | 	nand,	5,	1,	do_nand, | 
 | 	"nand    - NAND sub-system\n", | 
 | 	"info  - show available NAND devices\n" | 
 | 	"nand device [dev] - show or set current device\n" | 
 | 	"nand read[.jffs2[s]]  addr off size\n" | 
 | 	"nand write[.jffs2] addr off size - read/write `size' bytes starting\n" | 
 | 	"    at offset `off' to/from memory address `addr'\n" | 
 | 	"nand erase [clean] [off size] - erase `size' bytes from\n" | 
 | 	"    offset `off' (entire device if not specified)\n" | 
 | 	"nand bad - show bad blocks\n" | 
 | 	"nand read.oob addr off size - read out-of-band data\n" | 
 | 	"nand write.oob addr off size - read out-of-band data\n" | 
 | ); | 
 |  | 
 | int do_nandboot (cmd_tbl_t *cmdtp, int flag, int argc, char *argv[]) | 
 | { | 
 | 	char *boot_device = NULL; | 
 | 	char *ep; | 
 | 	int dev; | 
 | 	ulong cnt; | 
 | 	ulong addr; | 
 | 	ulong offset = 0; | 
 | 	image_header_t *hdr; | 
 | 	int rcode = 0; | 
 | 	switch (argc) { | 
 | 	case 1: | 
 | 		addr = CFG_LOAD_ADDR; | 
 | 		boot_device = getenv ("bootdevice"); | 
 | 		break; | 
 | 	case 2: | 
 | 		addr = simple_strtoul(argv[1], NULL, 16); | 
 | 		boot_device = getenv ("bootdevice"); | 
 | 		break; | 
 | 	case 3: | 
 | 		addr = simple_strtoul(argv[1], NULL, 16); | 
 | 		boot_device = argv[2]; | 
 | 		break; | 
 | 	case 4: | 
 | 		addr = simple_strtoul(argv[1], NULL, 16); | 
 | 		boot_device = argv[2]; | 
 | 		offset = simple_strtoul(argv[3], NULL, 16); | 
 | 		break; | 
 | 	default: | 
 | 		printf ("Usage:\n%s\n", cmdtp->usage); | 
 | 		SHOW_BOOT_PROGRESS (-1); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	if (!boot_device) { | 
 | 		puts ("\n** No boot device **\n"); | 
 | 		SHOW_BOOT_PROGRESS (-1); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	dev = simple_strtoul(boot_device, &ep, 16); | 
 |  | 
 | 	if ((dev >= CFG_MAX_NAND_DEVICE) || | 
 | 	    (nand_dev_desc[dev].ChipID == NAND_ChipID_UNKNOWN)) { | 
 | 		printf ("\n** Device %d not available\n", dev); | 
 | 		SHOW_BOOT_PROGRESS (-1); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	printf ("\nLoading from device %d: %s at 0x%lx (offset 0x%lx)\n", | 
 | 		dev, nand_dev_desc[dev].name, nand_dev_desc[dev].IO_ADDR, | 
 | 		offset); | 
 |  | 
 | 	if (nand_rw (nand_dev_desc + dev, NANDRW_READ, offset, | 
 | 		    SECTORSIZE, NULL, (u_char *)addr)) { | 
 | 		printf ("** Read error on %d\n", dev); | 
 | 		SHOW_BOOT_PROGRESS (-1); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	hdr = (image_header_t *)addr; | 
 |  | 
 | 	if (ntohl(hdr->ih_magic) == IH_MAGIC) { | 
 |  | 
 | 		print_image_hdr (hdr); | 
 |  | 
 | 		cnt = (ntohl(hdr->ih_size) + sizeof(image_header_t)); | 
 | 		cnt -= SECTORSIZE; | 
 | 	} else { | 
 | 		printf ("\n** Bad Magic Number 0x%x **\n", hdr->ih_magic); | 
 | 		SHOW_BOOT_PROGRESS (-1); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	if (nand_rw (nand_dev_desc + dev, NANDRW_READ, offset + SECTORSIZE, cnt, | 
 | 		    NULL, (u_char *)(addr+SECTORSIZE))) { | 
 | 		printf ("** Read error on %d\n", dev); | 
 | 		SHOW_BOOT_PROGRESS (-1); | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	/* Loading ok, update default load address */ | 
 |  | 
 | 	load_addr = addr; | 
 |  | 
 | 	/* Check if we should attempt an auto-start */ | 
 | 	if (((ep = getenv("autostart")) != NULL) && (strcmp(ep,"yes") == 0)) { | 
 | 		char *local_args[2]; | 
 | 		extern int do_bootm (cmd_tbl_t *, int, int, char *[]); | 
 |  | 
 | 		local_args[0] = argv[0]; | 
 | 		local_args[1] = NULL; | 
 |  | 
 | 		printf ("Automatic boot of image at addr 0x%08lx ...\n", addr); | 
 |  | 
 | 		do_bootm (cmdtp, 0, 1, local_args); | 
 | 		rcode = 1; | 
 | 	} | 
 | 	return rcode; | 
 | } | 
 |  | 
 | U_BOOT_CMD( | 
 | 	nboot,	4,	1,	do_nandboot, | 
 | 	"nboot   - boot from NAND device\n", | 
 | 	"loadAddr dev\n" | 
 | ); | 
 |  | 
 | /* returns 0 if block containing pos is OK: | 
 |  *		valid erase block and | 
 |  *		not marked bad, or no bad mark position is specified | 
 |  * returns 1 if marked bad or otherwise invalid | 
 |  */ | 
 | int check_block (struct nand_chip *nand, unsigned long pos) | 
 | { | 
 | 	int retlen; | 
 | 	uint8_t oob_data; | 
 | 	uint16_t oob_data16[6]; | 
 | 	int page0 = pos & (-nand->erasesize); | 
 | 	int page1 = page0 + nand->oobblock; | 
 | 	int badpos = oob_config.badblock_pos; | 
 |  | 
 | 	if (pos >= nand->totlen) | 
 | 		return 1; | 
 |  | 
 | 	if (badpos < 0) | 
 | 		return 0;	/* no way to check, assume OK */ | 
 |  | 
 | 	if (nand->bus16) { | 
 | 		if (nand_read_oob(nand, (page0 + 0), 12, &retlen, (uint8_t *)oob_data16) | 
 | 		    || (oob_data16[2] & 0xff00) != 0xff00) | 
 | 			return 1; | 
 | 		if (nand_read_oob(nand, (page1 + 0), 12, &retlen, (uint8_t *)oob_data16) | 
 | 		    || (oob_data16[2] & 0xff00) != 0xff00) | 
 | 			return 1; | 
 | 	} else { | 
 | 		/* Note - bad block marker can be on first or second page */ | 
 | 		if (nand_read_oob(nand, page0 + badpos, 1, &retlen, &oob_data) | 
 | 		    || oob_data != 0xff | 
 | 		    || nand_read_oob (nand, page1 + badpos, 1, &retlen, &oob_data) | 
 | 		    || oob_data != 0xff) | 
 | 			return 1; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* print bad blocks in NAND flash */ | 
 | static void nand_print_bad(struct nand_chip* nand) | 
 | { | 
 | 	unsigned long pos; | 
 |  | 
 | 	for (pos = 0; pos < nand->totlen; pos += nand->erasesize) { | 
 | 		if (check_block(nand, pos)) | 
 | 			printf(" 0x%8.8lx\n", pos); | 
 | 	} | 
 | 	puts("\n"); | 
 | } | 
 |  | 
 | /* cmd: 0: NANDRW_WRITE			write, fail on bad block | 
 |  *	1: NANDRW_READ			read, fail on bad block | 
 |  *	2: NANDRW_WRITE | NANDRW_JFFS2	write, skip bad blocks | 
 |  *	3: NANDRW_READ | NANDRW_JFFS2	read, data all 0xff for bad blocks | 
 |  *      7: NANDRW_READ | NANDRW_JFFS2 | NANDRW_JFFS2_SKIP read, skip bad blocks | 
 |  */ | 
 | int nand_rw (struct nand_chip* nand, int cmd, | 
 | 	    size_t start, size_t len, | 
 | 	    size_t * retlen, u_char * buf) | 
 | { | 
 | 	int ret = 0, n, total = 0; | 
 | 	char eccbuf[6]; | 
 | 	/* eblk (once set) is the start of the erase block containing the | 
 | 	 * data being processed. | 
 | 	 */ | 
 | 	unsigned long eblk = ~0;	/* force mismatch on first pass */ | 
 | 	unsigned long erasesize = nand->erasesize; | 
 |  | 
 | 	while (len) { | 
 | 		if ((start & (-erasesize)) != eblk) { | 
 | 			/* have crossed into new erase block, deal with | 
 | 			 * it if it is sure marked bad. | 
 | 			 */ | 
 | 			eblk = start & (-erasesize); /* start of block */ | 
 | 			if (check_block(nand, eblk)) { | 
 | 				if (cmd == (NANDRW_READ | NANDRW_JFFS2)) { | 
 | 					while (len > 0 && | 
 | 					       start - eblk < erasesize) { | 
 | 						*(buf++) = 0xff; | 
 | 						++start; | 
 | 						++total; | 
 | 						--len; | 
 | 					} | 
 | 					continue; | 
 | 				} else if (cmd == (NANDRW_READ | NANDRW_JFFS2 | NANDRW_JFFS2_SKIP)) { | 
 | 					start += erasesize; | 
 | 					continue; | 
 | 				} else if (cmd == (NANDRW_WRITE | NANDRW_JFFS2)) { | 
 | 					/* skip bad block */ | 
 | 					start += erasesize; | 
 | 					continue; | 
 | 				} else { | 
 | 					ret = 1; | 
 | 					break; | 
 | 				} | 
 | 			} | 
 | 		} | 
 | 		/* The ECC will not be calculated correctly if | 
 | 		   less than 512 is written or read */ | 
 | 		/* Is request at least 512 bytes AND it starts on a proper boundry */ | 
 | 		if((start != ROUND_DOWN(start, 0x200)) || (len < 0x200)) | 
 | 			printf("Warning block writes should be at least 512 bytes and start on a 512 byte boundry\n"); | 
 |  | 
 | 		if (cmd & NANDRW_READ) { | 
 | 			ret = nand_read_ecc(nand, start, | 
 | 					   min(len, eblk + erasesize - start), | 
 | 					   &n, (u_char*)buf, eccbuf); | 
 | 		} else { | 
 | 			ret = nand_write_ecc(nand, start, | 
 | 					    min(len, eblk + erasesize - start), | 
 | 					    &n, (u_char*)buf, eccbuf); | 
 | 		} | 
 |  | 
 | 		if (ret) | 
 | 			break; | 
 |  | 
 | 		start  += n; | 
 | 		buf   += n; | 
 | 		total += n; | 
 | 		len   -= n; | 
 | 	} | 
 | 	if (retlen) | 
 | 		*retlen = total; | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static void nand_print(struct nand_chip *nand) | 
 | { | 
 | 	if (nand->numchips > 1) { | 
 | 		printf("%s at 0x%lx,\n" | 
 | 		       "\t  %d chips %s, size %d MB, \n" | 
 | 		       "\t  total size %ld MB, sector size %ld kB\n", | 
 | 		       nand->name, nand->IO_ADDR, nand->numchips, | 
 | 		       nand->chips_name, 1 << (nand->chipshift - 20), | 
 | 		       nand->totlen >> 20, nand->erasesize >> 10); | 
 | 	} | 
 | 	else { | 
 | 		printf("%s at 0x%lx (", nand->chips_name, nand->IO_ADDR); | 
 | 		print_size(nand->totlen, ", "); | 
 | 		print_size(nand->erasesize, " sector)\n"); | 
 | 	} | 
 | } | 
 |  | 
 | /* ------------------------------------------------------------------------- */ | 
 |  | 
 | static int NanD_WaitReady(struct nand_chip *nand, int ale_wait) | 
 | { | 
 | 	/* This is inline, to optimise the common case, where it's ready instantly */ | 
 | 	int ret = 0; | 
 |  | 
 | #ifdef NAND_NO_RB	/* in config file, shorter delays currently wrap accesses */ | 
 | 	if(ale_wait) | 
 | 		NAND_WAIT_READY(nand);	/* do the worst case 25us wait */ | 
 | 	else | 
 | 		udelay(10); | 
 | #else	/* has functional r/b signal */ | 
 | 	NAND_WAIT_READY(nand); | 
 | #endif | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* NanD_Command: Send a flash command to the flash chip */ | 
 |  | 
 | static inline int NanD_Command(struct nand_chip *nand, unsigned char command) | 
 | { | 
 | 	unsigned long nandptr = nand->IO_ADDR; | 
 |  | 
 | 	/* Assert the CLE (Command Latch Enable) line to the flash chip */ | 
 | 	NAND_CTL_SETCLE(nandptr); | 
 |  | 
 | 	/* Send the command */ | 
 | 	WRITE_NAND_COMMAND(command, nandptr); | 
 |  | 
 | 	/* Lower the CLE line */ | 
 | 	NAND_CTL_CLRCLE(nandptr); | 
 |  | 
 | #ifdef NAND_NO_RB | 
 | 	if(command == NAND_CMD_RESET){ | 
 | 		u_char ret_val; | 
 | 		NanD_Command(nand, NAND_CMD_STATUS); | 
 | 		do { | 
 | 			ret_val = READ_NAND(nandptr);/* wait till ready */ | 
 | 		} while((ret_val & 0x40) != 0x40); | 
 | 	} | 
 | #endif | 
 | 	return NanD_WaitReady(nand, 0); | 
 | } | 
 |  | 
 | /* NanD_Address: Set the current address for the flash chip */ | 
 |  | 
 | static int NanD_Address(struct nand_chip *nand, int numbytes, unsigned long ofs) | 
 | { | 
 | 	unsigned long nandptr; | 
 | 	int i; | 
 |  | 
 | 	nandptr = nand->IO_ADDR; | 
 |  | 
 | 	/* Assert the ALE (Address Latch Enable) line to the flash chip */ | 
 | 	NAND_CTL_SETALE(nandptr); | 
 |  | 
 | 	/* Send the address */ | 
 | 	/* Devices with 256-byte page are addressed as: | 
 | 	 * Column (bits 0-7), Page (bits 8-15, 16-23, 24-31) | 
 | 	 * there is no device on the market with page256 | 
 | 	 * and more than 24 bits. | 
 | 	 * Devices with 512-byte page are addressed as: | 
 | 	 * Column (bits 0-7), Page (bits 9-16, 17-24, 25-31) | 
 | 	 * 25-31 is sent only if the chip support it. | 
 | 	 * bit 8 changes the read command to be sent | 
 | 	 * (NAND_CMD_READ0 or NAND_CMD_READ1). | 
 | 	 */ | 
 |  | 
 | 	if (numbytes == ADDR_COLUMN || numbytes == ADDR_COLUMN_PAGE) | 
 | 		WRITE_NAND_ADDRESS(ofs, nandptr); | 
 |  | 
 | 	ofs = ofs >> nand->page_shift; | 
 |  | 
 | 	if (numbytes == ADDR_PAGE || numbytes == ADDR_COLUMN_PAGE) { | 
 | 		for (i = 0; i < nand->pageadrlen; i++, ofs = ofs >> 8) { | 
 | 			WRITE_NAND_ADDRESS(ofs, nandptr); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Lower the ALE line */ | 
 | 	NAND_CTL_CLRALE(nandptr); | 
 |  | 
 | 	/* Wait for the chip to respond */ | 
 | 	return NanD_WaitReady(nand, 1); | 
 | } | 
 |  | 
 | /* NanD_SelectChip: Select a given flash chip within the current floor */ | 
 |  | 
 | static inline int NanD_SelectChip(struct nand_chip *nand, int chip) | 
 | { | 
 | 	/* Wait for it to be ready */ | 
 | 	return NanD_WaitReady(nand, 0); | 
 | } | 
 |  | 
 | /* NanD_IdentChip: Identify a given NAND chip given {floor,chip} */ | 
 |  | 
 | static int NanD_IdentChip(struct nand_chip *nand, int floor, int chip) | 
 | { | 
 | 	int mfr, id, i; | 
 |  | 
 | 	NAND_ENABLE_CE(nand);  /* set pin low */ | 
 | 	/* Reset the chip */ | 
 | 	if (NanD_Command(nand, NAND_CMD_RESET)) { | 
 | #ifdef NAND_DEBUG | 
 | 		printf("NanD_Command (reset) for %d,%d returned true\n", | 
 | 		       floor, chip); | 
 | #endif | 
 | 		NAND_DISABLE_CE(nand);  /* set pin high */ | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* Read the NAND chip ID: 1. Send ReadID command */ | 
 | 	if (NanD_Command(nand, NAND_CMD_READID)) { | 
 | #ifdef NAND_DEBUG | 
 | 		printf("NanD_Command (ReadID) for %d,%d returned true\n", | 
 | 		       floor, chip); | 
 | #endif | 
 | 		NAND_DISABLE_CE(nand);  /* set pin high */ | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* Read the NAND chip ID: 2. Send address byte zero */ | 
 | 	NanD_Address(nand, ADDR_COLUMN, 0); | 
 |  | 
 | 	/* Read the manufacturer and device id codes from the device */ | 
 |  | 
 | 	mfr = READ_NAND(nand->IO_ADDR); | 
 |  | 
 | 	id = READ_NAND(nand->IO_ADDR); | 
 |  | 
 | 	NAND_DISABLE_CE(nand);  /* set pin high */ | 
 | 	/* No response - return failure */ | 
 | 	if (mfr == 0xff || mfr == 0) { | 
 | #ifdef NAND_DEBUG | 
 | 		printf("NanD_Command (ReadID) got %d %d\n", mfr, id); | 
 | #endif | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	/* Check it's the same as the first chip we identified. | 
 | 	 * M-Systems say that any given nand_chip device should only | 
 | 	 * contain _one_ type of flash part, although that's not a | 
 | 	 * hardware restriction. */ | 
 | 	if (nand->mfr) { | 
 | 		if (nand->mfr == mfr && nand->id == id) { | 
 | 			return 1;	/* This is another the same the first */ | 
 | 		} else { | 
 | 			printf("Flash chip at floor %d, chip %d is different:\n", | 
 | 			       floor, chip); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Print and store the manufacturer and ID codes. */ | 
 | 	for (i = 0; nand_flash_ids[i].name != NULL; i++) { | 
 | 		if (mfr == nand_flash_ids[i].manufacture_id && | 
 | 		    id == nand_flash_ids[i].model_id) { | 
 | #ifdef NAND_DEBUG | 
 | 			printf("Flash chip found:\n\t Manufacturer ID: 0x%2.2X, " | 
 | 			       "Chip ID: 0x%2.2X (%s)\n", mfr, id, | 
 | 			       nand_flash_ids[i].name); | 
 | #endif | 
 | 			if (!nand->mfr) { | 
 | 				nand->mfr = mfr; | 
 | 				nand->id = id; | 
 | 				nand->chipshift = | 
 | 				    nand_flash_ids[i].chipshift; | 
 | 				nand->page256 = nand_flash_ids[i].page256; | 
 | 				nand->eccsize = 256; | 
 | 				if (nand->page256) { | 
 | 					nand->oobblock = 256; | 
 | 					nand->oobsize = 8; | 
 | 					nand->page_shift = 8; | 
 | 				} else { | 
 | 					nand->oobblock = 512; | 
 | 					nand->oobsize = 16; | 
 | 					nand->page_shift = 9; | 
 | 				} | 
 | 				nand->pageadrlen = nand_flash_ids[i].pageadrlen; | 
 | 				nand->erasesize  = nand_flash_ids[i].erasesize; | 
 | 				nand->chips_name = nand_flash_ids[i].name; | 
 | 				nand->bus16	 = nand_flash_ids[i].bus16; | 
 |  				return 1; | 
 | 			} | 
 | 			return 0; | 
 | 		} | 
 | 	} | 
 |  | 
 |  | 
 | #ifdef NAND_DEBUG | 
 | 	/* We haven't fully identified the chip. Print as much as we know. */ | 
 | 	printf("Unknown flash chip found: %2.2X %2.2X\n", | 
 | 	       id, mfr); | 
 | #endif | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* NanD_ScanChips: Find all NAND chips present in a nand_chip, and identify them */ | 
 |  | 
 | static void NanD_ScanChips(struct nand_chip *nand) | 
 | { | 
 | 	int floor, chip; | 
 | 	int numchips[NAND_MAX_FLOORS]; | 
 | 	int maxchips = NAND_MAX_CHIPS; | 
 | 	int ret = 1; | 
 |  | 
 | 	nand->numchips = 0; | 
 | 	nand->mfr = 0; | 
 | 	nand->id = 0; | 
 |  | 
 |  | 
 | 	/* For each floor, find the number of valid chips it contains */ | 
 | 	for (floor = 0; floor < NAND_MAX_FLOORS; floor++) { | 
 | 		ret = 1; | 
 | 		numchips[floor] = 0; | 
 | 		for (chip = 0; chip < maxchips && ret != 0; chip++) { | 
 |  | 
 | 			ret = NanD_IdentChip(nand, floor, chip); | 
 | 			if (ret) { | 
 | 				numchips[floor]++; | 
 | 				nand->numchips++; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* If there are none at all that we recognise, bail */ | 
 | 	if (!nand->numchips) { | 
 | #ifdef NAND_DEBUG | 
 | 		puts ("No NAND flash chips recognised.\n"); | 
 | #endif | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* Allocate an array to hold the information for each chip */ | 
 | 	nand->chips = malloc(sizeof(struct Nand) * nand->numchips); | 
 | 	if (!nand->chips) { | 
 | 		puts ("No memory for allocating chip info structures\n"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	ret = 0; | 
 |  | 
 | 	/* Fill out the chip array with {floor, chipno} for each | 
 | 	 * detected chip in the device. */ | 
 | 	for (floor = 0; floor < NAND_MAX_FLOORS; floor++) { | 
 | 		for (chip = 0; chip < numchips[floor]; chip++) { | 
 | 			nand->chips[ret].floor = floor; | 
 | 			nand->chips[ret].chip = chip; | 
 | 			nand->chips[ret].curadr = 0; | 
 | 			nand->chips[ret].curmode = 0x50; | 
 | 			ret++; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Calculate and print the total size of the device */ | 
 | 	nand->totlen = nand->numchips * (1 << nand->chipshift); | 
 |  | 
 | #ifdef NAND_DEBUG | 
 | 	printf("%d flash chips found. Total nand_chip size: %ld MB\n", | 
 | 	       nand->numchips, nand->totlen >> 20); | 
 | #endif | 
 | } | 
 |  | 
 | /* we need to be fast here, 1 us per read translates to 1 second per meg */ | 
 | static void NanD_ReadBuf (struct nand_chip *nand, u_char * data_buf, int cntr) | 
 | { | 
 | 	unsigned long nandptr = nand->IO_ADDR; | 
 |  | 
 | 	NanD_Command (nand, NAND_CMD_READ0); | 
 |  | 
 | 	if (nand->bus16) { | 
 | 		u16 val; | 
 |  | 
 | 		while (cntr >= 16) { | 
 | 			val = READ_NAND (nandptr); | 
 | 			*data_buf++ = val & 0xff; | 
 | 			*data_buf++ = val >> 8; | 
 | 			val = READ_NAND (nandptr); | 
 | 			*data_buf++ = val & 0xff; | 
 | 			*data_buf++ = val >> 8; | 
 | 			val = READ_NAND (nandptr); | 
 | 			*data_buf++ = val & 0xff; | 
 | 			*data_buf++ = val >> 8; | 
 | 			val = READ_NAND (nandptr); | 
 | 			*data_buf++ = val & 0xff; | 
 | 			*data_buf++ = val >> 8; | 
 | 			val = READ_NAND (nandptr); | 
 | 			*data_buf++ = val & 0xff; | 
 | 			*data_buf++ = val >> 8; | 
 | 			val = READ_NAND (nandptr); | 
 | 			*data_buf++ = val & 0xff; | 
 | 			*data_buf++ = val >> 8; | 
 | 			val = READ_NAND (nandptr); | 
 | 			*data_buf++ = val & 0xff; | 
 | 			*data_buf++ = val >> 8; | 
 | 			val = READ_NAND (nandptr); | 
 | 			*data_buf++ = val & 0xff; | 
 | 			*data_buf++ = val >> 8; | 
 | 			cntr -= 16; | 
 | 		} | 
 |  | 
 | 		while (cntr > 0) { | 
 | 			val = READ_NAND (nandptr); | 
 | 			*data_buf++ = val & 0xff; | 
 | 			*data_buf++ = val >> 8; | 
 | 			cntr -= 2; | 
 | 		} | 
 | 	} else { | 
 | 		while (cntr >= 16) { | 
 | 			*data_buf++ = READ_NAND (nandptr); | 
 | 			*data_buf++ = READ_NAND (nandptr); | 
 | 			*data_buf++ = READ_NAND (nandptr); | 
 | 			*data_buf++ = READ_NAND (nandptr); | 
 | 			*data_buf++ = READ_NAND (nandptr); | 
 | 			*data_buf++ = READ_NAND (nandptr); | 
 | 			*data_buf++ = READ_NAND (nandptr); | 
 | 			*data_buf++ = READ_NAND (nandptr); | 
 | 			*data_buf++ = READ_NAND (nandptr); | 
 | 			*data_buf++ = READ_NAND (nandptr); | 
 | 			*data_buf++ = READ_NAND (nandptr); | 
 | 			*data_buf++ = READ_NAND (nandptr); | 
 | 			*data_buf++ = READ_NAND (nandptr); | 
 | 			*data_buf++ = READ_NAND (nandptr); | 
 | 			*data_buf++ = READ_NAND (nandptr); | 
 | 			*data_buf++ = READ_NAND (nandptr); | 
 | 			cntr -= 16; | 
 | 		} | 
 |  | 
 | 		while (cntr > 0) { | 
 | 			*data_buf++ = READ_NAND (nandptr); | 
 | 			cntr--; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * NAND read with ECC | 
 |  */ | 
 | static int nand_read_ecc(struct nand_chip *nand, size_t start, size_t len, | 
 | 		 size_t * retlen, u_char *buf, u_char *ecc_code) | 
 | { | 
 | 	int col, page; | 
 | 	int ecc_status = 0; | 
 | #ifdef CONFIG_MTD_NAND_ECC | 
 | 	int j; | 
 | 	int ecc_failed = 0; | 
 | 	u_char *data_poi; | 
 | 	u_char ecc_calc[6]; | 
 | #endif | 
 |  | 
 | 	/* Do not allow reads past end of device */ | 
 | 	if ((start + len) > nand->totlen) { | 
 | 		printf ("%s: Attempt read beyond end of device %x %x %x\n", | 
 | 			__FUNCTION__, (uint) start, (uint) len, (uint) nand->totlen); | 
 | 		*retlen = 0; | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	/* First we calculate the starting page */ | 
 | 	/*page = shr(start, nand->page_shift);*/ | 
 | 	page = start >> nand->page_shift; | 
 |  | 
 | 	/* Get raw starting column */ | 
 | 	col = start & (nand->oobblock - 1); | 
 |  | 
 | 	/* Initialize return value */ | 
 | 	*retlen = 0; | 
 |  | 
 | 	/* Select the NAND device */ | 
 | 	NAND_ENABLE_CE(nand);  /* set pin low */ | 
 |  | 
 | 	/* Loop until all data read */ | 
 | 	while (*retlen < len) { | 
 |  | 
 | #ifdef CONFIG_MTD_NAND_ECC | 
 | 		/* Do we have this page in cache ? */ | 
 | 		if (nand->cache_page == page) | 
 | 			goto readdata; | 
 | 		/* Send the read command */ | 
 | 		NanD_Command(nand, NAND_CMD_READ0); | 
 | 		if (nand->bus16) { | 
 |  			NanD_Address(nand, ADDR_COLUMN_PAGE, | 
 | 				     (page << nand->page_shift) + (col >> 1)); | 
 | 		} else { | 
 |  			NanD_Address(nand, ADDR_COLUMN_PAGE, | 
 | 				     (page << nand->page_shift) + col); | 
 | 		} | 
 |  | 
 | 		/* Read in a page + oob data */ | 
 | 		NanD_ReadBuf(nand, nand->data_buf, nand->oobblock + nand->oobsize); | 
 |  | 
 | 		/* copy data into cache, for read out of cache and if ecc fails */ | 
 | 		if (nand->data_cache) { | 
 | 			memcpy (nand->data_cache, nand->data_buf, | 
 | 				nand->oobblock + nand->oobsize); | 
 | 		} | 
 |  | 
 | 		/* Pick the ECC bytes out of the oob data */ | 
 | 		for (j = 0; j < 6; j++) { | 
 | 			ecc_code[j] = nand->data_buf[(nand->oobblock + oob_config.ecc_pos[j])]; | 
 | 		} | 
 |  | 
 | 		/* Calculate the ECC and verify it */ | 
 | 		/* If block was not written with ECC, skip ECC */ | 
 | 		if (oob_config.eccvalid_pos != -1 && | 
 | 		    (nand->data_buf[nand->oobblock + oob_config.eccvalid_pos] & 0x0f) != 0x0f) { | 
 |  | 
 | 			nand_calculate_ecc (&nand->data_buf[0], &ecc_calc[0]); | 
 | 			switch (nand_correct_data (&nand->data_buf[0], &ecc_code[0], &ecc_calc[0])) { | 
 | 			case -1: | 
 | 				printf ("%s: Failed ECC read, page 0x%08x\n", __FUNCTION__, page); | 
 | 				ecc_failed++; | 
 | 				break; | 
 | 			case 1: | 
 | 			case 2:	/* transfer ECC corrected data to cache */ | 
 | 				if (nand->data_cache) | 
 | 					memcpy (nand->data_cache, nand->data_buf, 256); | 
 | 				break; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if (oob_config.eccvalid_pos != -1 && | 
 | 		    nand->oobblock == 512 && (nand->data_buf[nand->oobblock + oob_config.eccvalid_pos] & 0xf0) != 0xf0) { | 
 |  | 
 | 			nand_calculate_ecc (&nand->data_buf[256], &ecc_calc[3]); | 
 | 			switch (nand_correct_data (&nand->data_buf[256], &ecc_code[3], &ecc_calc[3])) { | 
 | 			case -1: | 
 | 				printf ("%s: Failed ECC read, page 0x%08x\n", __FUNCTION__, page); | 
 | 				ecc_failed++; | 
 | 				break; | 
 | 			case 1: | 
 | 			case 2:	/* transfer ECC corrected data to cache */ | 
 | 				if (nand->data_cache) | 
 | 					memcpy (&nand->data_cache[256], &nand->data_buf[256], 256); | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | readdata: | 
 | 		/* Read the data from ECC data buffer into return buffer */ | 
 | 		data_poi = (nand->data_cache) ? nand->data_cache : nand->data_buf; | 
 | 		data_poi += col; | 
 | 		if ((*retlen + (nand->oobblock - col)) >= len) { | 
 | 			memcpy (buf + *retlen, data_poi, len - *retlen); | 
 | 			*retlen = len; | 
 | 		} else { | 
 | 			memcpy (buf + *retlen, data_poi,  nand->oobblock - col); | 
 | 			*retlen += nand->oobblock - col; | 
 | 		} | 
 | 		/* Set cache page address, invalidate, if ecc_failed */ | 
 | 		nand->cache_page = (nand->data_cache && !ecc_failed) ? page : -1; | 
 |  | 
 | 		ecc_status += ecc_failed; | 
 | 		ecc_failed = 0; | 
 |  | 
 | #else | 
 | 		/* Send the read command */ | 
 | 		NanD_Command(nand, NAND_CMD_READ0); | 
 | 		if (nand->bus16) { | 
 | 			NanD_Address(nand, ADDR_COLUMN_PAGE, | 
 | 				     (page << nand->page_shift) + (col >> 1)); | 
 | 		} else { | 
 | 			NanD_Address(nand, ADDR_COLUMN_PAGE, | 
 | 				     (page << nand->page_shift) + col); | 
 | 		} | 
 |  | 
 | 		/* Read the data directly into the return buffer */ | 
 | 		if ((*retlen + (nand->oobblock - col)) >= len) { | 
 | 			NanD_ReadBuf(nand, buf + *retlen, len - *retlen); | 
 | 			*retlen = len; | 
 | 			/* We're done */ | 
 | 			continue; | 
 | 		} else { | 
 | 			NanD_ReadBuf(nand, buf + *retlen, nand->oobblock - col); | 
 | 			*retlen += nand->oobblock - col; | 
 | 			} | 
 | #endif | 
 | 		/* For subsequent reads align to page boundary. */ | 
 | 		col = 0; | 
 | 		/* Increment page address */ | 
 | 		page++; | 
 | 	} | 
 |  | 
 | 	/* De-select the NAND device */ | 
 | 	NAND_DISABLE_CE(nand);  /* set pin high */ | 
 |  | 
 | 	/* | 
 | 	 * Return success, if no ECC failures, else -EIO | 
 | 	 * fs driver will take care of that, because | 
 | 	 * retlen == desired len and result == -EIO | 
 | 	 */ | 
 | 	return ecc_status ? -1 : 0; | 
 | } | 
 |  | 
 | /* | 
 |  *	Nand_page_program function is used for write and writev ! | 
 |  */ | 
 | static int nand_write_page (struct nand_chip *nand, | 
 | 			    int page, int col, int last, u_char * ecc_code) | 
 | { | 
 |  | 
 | 	int i; | 
 | 	unsigned long nandptr = nand->IO_ADDR; | 
 |  | 
 | #ifdef CONFIG_MTD_NAND_ECC | 
 | #ifdef CONFIG_MTD_NAND_VERIFY_WRITE | 
 | 	int ecc_bytes = (nand->oobblock == 512) ? 6 : 3; | 
 | #endif | 
 | #endif | 
 | 	/* pad oob area */ | 
 | 	for (i = nand->oobblock; i < nand->oobblock + nand->oobsize; i++) | 
 | 		nand->data_buf[i] = 0xff; | 
 |  | 
 | #ifdef CONFIG_MTD_NAND_ECC | 
 | 	/* Zero out the ECC array */ | 
 | 	for (i = 0; i < 6; i++) | 
 | 		ecc_code[i] = 0x00; | 
 |  | 
 | 	/* Read back previous written data, if col > 0 */ | 
 | 	if (col) { | 
 | 		NanD_Command (nand, NAND_CMD_READ0); | 
 | 		if (nand->bus16) { | 
 | 			NanD_Address (nand, ADDR_COLUMN_PAGE, | 
 | 				      (page << nand->page_shift) + (col >> 1)); | 
 | 		} else { | 
 | 			NanD_Address (nand, ADDR_COLUMN_PAGE, | 
 | 				      (page << nand->page_shift) + col); | 
 | 		} | 
 |  | 
 | 		if (nand->bus16) { | 
 | 			u16 val; | 
 |  | 
 | 			for (i = 0; i < col; i += 2) { | 
 | 				val = READ_NAND (nandptr); | 
 | 				nand->data_buf[i] = val & 0xff; | 
 | 				nand->data_buf[i + 1] = val >> 8; | 
 | 			} | 
 | 		} else { | 
 | 			for (i = 0; i < col; i++) | 
 | 				nand->data_buf[i] = READ_NAND (nandptr); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Calculate and write the ECC if we have enough data */ | 
 | 	if ((col < nand->eccsize) && (last >= nand->eccsize)) { | 
 | 		nand_calculate_ecc (&nand->data_buf[0], &(ecc_code[0])); | 
 | 		for (i = 0; i < 3; i++) { | 
 | 			nand->data_buf[(nand->oobblock + | 
 | 					oob_config.ecc_pos[i])] = ecc_code[i]; | 
 | 		} | 
 | 		if (oob_config.eccvalid_pos != -1) { | 
 | 			nand->data_buf[nand->oobblock + | 
 | 				       oob_config.eccvalid_pos] = 0xf0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Calculate and write the second ECC if we have enough data */ | 
 | 	if ((nand->oobblock == 512) && (last == nand->oobblock)) { | 
 | 		nand_calculate_ecc (&nand->data_buf[256], &(ecc_code[3])); | 
 | 		for (i = 3; i < 6; i++) { | 
 | 			nand->data_buf[(nand->oobblock + | 
 | 					oob_config.ecc_pos[i])] = ecc_code[i]; | 
 | 		} | 
 | 		if (oob_config.eccvalid_pos != -1) { | 
 | 			nand->data_buf[nand->oobblock + | 
 | 				       oob_config.eccvalid_pos] &= 0x0f; | 
 | 		} | 
 | 	} | 
 | #endif | 
 | 	/* Prepad for partial page programming !!! */ | 
 | 	for (i = 0; i < col; i++) | 
 | 		nand->data_buf[i] = 0xff; | 
 |  | 
 | 	/* Postpad for partial page programming !!! oob is already padded */ | 
 | 	for (i = last; i < nand->oobblock; i++) | 
 | 		nand->data_buf[i] = 0xff; | 
 |  | 
 | 	/* Send command to begin auto page programming */ | 
 | 	NanD_Command (nand, NAND_CMD_READ0); | 
 | 	NanD_Command (nand, NAND_CMD_SEQIN); | 
 | 	if (nand->bus16) { | 
 | 		NanD_Address (nand, ADDR_COLUMN_PAGE, | 
 | 			      (page << nand->page_shift) + (col >> 1)); | 
 | 	} else { | 
 | 		NanD_Address (nand, ADDR_COLUMN_PAGE, | 
 | 			      (page << nand->page_shift) + col); | 
 | 	} | 
 |  | 
 | 	/* Write out complete page of data */ | 
 | 	if (nand->bus16) { | 
 | 		for (i = 0; i < (nand->oobblock + nand->oobsize); i += 2) { | 
 | 			WRITE_NAND (nand->data_buf[i] + | 
 | 				    (nand->data_buf[i + 1] << 8), | 
 | 				    nand->IO_ADDR); | 
 | 		} | 
 | 	} else { | 
 | 		for (i = 0; i < (nand->oobblock + nand->oobsize); i++) | 
 | 			WRITE_NAND (nand->data_buf[i], nand->IO_ADDR); | 
 | 	} | 
 |  | 
 | 	/* Send command to actually program the data */ | 
 | 	NanD_Command (nand, NAND_CMD_PAGEPROG); | 
 | 	NanD_Command (nand, NAND_CMD_STATUS); | 
 | #ifdef NAND_NO_RB | 
 | 	{ | 
 | 		u_char ret_val; | 
 |  | 
 | 		do { | 
 | 			ret_val = READ_NAND (nandptr);	/* wait till ready */ | 
 | 		} while ((ret_val & 0x40) != 0x40); | 
 | 	} | 
 | #endif | 
 | 	/* See if device thinks it succeeded */ | 
 | 	if (READ_NAND (nand->IO_ADDR) & 0x01) { | 
 | 		printf ("%s: Failed write, page 0x%08x, ", __FUNCTION__, | 
 | 			page); | 
 | 		return -1; | 
 | 	} | 
 | #ifdef CONFIG_MTD_NAND_VERIFY_WRITE | 
 | 	/* | 
 | 	 * The NAND device assumes that it is always writing to | 
 | 	 * a cleanly erased page. Hence, it performs its internal | 
 | 	 * write verification only on bits that transitioned from | 
 | 	 * 1 to 0. The device does NOT verify the whole page on a | 
 | 	 * byte by byte basis. It is possible that the page was | 
 | 	 * not completely erased or the page is becoming unusable | 
 | 	 * due to wear. The read with ECC would catch the error | 
 | 	 * later when the ECC page check fails, but we would rather | 
 | 	 * catch it early in the page write stage. Better to write | 
 | 	 * no data than invalid data. | 
 | 	 */ | 
 |  | 
 | 	/* Send command to read back the page */ | 
 | 	if (col < nand->eccsize) | 
 | 		NanD_Command (nand, NAND_CMD_READ0); | 
 | 	else | 
 | 		NanD_Command (nand, NAND_CMD_READ1); | 
 | 	if (nand->bus16) { | 
 | 		NanD_Address (nand, ADDR_COLUMN_PAGE, | 
 | 			      (page << nand->page_shift) + (col >> 1)); | 
 | 	} else { | 
 | 		NanD_Address (nand, ADDR_COLUMN_PAGE, | 
 | 			      (page << nand->page_shift) + col); | 
 | 	} | 
 |  | 
 | 	/* Loop through and verify the data */ | 
 | 	if (nand->bus16) { | 
 | 		for (i = col; i < last; i = +2) { | 
 | 			if ((nand->data_buf[i] + | 
 | 			     (nand->data_buf[i + 1] << 8)) != READ_NAND (nand->IO_ADDR)) { | 
 | 				printf ("%s: Failed write verify, page 0x%08x ", | 
 | 					__FUNCTION__, page); | 
 | 				return -1; | 
 | 			} | 
 | 		} | 
 | 	} else { | 
 | 		for (i = col; i < last; i++) { | 
 | 			if (nand->data_buf[i] != READ_NAND (nand->IO_ADDR)) { | 
 | 				printf ("%s: Failed write verify, page 0x%08x ", | 
 | 					__FUNCTION__, page); | 
 | 				return -1; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_MTD_NAND_ECC | 
 | 	/* | 
 | 	 * We also want to check that the ECC bytes wrote | 
 | 	 * correctly for the same reasons stated above. | 
 | 	 */ | 
 | 	NanD_Command (nand, NAND_CMD_READOOB); | 
 | 	if (nand->bus16) { | 
 | 		NanD_Address (nand, ADDR_COLUMN_PAGE, | 
 | 			      (page << nand->page_shift) + (col >> 1)); | 
 | 	} else { | 
 | 		NanD_Address (nand, ADDR_COLUMN_PAGE, | 
 | 			      (page << nand->page_shift) + col); | 
 | 	} | 
 | 	if (nand->bus16) { | 
 | 		for (i = 0; i < nand->oobsize; i += 2) { | 
 | 			val = READ_NAND (nand->IO_ADDR); | 
 | 			nand->data_buf[i] = val & 0xff; | 
 | 			nand->data_buf[i + 1] = val >> 8; | 
 | 		} | 
 | 	} else { | 
 | 		for (i = 0; i < nand->oobsize; i++) { | 
 | 			nand->data_buf[i] = READ_NAND (nand->IO_ADDR); | 
 | 		} | 
 | 	} | 
 | 	for (i = 0; i < ecc_bytes; i++) { | 
 | 		if ((nand->data_buf[(oob_config.ecc_pos[i])] != ecc_code[i]) && ecc_code[i]) { | 
 | 			printf ("%s: Failed ECC write " | 
 | 				"verify, page 0x%08x, " | 
 | 				"%6i bytes were succesful\n", | 
 | 				__FUNCTION__, page, i); | 
 | 			return -1; | 
 | 		} | 
 | 	} | 
 | #endif	/* CONFIG_MTD_NAND_ECC */ | 
 | #endif	/* CONFIG_MTD_NAND_VERIFY_WRITE */ | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int nand_write_ecc (struct nand_chip* nand, size_t to, size_t len, | 
 | 			   size_t * retlen, const u_char * buf, u_char * ecc_code) | 
 | { | 
 | 	int i, page, col, cnt, ret = 0; | 
 |  | 
 | 	/* Do not allow write past end of device */ | 
 | 	if ((to + len) > nand->totlen) { | 
 | 		printf ("%s: Attempt to write past end of page\n", __FUNCTION__); | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	/* Shift to get page */ | 
 | 	page = ((int) to) >> nand->page_shift; | 
 |  | 
 | 	/* Get the starting column */ | 
 | 	col = to & (nand->oobblock - 1); | 
 |  | 
 | 	/* Initialize return length value */ | 
 | 	*retlen = 0; | 
 |  | 
 | 	/* Select the NAND device */ | 
 | #ifdef CONFIG_OMAP1510 | 
 | 	archflashwp(0,0); | 
 | #endif | 
 | #ifdef CFG_NAND_WP | 
 | 	NAND_WP_OFF(); | 
 | #endif | 
 |  | 
 |     	NAND_ENABLE_CE(nand);  /* set pin low */ | 
 |  | 
 | 	/* Check the WP bit */ | 
 | 	NanD_Command(nand, NAND_CMD_STATUS); | 
 | 	if (!(READ_NAND(nand->IO_ADDR) & 0x80)) { | 
 | 		printf ("%s: Device is write protected!!!\n", __FUNCTION__); | 
 | 		ret = -1; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* Loop until all data is written */ | 
 | 	while (*retlen < len) { | 
 | 		/* Invalidate cache, if we write to this page */ | 
 | 		if (nand->cache_page == page) | 
 | 			nand->cache_page = -1; | 
 |  | 
 | 		/* Write data into buffer */ | 
 | 		if ((col + len) >= nand->oobblock) { | 
 | 			for (i = col, cnt = 0; i < nand->oobblock; i++, cnt++) { | 
 | 				nand->data_buf[i] = buf[(*retlen + cnt)]; | 
 | 			} | 
 | 		} else { | 
 | 			for (i = col, cnt = 0; cnt < (len - *retlen); i++, cnt++) { | 
 | 				nand->data_buf[i] = buf[(*retlen + cnt)]; | 
 | 			} | 
 | 		} | 
 | 		/* We use the same function for write and writev !) */ | 
 | 		ret = nand_write_page (nand, page, col, i, ecc_code); | 
 | 		if (ret) | 
 | 			goto out; | 
 |  | 
 | 		/* Next data start at page boundary */ | 
 | 		col = 0; | 
 |  | 
 | 		/* Update written bytes count */ | 
 | 		*retlen += cnt; | 
 |  | 
 | 		/* Increment page address */ | 
 | 		page++; | 
 | 	} | 
 |  | 
 | 	/* Return happy */ | 
 | 	*retlen = len; | 
 |  | 
 | out: | 
 | 	/* De-select the NAND device */ | 
 | 	NAND_DISABLE_CE(nand);  /* set pin high */ | 
 | #ifdef CONFIG_OMAP1510 | 
 |     	archflashwp(0,1); | 
 | #endif | 
 | #ifdef CFG_NAND_WP | 
 | 	NAND_WP_ON(); | 
 | #endif | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* read from the 16 bytes of oob data that correspond to a 512 byte | 
 |  * page or 2 256-byte pages. | 
 |  */ | 
 | static int nand_read_oob(struct nand_chip* nand, size_t ofs, size_t len, | 
 | 			 size_t * retlen, u_char * buf) | 
 | { | 
 | 	int len256 = 0; | 
 | 	struct Nand *mychip; | 
 | 	int ret = 0; | 
 |  | 
 | 	mychip = &nand->chips[ofs >> nand->chipshift]; | 
 |  | 
 | 	/* update address for 2M x 8bit devices. OOB starts on the second */ | 
 | 	/* page to maintain compatibility with nand_read_ecc. */ | 
 | 	if (nand->page256) { | 
 | 		if (!(ofs & 0x8)) | 
 | 			ofs += 0x100; | 
 | 		else | 
 | 			ofs -= 0x8; | 
 | 	} | 
 |  | 
 | 	NAND_ENABLE_CE(nand);  /* set pin low */ | 
 | 	NanD_Command(nand, NAND_CMD_READOOB); | 
 | 	if (nand->bus16) { | 
 |  		NanD_Address(nand, ADDR_COLUMN_PAGE, | 
 | 			     ((ofs >> nand->page_shift) << nand->page_shift) + | 
 |  				((ofs & (nand->oobblock - 1)) >> 1)); | 
 | 	} else { | 
 | 		NanD_Address(nand, ADDR_COLUMN_PAGE, ofs); | 
 | 	} | 
 |  | 
 | 	/* treat crossing 8-byte OOB data for 2M x 8bit devices */ | 
 | 	/* Note: datasheet says it should automaticaly wrap to the */ | 
 | 	/*       next OOB block, but it didn't work here. mf.      */ | 
 | 	if (nand->page256 && ofs + len > (ofs | 0x7) + 1) { | 
 | 		len256 = (ofs | 0x7) + 1 - ofs; | 
 | 		NanD_ReadBuf(nand, buf, len256); | 
 |  | 
 | 		NanD_Command(nand, NAND_CMD_READOOB); | 
 | 		NanD_Address(nand, ADDR_COLUMN_PAGE, ofs & (~0x1ff)); | 
 | 	} | 
 |  | 
 | 	NanD_ReadBuf(nand, &buf[len256], len - len256); | 
 |  | 
 | 	*retlen = len; | 
 | 	/* Reading the full OOB data drops us off of the end of the page, | 
 | 	 * causing the flash device to go into busy mode, so we need | 
 | 	 * to wait until ready 11.4.1 and Toshiba TC58256FT nands */ | 
 |  | 
 | 	ret = NanD_WaitReady(nand, 1); | 
 | 	NAND_DISABLE_CE(nand);  /* set pin high */ | 
 |  | 
 | 	return ret; | 
 |  | 
 | } | 
 |  | 
 | /* write to the 16 bytes of oob data that correspond to a 512 byte | 
 |  * page or 2 256-byte pages. | 
 |  */ | 
 | static int nand_write_oob(struct nand_chip* nand, size_t ofs, size_t len, | 
 | 		  size_t * retlen, const u_char * buf) | 
 | { | 
 | 	int len256 = 0; | 
 | 	int i; | 
 | 	unsigned long nandptr = nand->IO_ADDR; | 
 |  | 
 | #ifdef PSYCHO_DEBUG | 
 | 	printf("nand_write_oob(%lx, %d): %2.2X %2.2X %2.2X %2.2X ... %2.2X %2.2X .. %2.2X %2.2X\n", | 
 | 	       (long)ofs, len, buf[0], buf[1], buf[2], buf[3], | 
 | 	       buf[8], buf[9], buf[14],buf[15]); | 
 | #endif | 
 |  | 
 | 	NAND_ENABLE_CE(nand);  /* set pin low to enable chip */ | 
 |  | 
 | 	/* Reset the chip */ | 
 | 	NanD_Command(nand, NAND_CMD_RESET); | 
 |  | 
 | 	/* issue the Read2 command to set the pointer to the Spare Data Area. */ | 
 | 	NanD_Command(nand, NAND_CMD_READOOB); | 
 | 	if (nand->bus16) { | 
 |  		NanD_Address(nand, ADDR_COLUMN_PAGE, | 
 | 			     ((ofs >> nand->page_shift) << nand->page_shift) + | 
 |  				((ofs & (nand->oobblock - 1)) >> 1)); | 
 | 	} else { | 
 |  		NanD_Address(nand, ADDR_COLUMN_PAGE, ofs); | 
 | 	} | 
 |  | 
 | 	/* update address for 2M x 8bit devices. OOB starts on the second */ | 
 | 	/* page to maintain compatibility with nand_read_ecc. */ | 
 | 	if (nand->page256) { | 
 | 		if (!(ofs & 0x8)) | 
 | 			ofs += 0x100; | 
 | 		else | 
 | 			ofs -= 0x8; | 
 | 	} | 
 |  | 
 | 	/* issue the Serial Data In command to initial the Page Program process */ | 
 | 	NanD_Command(nand, NAND_CMD_SEQIN); | 
 | 	if (nand->bus16) { | 
 |  		NanD_Address(nand, ADDR_COLUMN_PAGE, | 
 | 			     ((ofs >> nand->page_shift) << nand->page_shift) + | 
 |  				((ofs & (nand->oobblock - 1)) >> 1)); | 
 | 	} else { | 
 |  		NanD_Address(nand, ADDR_COLUMN_PAGE, ofs); | 
 | 	} | 
 |  | 
 | 	/* treat crossing 8-byte OOB data for 2M x 8bit devices */ | 
 | 	/* Note: datasheet says it should automaticaly wrap to the */ | 
 | 	/*       next OOB block, but it didn't work here. mf.      */ | 
 | 	if (nand->page256 && ofs + len > (ofs | 0x7) + 1) { | 
 | 		len256 = (ofs | 0x7) + 1 - ofs; | 
 | 		for (i = 0; i < len256; i++) | 
 | 			WRITE_NAND(buf[i], nandptr); | 
 |  | 
 | 		NanD_Command(nand, NAND_CMD_PAGEPROG); | 
 | 		NanD_Command(nand, NAND_CMD_STATUS); | 
 | #ifdef NAND_NO_RB | 
 |    		{ u_char ret_val; | 
 | 			do { | 
 | 				ret_val = READ_NAND(nandptr); /* wait till ready */ | 
 | 			} while ((ret_val & 0x40) != 0x40); | 
 | 		} | 
 | #endif | 
 | 		if (READ_NAND(nandptr) & 1) { | 
 | 			puts ("Error programming oob data\n"); | 
 | 			/* There was an error */ | 
 | 			NAND_DISABLE_CE(nand);  /* set pin high */ | 
 | 			*retlen = 0; | 
 | 			return -1; | 
 | 		} | 
 | 		NanD_Command(nand, NAND_CMD_SEQIN); | 
 | 		NanD_Address(nand, ADDR_COLUMN_PAGE, ofs & (~0x1ff)); | 
 | 	} | 
 |  | 
 | 	if (nand->bus16) { | 
 | 		for (i = len256; i < len; i += 2) { | 
 | 			WRITE_NAND(buf[i] + (buf[i+1] << 8), nandptr); | 
 | 		} | 
 | 	} else { | 
 | 		for (i = len256; i < len; i++) | 
 | 			WRITE_NAND(buf[i], nandptr); | 
 | 	} | 
 |  | 
 | 	NanD_Command(nand, NAND_CMD_PAGEPROG); | 
 | 	NanD_Command(nand, NAND_CMD_STATUS); | 
 | #ifdef NAND_NO_RB | 
 | 	{	u_char ret_val; | 
 | 		do { | 
 | 			ret_val = READ_NAND(nandptr); /* wait till ready */ | 
 | 		} while ((ret_val & 0x40) != 0x40); | 
 | 	} | 
 | #endif | 
 | 	if (READ_NAND(nandptr) & 1) { | 
 | 		puts ("Error programming oob data\n"); | 
 | 		/* There was an error */ | 
 | 		NAND_DISABLE_CE(nand);  /* set pin high */ | 
 | 		*retlen = 0; | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	NAND_DISABLE_CE(nand);  /* set pin high */ | 
 | 	*retlen = len; | 
 | 	return 0; | 
 |  | 
 | } | 
 |  | 
 | int nand_erase(struct nand_chip* nand, size_t ofs, size_t len, int clean) | 
 | { | 
 | 	/* This is defined as a structure so it will work on any system | 
 | 	 * using native endian jffs2 (the default). | 
 | 	 */ | 
 | 	static struct jffs2_unknown_node clean_marker = { | 
 | 		JFFS2_MAGIC_BITMASK, | 
 | 		JFFS2_NODETYPE_CLEANMARKER, | 
 | 		8		/* 8 bytes in this node */ | 
 | 	}; | 
 | 	unsigned long nandptr; | 
 | 	struct Nand *mychip; | 
 | 	int ret = 0; | 
 |  | 
 | 	if (ofs & (nand->erasesize-1) || len & (nand->erasesize-1)) { | 
 | 		printf ("Offset and size must be sector aligned, erasesize = %d\n", | 
 | 			(int) nand->erasesize); | 
 | 		return -1; | 
 | 	} | 
 |  | 
 | 	nandptr = nand->IO_ADDR; | 
 |  | 
 | 	/* Select the NAND device */ | 
 | #ifdef CONFIG_OMAP1510 | 
 | 	archflashwp(0,0); | 
 | #endif | 
 | #ifdef CFG_NAND_WP | 
 | 	NAND_WP_OFF(); | 
 | #endif | 
 |     NAND_ENABLE_CE(nand);  /* set pin low */ | 
 |  | 
 | 	/* Check the WP bit */ | 
 | 	NanD_Command(nand, NAND_CMD_STATUS); | 
 | 	if (!(READ_NAND(nand->IO_ADDR) & 0x80)) { | 
 | 		printf ("nand_write_ecc: Device is write protected!!!\n"); | 
 | 		ret = -1; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* Check the WP bit */ | 
 | 	NanD_Command(nand, NAND_CMD_STATUS); | 
 | 	if (!(READ_NAND(nand->IO_ADDR) & 0x80)) { | 
 | 		printf ("%s: Device is write protected!!!\n", __FUNCTION__); | 
 | 		ret = -1; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* FIXME: Do nand in the background. Use timers or schedule_task() */ | 
 | 	while(len) { | 
 | 		/*mychip = &nand->chips[shr(ofs, nand->chipshift)];*/ | 
 | 		mychip = &nand->chips[ofs >> nand->chipshift]; | 
 |  | 
 | 		/* always check for bad block first, genuine bad blocks | 
 | 		 * should _never_  be erased. | 
 | 		 */ | 
 | 		if (ALLOW_ERASE_BAD_DEBUG || !check_block(nand, ofs)) { | 
 | 			/* Select the NAND device */ | 
 | 			NAND_ENABLE_CE(nand);  /* set pin low */ | 
 |  | 
 | 			NanD_Command(nand, NAND_CMD_ERASE1); | 
 | 			NanD_Address(nand, ADDR_PAGE, ofs); | 
 | 			NanD_Command(nand, NAND_CMD_ERASE2); | 
 |  | 
 | 			NanD_Command(nand, NAND_CMD_STATUS); | 
 |  | 
 | #ifdef NAND_NO_RB | 
 | 			{	u_char ret_val; | 
 | 				do { | 
 | 					ret_val = READ_NAND(nandptr); /* wait till ready */ | 
 | 				} while ((ret_val & 0x40) != 0x40); | 
 | 			} | 
 | #endif | 
 | 			if (READ_NAND(nandptr) & 1) { | 
 | 				printf ("%s: Error erasing at 0x%lx\n", | 
 | 					__FUNCTION__, (long)ofs); | 
 | 				/* There was an error */ | 
 | 				ret = -1; | 
 | 				goto out; | 
 | 			} | 
 | 			if (clean) { | 
 | 				int n;	/* return value not used */ | 
 | 				int p, l; | 
 |  | 
 | 				/* clean marker position and size depend | 
 | 				 * on the page size, since 256 byte pages | 
 | 				 * only have 8 bytes of oob data | 
 | 				 */ | 
 | 				if (nand->page256) { | 
 | 					p = NAND_JFFS2_OOB8_FSDAPOS; | 
 | 					l = NAND_JFFS2_OOB8_FSDALEN; | 
 | 				} else { | 
 | 					p = NAND_JFFS2_OOB16_FSDAPOS; | 
 | 					l = NAND_JFFS2_OOB16_FSDALEN; | 
 | 				} | 
 |  | 
 | 				ret = nand_write_oob(nand, ofs + p, l, &n, | 
 | 						     (u_char *)&clean_marker); | 
 | 				/* quit here if write failed */ | 
 | 				if (ret) | 
 | 					goto out; | 
 | 			} | 
 | 		} | 
 | 		ofs += nand->erasesize; | 
 | 		len -= nand->erasesize; | 
 | 	} | 
 |  | 
 | out: | 
 | 	/* De-select the NAND device */ | 
 | 	NAND_DISABLE_CE(nand);  /* set pin high */ | 
 | #ifdef CONFIG_OMAP1510 | 
 |     	archflashwp(0,1); | 
 | #endif | 
 | #ifdef CFG_NAND_WP | 
 | 	NAND_WP_ON(); | 
 | #endif | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static inline int nandcheck(unsigned long potential, unsigned long physadr) | 
 | { | 
 | 	return 0; | 
 | } | 
 |  | 
 | unsigned long nand_probe(unsigned long physadr) | 
 | { | 
 | 	struct nand_chip *nand = NULL; | 
 | 	int i = 0, ChipID = 1; | 
 |  | 
 | #ifdef CONFIG_MTD_NAND_ECC_JFFS2 | 
 | 	oob_config.ecc_pos[0] = NAND_JFFS2_OOB_ECCPOS0; | 
 | 	oob_config.ecc_pos[1] = NAND_JFFS2_OOB_ECCPOS1; | 
 | 	oob_config.ecc_pos[2] = NAND_JFFS2_OOB_ECCPOS2; | 
 | 	oob_config.ecc_pos[3] = NAND_JFFS2_OOB_ECCPOS3; | 
 | 	oob_config.ecc_pos[4] = NAND_JFFS2_OOB_ECCPOS4; | 
 | 	oob_config.ecc_pos[5] = NAND_JFFS2_OOB_ECCPOS5; | 
 | 	oob_config.eccvalid_pos = 4; | 
 | #else | 
 | 	oob_config.ecc_pos[0] = NAND_NOOB_ECCPOS0; | 
 | 	oob_config.ecc_pos[1] = NAND_NOOB_ECCPOS1; | 
 | 	oob_config.ecc_pos[2] = NAND_NOOB_ECCPOS2; | 
 | 	oob_config.ecc_pos[3] = NAND_NOOB_ECCPOS3; | 
 | 	oob_config.ecc_pos[4] = NAND_NOOB_ECCPOS4; | 
 | 	oob_config.ecc_pos[5] = NAND_NOOB_ECCPOS5; | 
 | 	oob_config.eccvalid_pos = NAND_NOOB_ECCVPOS; | 
 | #endif | 
 | 	oob_config.badblock_pos = 5; | 
 |  | 
 | 	for (i=0; i<CFG_MAX_NAND_DEVICE; i++) { | 
 | 		if (nand_dev_desc[i].ChipID == NAND_ChipID_UNKNOWN) { | 
 | 			nand = &nand_dev_desc[i]; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	if (!nand) | 
 | 		return (0); | 
 |  | 
 | 	memset((char *)nand, 0, sizeof(struct nand_chip)); | 
 |  | 
 | 	nand->IO_ADDR = physadr; | 
 | 	nand->cache_page = -1;  /* init the cache page */ | 
 | 	NanD_ScanChips(nand); | 
 |  | 
 | 	if (nand->totlen == 0) { | 
 | 		/* no chips found, clean up and quit */ | 
 | 		memset((char *)nand, 0, sizeof(struct nand_chip)); | 
 | 		nand->ChipID = NAND_ChipID_UNKNOWN; | 
 | 		return (0); | 
 | 	} | 
 |  | 
 | 	nand->ChipID = ChipID; | 
 | 	if (curr_device == -1) | 
 | 		curr_device = i; | 
 |  | 
 | 	nand->data_buf = malloc (nand->oobblock + nand->oobsize); | 
 | 	if (!nand->data_buf) { | 
 | 		puts ("Cannot allocate memory for data structures.\n"); | 
 | 		return (0); | 
 | 	} | 
 |  | 
 | 	return (nand->totlen); | 
 | } | 
 |  | 
 | #ifdef CONFIG_MTD_NAND_ECC | 
 | /* | 
 |  * Pre-calculated 256-way 1 byte column parity | 
 |  */ | 
 | static const u_char nand_ecc_precalc_table[] = { | 
 | 	0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, | 
 | 	0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00, | 
 | 	0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, | 
 | 	0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65, | 
 | 	0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, | 
 | 	0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66, | 
 | 	0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, | 
 | 	0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03, | 
 | 	0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, | 
 | 	0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69, | 
 | 	0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, | 
 | 	0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c, | 
 | 	0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, | 
 | 	0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f, | 
 | 	0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, | 
 | 	0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a, | 
 | 	0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, | 
 | 	0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a, | 
 | 	0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, | 
 | 	0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f, | 
 | 	0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, | 
 | 	0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c, | 
 | 	0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, | 
 | 	0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69, | 
 | 	0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, | 
 | 	0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03, | 
 | 	0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, | 
 | 	0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66, | 
 | 	0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, | 
 | 	0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65, | 
 | 	0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, | 
 | 	0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00 | 
 | }; | 
 |  | 
 |  | 
 | /* | 
 |  * Creates non-inverted ECC code from line parity | 
 |  */ | 
 | static void nand_trans_result(u_char reg2, u_char reg3, | 
 | 	u_char *ecc_code) | 
 | { | 
 | 	u_char a, b, i, tmp1, tmp2; | 
 |  | 
 | 	/* Initialize variables */ | 
 | 	a = b = 0x80; | 
 | 	tmp1 = tmp2 = 0; | 
 |  | 
 | 	/* Calculate first ECC byte */ | 
 | 	for (i = 0; i < 4; i++) { | 
 | 		if (reg3 & a)		/* LP15,13,11,9 --> ecc_code[0] */ | 
 | 			tmp1 |= b; | 
 | 		b >>= 1; | 
 | 		if (reg2 & a)		/* LP14,12,10,8 --> ecc_code[0] */ | 
 | 			tmp1 |= b; | 
 | 		b >>= 1; | 
 | 		a >>= 1; | 
 | 	} | 
 |  | 
 | 	/* Calculate second ECC byte */ | 
 | 	b = 0x80; | 
 | 	for (i = 0; i < 4; i++) { | 
 | 		if (reg3 & a)		/* LP7,5,3,1 --> ecc_code[1] */ | 
 | 			tmp2 |= b; | 
 | 		b >>= 1; | 
 | 		if (reg2 & a)		/* LP6,4,2,0 --> ecc_code[1] */ | 
 | 			tmp2 |= b; | 
 | 		b >>= 1; | 
 | 		a >>= 1; | 
 | 	} | 
 |  | 
 | 	/* Store two of the ECC bytes */ | 
 | 	ecc_code[0] = tmp1; | 
 | 	ecc_code[1] = tmp2; | 
 | } | 
 |  | 
 | /* | 
 |  * Calculate 3 byte ECC code for 256 byte block | 
 |  */ | 
 | static void nand_calculate_ecc (const u_char *dat, u_char *ecc_code) | 
 | { | 
 | 	u_char idx, reg1, reg3; | 
 | 	int j; | 
 |  | 
 | 	/* Initialize variables */ | 
 | 	reg1 = reg3 = 0; | 
 | 	ecc_code[0] = ecc_code[1] = ecc_code[2] = 0; | 
 |  | 
 | 	/* Build up column parity */ | 
 | 	for(j = 0; j < 256; j++) { | 
 |  | 
 | 		/* Get CP0 - CP5 from table */ | 
 | 		idx = nand_ecc_precalc_table[dat[j]]; | 
 | 		reg1 ^= idx; | 
 |  | 
 | 		/* All bit XOR = 1 ? */ | 
 | 		if (idx & 0x40) { | 
 | 			reg3 ^= (u_char) j; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Create non-inverted ECC code from line parity */ | 
 | 	nand_trans_result((reg1 & 0x40) ? ~reg3 : reg3, reg3, ecc_code); | 
 |  | 
 | 	/* Calculate final ECC code */ | 
 | 	ecc_code[0] = ~ecc_code[0]; | 
 | 	ecc_code[1] = ~ecc_code[1]; | 
 | 	ecc_code[2] = ((~reg1) << 2) | 0x03; | 
 | } | 
 |  | 
 | /* | 
 |  * Detect and correct a 1 bit error for 256 byte block | 
 |  */ | 
 | static int nand_correct_data (u_char *dat, u_char *read_ecc, u_char *calc_ecc) | 
 | { | 
 | 	u_char a, b, c, d1, d2, d3, add, bit, i; | 
 |  | 
 | 	/* Do error detection */ | 
 | 	d1 = calc_ecc[0] ^ read_ecc[0]; | 
 | 	d2 = calc_ecc[1] ^ read_ecc[1]; | 
 | 	d3 = calc_ecc[2] ^ read_ecc[2]; | 
 |  | 
 | 	if ((d1 | d2 | d3) == 0) { | 
 | 		/* No errors */ | 
 | 		return 0; | 
 | 	} else { | 
 | 		a = (d1 ^ (d1 >> 1)) & 0x55; | 
 | 		b = (d2 ^ (d2 >> 1)) & 0x55; | 
 | 		c = (d3 ^ (d3 >> 1)) & 0x54; | 
 |  | 
 | 		/* Found and will correct single bit error in the data */ | 
 | 		if ((a == 0x55) && (b == 0x55) && (c == 0x54)) { | 
 | 			c = 0x80; | 
 | 			add = 0; | 
 | 			a = 0x80; | 
 | 			for (i=0; i<4; i++) { | 
 | 				if (d1 & c) | 
 | 					add |= a; | 
 | 				c >>= 2; | 
 | 				a >>= 1; | 
 | 			} | 
 | 			c = 0x80; | 
 | 			for (i=0; i<4; i++) { | 
 | 				if (d2 & c) | 
 | 					add |= a; | 
 | 				c >>= 2; | 
 | 				a >>= 1; | 
 | 			} | 
 | 			bit = 0; | 
 | 			b = 0x04; | 
 | 			c = 0x80; | 
 | 			for (i=0; i<3; i++) { | 
 | 				if (d3 & c) | 
 | 					bit |= b; | 
 | 				c >>= 2; | 
 | 				b >>= 1; | 
 | 			} | 
 | 			b = 0x01; | 
 | 			a = dat[add]; | 
 | 			a ^= (b << bit); | 
 | 			dat[add] = a; | 
 | 			return 1; | 
 | 		} | 
 | 		else { | 
 | 			i = 0; | 
 | 			while (d1) { | 
 | 				if (d1 & 0x01) | 
 | 					++i; | 
 | 				d1 >>= 1; | 
 | 			} | 
 | 			while (d2) { | 
 | 				if (d2 & 0x01) | 
 | 					++i; | 
 | 				d2 >>= 1; | 
 | 			} | 
 | 			while (d3) { | 
 | 				if (d3 & 0x01) | 
 | 					++i; | 
 | 				d3 >>= 1; | 
 | 			} | 
 | 			if (i == 1) { | 
 | 				/* ECC Code Error Correction */ | 
 | 				read_ecc[0] = calc_ecc[0]; | 
 | 				read_ecc[1] = calc_ecc[1]; | 
 | 				read_ecc[2] = calc_ecc[2]; | 
 | 				return 2; | 
 | 			} | 
 | 			else { | 
 | 				/* Uncorrectable Error */ | 
 | 				return -1; | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* Should never happen */ | 
 | 	return -1; | 
 | } | 
 |  | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_JFFS2_NAND | 
 |  | 
 | int read_jffs2_nand(size_t start, size_t len, | 
 | 		    size_t * retlen, u_char * buf, int nanddev) | 
 | { | 
 | 	return nand_rw(nand_dev_desc + nanddev, NANDRW_READ | NANDRW_JFFS2, | 
 | 		       start, len, retlen, buf); | 
 | } | 
 |  | 
 | #endif /* CONFIG_JFFS2_NAND */ | 
 |  | 
 |  | 
 | #endif /* (CONFIG_COMMANDS & CFG_CMD_NAND) */ |