|  | /* | 
|  | * (C) 2006 Denx | 
|  | * Driver for NAND support, Rick Bronson | 
|  | * borrowed heavily from: | 
|  | * (c) 1999 Machine Vision Holdings, Inc. | 
|  | * (c) 1999, 2000 David Woodhouse <dwmw2@infradead.org> | 
|  | * | 
|  | * Added 16-bit nand support | 
|  | * (C) 2004 Texas Instruments | 
|  | */ | 
|  |  | 
|  | #include <common.h> | 
|  | #include <command.h> | 
|  | #include <malloc.h> | 
|  | #include <asm/io.h> | 
|  | #include <watchdog.h> | 
|  | #include <linux/mtd/nand_legacy.h> | 
|  | #include <linux/mtd/nand_ids.h> | 
|  | #include <jffs2/jffs2.h> | 
|  |  | 
|  | #ifdef CONFIG_OMAP1510 | 
|  | void archflashwp(void *archdata, int wp); | 
|  | #endif | 
|  |  | 
|  | #define ROUND_DOWN(value,boundary)      ((value) & (~((boundary)-1))) | 
|  |  | 
|  | #undef	PSYCHO_DEBUG | 
|  | #undef	NAND_DEBUG | 
|  |  | 
|  | /* ****************** WARNING ********************* | 
|  | * When ALLOW_ERASE_BAD_DEBUG is non-zero the erase command will | 
|  | * erase (or at least attempt to erase) blocks that are marked | 
|  | * bad. This can be very handy if you are _sure_ that the block | 
|  | * is OK, say because you marked a good block bad to test bad | 
|  | * block handling and you are done testing, or if you have | 
|  | * accidentally marked blocks bad. | 
|  | * | 
|  | * Erasing factory marked bad blocks is a _bad_ idea. If the | 
|  | * erase succeeds there is no reliable way to find them again, | 
|  | * and attempting to program or erase bad blocks can affect | 
|  | * the data in _other_ (good) blocks. | 
|  | */ | 
|  | #define	 ALLOW_ERASE_BAD_DEBUG 0 | 
|  |  | 
|  | #define CONFIG_MTD_NAND_ECC  /* enable ECC */ | 
|  | #define CONFIG_MTD_NAND_ECC_JFFS2 | 
|  |  | 
|  | /* bits for nand_legacy_rw() `cmd'; or together as needed */ | 
|  | #define NANDRW_READ	0x01 | 
|  | #define NANDRW_WRITE	0x00 | 
|  | #define NANDRW_JFFS2	0x02 | 
|  | #define NANDRW_JFFS2_SKIP	0x04 | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Exported variables etc. | 
|  | */ | 
|  |  | 
|  | /* Definition of the out of band configuration structure */ | 
|  | struct nand_oob_config { | 
|  | /* position of ECC bytes inside oob */ | 
|  | int ecc_pos[6]; | 
|  | /* position of  bad blk flag inside oob -1 = inactive */ | 
|  | int badblock_pos; | 
|  | /* position of ECC valid flag inside oob -1 = inactive */ | 
|  | int eccvalid_pos; | 
|  | } oob_config = { {0}, 0, 0}; | 
|  |  | 
|  | struct nand_chip nand_dev_desc[CFG_MAX_NAND_DEVICE] = {{0}}; | 
|  |  | 
|  | int curr_device = -1; /* Current NAND Device */ | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Exported functionss | 
|  | */ | 
|  | int nand_legacy_erase(struct nand_chip* nand, size_t ofs, | 
|  | size_t len, int clean); | 
|  | int nand_legacy_rw(struct nand_chip* nand, int cmd, | 
|  | size_t start, size_t len, | 
|  | size_t * retlen, u_char * buf); | 
|  | void nand_print(struct nand_chip *nand); | 
|  | void nand_print_bad(struct nand_chip *nand); | 
|  | int nand_read_oob(struct nand_chip* nand, size_t ofs, size_t len, | 
|  | size_t * retlen, u_char * buf); | 
|  | int nand_write_oob(struct nand_chip* nand, size_t ofs, size_t len, | 
|  | size_t * retlen, const u_char * buf); | 
|  |  | 
|  | /* | 
|  | * Internals | 
|  | */ | 
|  | static int NanD_WaitReady(struct nand_chip *nand, int ale_wait); | 
|  | static int nand_read_ecc(struct nand_chip *nand, size_t start, size_t len, | 
|  | size_t * retlen, u_char *buf, u_char *ecc_code); | 
|  | static int nand_write_ecc (struct nand_chip* nand, size_t to, size_t len, | 
|  | size_t * retlen, const u_char * buf, | 
|  | u_char * ecc_code); | 
|  | #ifdef CONFIG_MTD_NAND_ECC | 
|  | static int nand_correct_data (u_char *dat, u_char *read_ecc, u_char *calc_ecc); | 
|  | static void nand_calculate_ecc (const u_char *dat, u_char *ecc_code); | 
|  | #endif | 
|  |  | 
|  |  | 
|  | /* | 
|  | * | 
|  | * Function definitions | 
|  | * | 
|  | */ | 
|  |  | 
|  | /* returns 0 if block containing pos is OK: | 
|  | *		valid erase block and | 
|  | *		not marked bad, or no bad mark position is specified | 
|  | * returns 1 if marked bad or otherwise invalid | 
|  | */ | 
|  | static int check_block (struct nand_chip *nand, unsigned long pos) | 
|  | { | 
|  | size_t retlen; | 
|  | uint8_t oob_data; | 
|  | uint16_t oob_data16[6]; | 
|  | int page0 = pos & (-nand->erasesize); | 
|  | int page1 = page0 + nand->oobblock; | 
|  | int badpos = oob_config.badblock_pos; | 
|  |  | 
|  | if (pos >= nand->totlen) | 
|  | return 1; | 
|  |  | 
|  | if (badpos < 0) | 
|  | return 0;	/* no way to check, assume OK */ | 
|  |  | 
|  | if (nand->bus16) { | 
|  | if (nand_read_oob(nand, (page0 + 0), 12, &retlen, (uint8_t *)oob_data16) | 
|  | || (oob_data16[2] & 0xff00) != 0xff00) | 
|  | return 1; | 
|  | if (nand_read_oob(nand, (page1 + 0), 12, &retlen, (uint8_t *)oob_data16) | 
|  | || (oob_data16[2] & 0xff00) != 0xff00) | 
|  | return 1; | 
|  | } else { | 
|  | /* Note - bad block marker can be on first or second page */ | 
|  | if (nand_read_oob(nand, page0 + badpos, 1, &retlen, (unsigned char *)&oob_data) | 
|  | || oob_data != 0xff | 
|  | || nand_read_oob (nand, page1 + badpos, 1, &retlen, (unsigned char *)&oob_data) | 
|  | || oob_data != 0xff) | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* print bad blocks in NAND flash */ | 
|  | void nand_print_bad(struct nand_chip* nand) | 
|  | { | 
|  | unsigned long pos; | 
|  |  | 
|  | for (pos = 0; pos < nand->totlen; pos += nand->erasesize) { | 
|  | if (check_block(nand, pos)) | 
|  | printf(" 0x%8.8lx\n", pos); | 
|  | } | 
|  | puts("\n"); | 
|  | } | 
|  |  | 
|  | /* cmd: 0: NANDRW_WRITE			write, fail on bad block | 
|  | *	1: NANDRW_READ			read, fail on bad block | 
|  | *	2: NANDRW_WRITE | NANDRW_JFFS2	write, skip bad blocks | 
|  | *	3: NANDRW_READ | NANDRW_JFFS2	read, data all 0xff for bad blocks | 
|  | *      7: NANDRW_READ | NANDRW_JFFS2 | NANDRW_JFFS2_SKIP read, skip bad blocks | 
|  | */ | 
|  | int nand_legacy_rw (struct nand_chip* nand, int cmd, | 
|  | size_t start, size_t len, | 
|  | size_t * retlen, u_char * buf) | 
|  | { | 
|  | int ret = 0, n, total = 0; | 
|  | char eccbuf[6]; | 
|  | /* eblk (once set) is the start of the erase block containing the | 
|  | * data being processed. | 
|  | */ | 
|  | unsigned long eblk = ~0;	/* force mismatch on first pass */ | 
|  | unsigned long erasesize = nand->erasesize; | 
|  |  | 
|  | while (len) { | 
|  | if ((start & (-erasesize)) != eblk) { | 
|  | /* have crossed into new erase block, deal with | 
|  | * it if it is sure marked bad. | 
|  | */ | 
|  | eblk = start & (-erasesize); /* start of block */ | 
|  | if (check_block(nand, eblk)) { | 
|  | if (cmd == (NANDRW_READ | NANDRW_JFFS2)) { | 
|  | while (len > 0 && | 
|  | start - eblk < erasesize) { | 
|  | *(buf++) = 0xff; | 
|  | ++start; | 
|  | ++total; | 
|  | --len; | 
|  | } | 
|  | continue; | 
|  | } else if (cmd == (NANDRW_READ | NANDRW_JFFS2 | NANDRW_JFFS2_SKIP)) { | 
|  | start += erasesize; | 
|  | continue; | 
|  | } else if (cmd == (NANDRW_WRITE | NANDRW_JFFS2)) { | 
|  | /* skip bad block */ | 
|  | start += erasesize; | 
|  | continue; | 
|  | } else { | 
|  | ret = 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  | /* The ECC will not be calculated correctly if | 
|  | less than 512 is written or read */ | 
|  | /* Is request at least 512 bytes AND it starts on a proper boundry */ | 
|  | if((start != ROUND_DOWN(start, 0x200)) || (len < 0x200)) | 
|  | printf("Warning block writes should be at least 512 bytes and start on a 512 byte boundry\n"); | 
|  |  | 
|  | if (cmd & NANDRW_READ) { | 
|  | ret = nand_read_ecc(nand, start, | 
|  | min(len, eblk + erasesize - start), | 
|  | (size_t *)&n, (u_char*)buf, (u_char *)eccbuf); | 
|  | } else { | 
|  | ret = nand_write_ecc(nand, start, | 
|  | min(len, eblk + erasesize - start), | 
|  | (size_t *)&n, (u_char*)buf, (u_char *)eccbuf); | 
|  | } | 
|  |  | 
|  | if (ret) | 
|  | break; | 
|  |  | 
|  | start  += n; | 
|  | buf   += n; | 
|  | total += n; | 
|  | len   -= n; | 
|  | } | 
|  | if (retlen) | 
|  | *retlen = total; | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | void nand_print(struct nand_chip *nand) | 
|  | { | 
|  | if (nand->numchips > 1) { | 
|  | printf("%s at 0x%lx,\n" | 
|  | "\t  %d chips %s, size %d MB, \n" | 
|  | "\t  total size %ld MB, sector size %ld kB\n", | 
|  | nand->name, nand->IO_ADDR, nand->numchips, | 
|  | nand->chips_name, 1 << (nand->chipshift - 20), | 
|  | nand->totlen >> 20, nand->erasesize >> 10); | 
|  | } | 
|  | else { | 
|  | printf("%s at 0x%lx (", nand->chips_name, nand->IO_ADDR); | 
|  | print_size(nand->totlen, ", "); | 
|  | print_size(nand->erasesize, " sector)\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* ------------------------------------------------------------------------- */ | 
|  |  | 
|  | static int NanD_WaitReady(struct nand_chip *nand, int ale_wait) | 
|  | { | 
|  | /* This is inline, to optimise the common case, where it's ready instantly */ | 
|  | int ret = 0; | 
|  |  | 
|  | #ifdef NAND_NO_RB	/* in config file, shorter delays currently wrap accesses */ | 
|  | if(ale_wait) | 
|  | NAND_WAIT_READY(nand);	/* do the worst case 25us wait */ | 
|  | else | 
|  | udelay(10); | 
|  | #else	/* has functional r/b signal */ | 
|  | NAND_WAIT_READY(nand); | 
|  | #endif | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* NanD_Command: Send a flash command to the flash chip */ | 
|  |  | 
|  | static inline int NanD_Command(struct nand_chip *nand, unsigned char command) | 
|  | { | 
|  | unsigned long nandptr = nand->IO_ADDR; | 
|  |  | 
|  | /* Assert the CLE (Command Latch Enable) line to the flash chip */ | 
|  | NAND_CTL_SETCLE(nandptr); | 
|  |  | 
|  | /* Send the command */ | 
|  | WRITE_NAND_COMMAND(command, nandptr); | 
|  |  | 
|  | /* Lower the CLE line */ | 
|  | NAND_CTL_CLRCLE(nandptr); | 
|  |  | 
|  | #ifdef NAND_NO_RB | 
|  | if(command == NAND_CMD_RESET){ | 
|  | u_char ret_val; | 
|  | NanD_Command(nand, NAND_CMD_STATUS); | 
|  | do { | 
|  | ret_val = READ_NAND(nandptr);/* wait till ready */ | 
|  | } while((ret_val & 0x40) != 0x40); | 
|  | } | 
|  | #endif | 
|  | return NanD_WaitReady(nand, 0); | 
|  | } | 
|  |  | 
|  | /* NanD_Address: Set the current address for the flash chip */ | 
|  |  | 
|  | static int NanD_Address(struct nand_chip *nand, int numbytes, unsigned long ofs) | 
|  | { | 
|  | unsigned long nandptr; | 
|  | int i; | 
|  |  | 
|  | nandptr = nand->IO_ADDR; | 
|  |  | 
|  | /* Assert the ALE (Address Latch Enable) line to the flash chip */ | 
|  | NAND_CTL_SETALE(nandptr); | 
|  |  | 
|  | /* Send the address */ | 
|  | /* Devices with 256-byte page are addressed as: | 
|  | * Column (bits 0-7), Page (bits 8-15, 16-23, 24-31) | 
|  | * there is no device on the market with page256 | 
|  | * and more than 24 bits. | 
|  | * Devices with 512-byte page are addressed as: | 
|  | * Column (bits 0-7), Page (bits 9-16, 17-24, 25-31) | 
|  | * 25-31 is sent only if the chip support it. | 
|  | * bit 8 changes the read command to be sent | 
|  | * (NAND_CMD_READ0 or NAND_CMD_READ1). | 
|  | */ | 
|  |  | 
|  | if (numbytes == ADDR_COLUMN || numbytes == ADDR_COLUMN_PAGE) | 
|  | WRITE_NAND_ADDRESS(ofs, nandptr); | 
|  |  | 
|  | ofs = ofs >> nand->page_shift; | 
|  |  | 
|  | if (numbytes == ADDR_PAGE || numbytes == ADDR_COLUMN_PAGE) { | 
|  | for (i = 0; i < nand->pageadrlen; i++, ofs = ofs >> 8) { | 
|  | WRITE_NAND_ADDRESS(ofs, nandptr); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Lower the ALE line */ | 
|  | NAND_CTL_CLRALE(nandptr); | 
|  |  | 
|  | /* Wait for the chip to respond */ | 
|  | return NanD_WaitReady(nand, 1); | 
|  | } | 
|  |  | 
|  | /* NanD_SelectChip: Select a given flash chip within the current floor */ | 
|  |  | 
|  | static inline int NanD_SelectChip(struct nand_chip *nand, int chip) | 
|  | { | 
|  | /* Wait for it to be ready */ | 
|  | return NanD_WaitReady(nand, 0); | 
|  | } | 
|  |  | 
|  | /* NanD_IdentChip: Identify a given NAND chip given {floor,chip} */ | 
|  |  | 
|  | static int NanD_IdentChip(struct nand_chip *nand, int floor, int chip) | 
|  | { | 
|  | int mfr, id, i; | 
|  |  | 
|  | NAND_ENABLE_CE(nand);  /* set pin low */ | 
|  | /* Reset the chip */ | 
|  | if (NanD_Command(nand, NAND_CMD_RESET)) { | 
|  | #ifdef NAND_DEBUG | 
|  | printf("NanD_Command (reset) for %d,%d returned true\n", | 
|  | floor, chip); | 
|  | #endif | 
|  | NAND_DISABLE_CE(nand);  /* set pin high */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Read the NAND chip ID: 1. Send ReadID command */ | 
|  | if (NanD_Command(nand, NAND_CMD_READID)) { | 
|  | #ifdef NAND_DEBUG | 
|  | printf("NanD_Command (ReadID) for %d,%d returned true\n", | 
|  | floor, chip); | 
|  | #endif | 
|  | NAND_DISABLE_CE(nand);  /* set pin high */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Read the NAND chip ID: 2. Send address byte zero */ | 
|  | NanD_Address(nand, ADDR_COLUMN, 0); | 
|  |  | 
|  | /* Read the manufacturer and device id codes from the device */ | 
|  |  | 
|  | mfr = READ_NAND(nand->IO_ADDR); | 
|  |  | 
|  | id = READ_NAND(nand->IO_ADDR); | 
|  |  | 
|  | NAND_DISABLE_CE(nand);  /* set pin high */ | 
|  |  | 
|  | #ifdef NAND_DEBUG | 
|  | printf("NanD_Command (ReadID) got %x %x\n", mfr, id); | 
|  | #endif | 
|  | if (mfr == 0xff || mfr == 0) { | 
|  | /* No response - return failure */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Check it's the same as the first chip we identified. | 
|  | * M-Systems say that any given nand_chip device should only | 
|  | * contain _one_ type of flash part, although that's not a | 
|  | * hardware restriction. */ | 
|  | if (nand->mfr) { | 
|  | if (nand->mfr == mfr && nand->id == id) { | 
|  | return 1;	/* This is another the same the first */ | 
|  | } else { | 
|  | printf("Flash chip at floor %d, chip %d is different:\n", | 
|  | floor, chip); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Print and store the manufacturer and ID codes. */ | 
|  | for (i = 0; nand_flash_ids[i].name != NULL; i++) { | 
|  | if (mfr == nand_flash_ids[i].manufacture_id && | 
|  | id == nand_flash_ids[i].model_id) { | 
|  | #ifdef NAND_DEBUG | 
|  | printf("Flash chip found:\n\t Manufacturer ID: 0x%2.2X, " | 
|  | "Chip ID: 0x%2.2X (%s)\n", mfr, id, | 
|  | nand_flash_ids[i].name); | 
|  | #endif | 
|  | if (!nand->mfr) { | 
|  | nand->mfr = mfr; | 
|  | nand->id = id; | 
|  | nand->chipshift = | 
|  | nand_flash_ids[i].chipshift; | 
|  | nand->page256 = nand_flash_ids[i].page256; | 
|  | nand->eccsize = 256; | 
|  | if (nand->page256) { | 
|  | nand->oobblock = 256; | 
|  | nand->oobsize = 8; | 
|  | nand->page_shift = 8; | 
|  | } else { | 
|  | nand->oobblock = 512; | 
|  | nand->oobsize = 16; | 
|  | nand->page_shift = 9; | 
|  | } | 
|  | nand->pageadrlen = nand_flash_ids[i].pageadrlen; | 
|  | nand->erasesize  = nand_flash_ids[i].erasesize; | 
|  | nand->chips_name = nand_flash_ids[i].name; | 
|  | nand->bus16	 = nand_flash_ids[i].bus16; | 
|  | return 1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | #ifdef NAND_DEBUG | 
|  | /* We haven't fully identified the chip. Print as much as we know. */ | 
|  | printf("Unknown flash chip found: %2.2X %2.2X\n", | 
|  | id, mfr); | 
|  | #endif | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* NanD_ScanChips: Find all NAND chips present in a nand_chip, and identify them */ | 
|  |  | 
|  | static void NanD_ScanChips(struct nand_chip *nand) | 
|  | { | 
|  | int floor, chip; | 
|  | int numchips[NAND_MAX_FLOORS]; | 
|  | int maxchips = NAND_MAX_CHIPS; | 
|  | int ret = 1; | 
|  |  | 
|  | nand->numchips = 0; | 
|  | nand->mfr = 0; | 
|  | nand->id = 0; | 
|  |  | 
|  |  | 
|  | /* For each floor, find the number of valid chips it contains */ | 
|  | for (floor = 0; floor < NAND_MAX_FLOORS; floor++) { | 
|  | ret = 1; | 
|  | numchips[floor] = 0; | 
|  | for (chip = 0; chip < maxchips && ret != 0; chip++) { | 
|  |  | 
|  | ret = NanD_IdentChip(nand, floor, chip); | 
|  | if (ret) { | 
|  | numchips[floor]++; | 
|  | nand->numchips++; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* If there are none at all that we recognise, bail */ | 
|  | if (!nand->numchips) { | 
|  | #ifdef NAND_DEBUG | 
|  | puts ("No NAND flash chips recognised.\n"); | 
|  | #endif | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Allocate an array to hold the information for each chip */ | 
|  | nand->chips = malloc(sizeof(struct Nand) * nand->numchips); | 
|  | if (!nand->chips) { | 
|  | puts ("No memory for allocating chip info structures\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | ret = 0; | 
|  |  | 
|  | /* Fill out the chip array with {floor, chipno} for each | 
|  | * detected chip in the device. */ | 
|  | for (floor = 0; floor < NAND_MAX_FLOORS; floor++) { | 
|  | for (chip = 0; chip < numchips[floor]; chip++) { | 
|  | nand->chips[ret].floor = floor; | 
|  | nand->chips[ret].chip = chip; | 
|  | nand->chips[ret].curadr = 0; | 
|  | nand->chips[ret].curmode = 0x50; | 
|  | ret++; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Calculate and print the total size of the device */ | 
|  | nand->totlen = nand->numchips * (1 << nand->chipshift); | 
|  |  | 
|  | #ifdef NAND_DEBUG | 
|  | printf("%d flash chips found. Total nand_chip size: %ld MB\n", | 
|  | nand->numchips, nand->totlen >> 20); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* we need to be fast here, 1 us per read translates to 1 second per meg */ | 
|  | static void NanD_ReadBuf (struct nand_chip *nand, u_char * data_buf, int cntr) | 
|  | { | 
|  | unsigned long nandptr = nand->IO_ADDR; | 
|  |  | 
|  | NanD_Command (nand, NAND_CMD_READ0); | 
|  |  | 
|  | if (nand->bus16) { | 
|  | u16 val; | 
|  |  | 
|  | while (cntr >= 16) { | 
|  | val = READ_NAND (nandptr); | 
|  | *data_buf++ = val & 0xff; | 
|  | *data_buf++ = val >> 8; | 
|  | val = READ_NAND (nandptr); | 
|  | *data_buf++ = val & 0xff; | 
|  | *data_buf++ = val >> 8; | 
|  | val = READ_NAND (nandptr); | 
|  | *data_buf++ = val & 0xff; | 
|  | *data_buf++ = val >> 8; | 
|  | val = READ_NAND (nandptr); | 
|  | *data_buf++ = val & 0xff; | 
|  | *data_buf++ = val >> 8; | 
|  | val = READ_NAND (nandptr); | 
|  | *data_buf++ = val & 0xff; | 
|  | *data_buf++ = val >> 8; | 
|  | val = READ_NAND (nandptr); | 
|  | *data_buf++ = val & 0xff; | 
|  | *data_buf++ = val >> 8; | 
|  | val = READ_NAND (nandptr); | 
|  | *data_buf++ = val & 0xff; | 
|  | *data_buf++ = val >> 8; | 
|  | val = READ_NAND (nandptr); | 
|  | *data_buf++ = val & 0xff; | 
|  | *data_buf++ = val >> 8; | 
|  | cntr -= 16; | 
|  | } | 
|  |  | 
|  | while (cntr > 0) { | 
|  | val = READ_NAND (nandptr); | 
|  | *data_buf++ = val & 0xff; | 
|  | *data_buf++ = val >> 8; | 
|  | cntr -= 2; | 
|  | } | 
|  | } else { | 
|  | while (cntr >= 16) { | 
|  | *data_buf++ = READ_NAND (nandptr); | 
|  | *data_buf++ = READ_NAND (nandptr); | 
|  | *data_buf++ = READ_NAND (nandptr); | 
|  | *data_buf++ = READ_NAND (nandptr); | 
|  | *data_buf++ = READ_NAND (nandptr); | 
|  | *data_buf++ = READ_NAND (nandptr); | 
|  | *data_buf++ = READ_NAND (nandptr); | 
|  | *data_buf++ = READ_NAND (nandptr); | 
|  | *data_buf++ = READ_NAND (nandptr); | 
|  | *data_buf++ = READ_NAND (nandptr); | 
|  | *data_buf++ = READ_NAND (nandptr); | 
|  | *data_buf++ = READ_NAND (nandptr); | 
|  | *data_buf++ = READ_NAND (nandptr); | 
|  | *data_buf++ = READ_NAND (nandptr); | 
|  | *data_buf++ = READ_NAND (nandptr); | 
|  | *data_buf++ = READ_NAND (nandptr); | 
|  | cntr -= 16; | 
|  | } | 
|  |  | 
|  | while (cntr > 0) { | 
|  | *data_buf++ = READ_NAND (nandptr); | 
|  | cntr--; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * NAND read with ECC | 
|  | */ | 
|  | static int nand_read_ecc(struct nand_chip *nand, size_t start, size_t len, | 
|  | size_t * retlen, u_char *buf, u_char *ecc_code) | 
|  | { | 
|  | int col, page; | 
|  | int ecc_status = 0; | 
|  | #ifdef CONFIG_MTD_NAND_ECC | 
|  | int j; | 
|  | int ecc_failed = 0; | 
|  | u_char *data_poi; | 
|  | u_char ecc_calc[6]; | 
|  | #endif | 
|  |  | 
|  | /* Do not allow reads past end of device */ | 
|  | if ((start + len) > nand->totlen) { | 
|  | printf ("%s: Attempt read beyond end of device %x %x %x\n", | 
|  | __FUNCTION__, (uint) start, (uint) len, (uint) nand->totlen); | 
|  | *retlen = 0; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* First we calculate the starting page */ | 
|  | /*page = shr(start, nand->page_shift);*/ | 
|  | page = start >> nand->page_shift; | 
|  |  | 
|  | /* Get raw starting column */ | 
|  | col = start & (nand->oobblock - 1); | 
|  |  | 
|  | /* Initialize return value */ | 
|  | *retlen = 0; | 
|  |  | 
|  | /* Select the NAND device */ | 
|  | NAND_ENABLE_CE(nand);  /* set pin low */ | 
|  |  | 
|  | /* Loop until all data read */ | 
|  | while (*retlen < len) { | 
|  |  | 
|  | #ifdef CONFIG_MTD_NAND_ECC | 
|  | /* Do we have this page in cache ? */ | 
|  | if (nand->cache_page == page) | 
|  | goto readdata; | 
|  | /* Send the read command */ | 
|  | NanD_Command(nand, NAND_CMD_READ0); | 
|  | if (nand->bus16) { | 
|  | NanD_Address(nand, ADDR_COLUMN_PAGE, | 
|  | (page << nand->page_shift) + (col >> 1)); | 
|  | } else { | 
|  | NanD_Address(nand, ADDR_COLUMN_PAGE, | 
|  | (page << nand->page_shift) + col); | 
|  | } | 
|  |  | 
|  | /* Read in a page + oob data */ | 
|  | NanD_ReadBuf(nand, nand->data_buf, nand->oobblock + nand->oobsize); | 
|  |  | 
|  | /* copy data into cache, for read out of cache and if ecc fails */ | 
|  | if (nand->data_cache) { | 
|  | memcpy (nand->data_cache, nand->data_buf, | 
|  | nand->oobblock + nand->oobsize); | 
|  | } | 
|  |  | 
|  | /* Pick the ECC bytes out of the oob data */ | 
|  | for (j = 0; j < 6; j++) { | 
|  | ecc_code[j] = nand->data_buf[(nand->oobblock + oob_config.ecc_pos[j])]; | 
|  | } | 
|  |  | 
|  | /* Calculate the ECC and verify it */ | 
|  | /* If block was not written with ECC, skip ECC */ | 
|  | if (oob_config.eccvalid_pos != -1 && | 
|  | (nand->data_buf[nand->oobblock + oob_config.eccvalid_pos] & 0x0f) != 0x0f) { | 
|  |  | 
|  | nand_calculate_ecc (&nand->data_buf[0], &ecc_calc[0]); | 
|  | switch (nand_correct_data (&nand->data_buf[0], &ecc_code[0], &ecc_calc[0])) { | 
|  | case -1: | 
|  | printf ("%s: Failed ECC read, page 0x%08x\n", __FUNCTION__, page); | 
|  | ecc_failed++; | 
|  | break; | 
|  | case 1: | 
|  | case 2:	/* transfer ECC corrected data to cache */ | 
|  | if (nand->data_cache) | 
|  | memcpy (nand->data_cache, nand->data_buf, 256); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (oob_config.eccvalid_pos != -1 && | 
|  | nand->oobblock == 512 && (nand->data_buf[nand->oobblock + oob_config.eccvalid_pos] & 0xf0) != 0xf0) { | 
|  |  | 
|  | nand_calculate_ecc (&nand->data_buf[256], &ecc_calc[3]); | 
|  | switch (nand_correct_data (&nand->data_buf[256], &ecc_code[3], &ecc_calc[3])) { | 
|  | case -1: | 
|  | printf ("%s: Failed ECC read, page 0x%08x\n", __FUNCTION__, page); | 
|  | ecc_failed++; | 
|  | break; | 
|  | case 1: | 
|  | case 2:	/* transfer ECC corrected data to cache */ | 
|  | if (nand->data_cache) | 
|  | memcpy (&nand->data_cache[256], &nand->data_buf[256], 256); | 
|  | break; | 
|  | } | 
|  | } | 
|  | readdata: | 
|  | /* Read the data from ECC data buffer into return buffer */ | 
|  | data_poi = (nand->data_cache) ? nand->data_cache : nand->data_buf; | 
|  | data_poi += col; | 
|  | if ((*retlen + (nand->oobblock - col)) >= len) { | 
|  | memcpy (buf + *retlen, data_poi, len - *retlen); | 
|  | *retlen = len; | 
|  | } else { | 
|  | memcpy (buf + *retlen, data_poi,  nand->oobblock - col); | 
|  | *retlen += nand->oobblock - col; | 
|  | } | 
|  | /* Set cache page address, invalidate, if ecc_failed */ | 
|  | nand->cache_page = (nand->data_cache && !ecc_failed) ? page : -1; | 
|  |  | 
|  | ecc_status += ecc_failed; | 
|  | ecc_failed = 0; | 
|  |  | 
|  | #else | 
|  | /* Send the read command */ | 
|  | NanD_Command(nand, NAND_CMD_READ0); | 
|  | if (nand->bus16) { | 
|  | NanD_Address(nand, ADDR_COLUMN_PAGE, | 
|  | (page << nand->page_shift) + (col >> 1)); | 
|  | } else { | 
|  | NanD_Address(nand, ADDR_COLUMN_PAGE, | 
|  | (page << nand->page_shift) + col); | 
|  | } | 
|  |  | 
|  | /* Read the data directly into the return buffer */ | 
|  | if ((*retlen + (nand->oobblock - col)) >= len) { | 
|  | NanD_ReadBuf(nand, buf + *retlen, len - *retlen); | 
|  | *retlen = len; | 
|  | /* We're done */ | 
|  | continue; | 
|  | } else { | 
|  | NanD_ReadBuf(nand, buf + *retlen, nand->oobblock - col); | 
|  | *retlen += nand->oobblock - col; | 
|  | } | 
|  | #endif | 
|  | /* For subsequent reads align to page boundary. */ | 
|  | col = 0; | 
|  | /* Increment page address */ | 
|  | page++; | 
|  | } | 
|  |  | 
|  | /* De-select the NAND device */ | 
|  | NAND_DISABLE_CE(nand);  /* set pin high */ | 
|  |  | 
|  | /* | 
|  | * Return success, if no ECC failures, else -EIO | 
|  | * fs driver will take care of that, because | 
|  | * retlen == desired len and result == -EIO | 
|  | */ | 
|  | return ecc_status ? -1 : 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Nand_page_program function is used for write and writev ! | 
|  | */ | 
|  | static int nand_write_page (struct nand_chip *nand, | 
|  | int page, int col, int last, u_char * ecc_code) | 
|  | { | 
|  |  | 
|  | int i; | 
|  | unsigned long nandptr = nand->IO_ADDR; | 
|  |  | 
|  | #ifdef CONFIG_MTD_NAND_ECC | 
|  | #ifdef CONFIG_MTD_NAND_VERIFY_WRITE | 
|  | int ecc_bytes = (nand->oobblock == 512) ? 6 : 3; | 
|  | #endif | 
|  | #endif | 
|  | /* pad oob area */ | 
|  | for (i = nand->oobblock; i < nand->oobblock + nand->oobsize; i++) | 
|  | nand->data_buf[i] = 0xff; | 
|  |  | 
|  | #ifdef CONFIG_MTD_NAND_ECC | 
|  | /* Zero out the ECC array */ | 
|  | for (i = 0; i < 6; i++) | 
|  | ecc_code[i] = 0x00; | 
|  |  | 
|  | /* Read back previous written data, if col > 0 */ | 
|  | if (col) { | 
|  | NanD_Command (nand, NAND_CMD_READ0); | 
|  | if (nand->bus16) { | 
|  | NanD_Address (nand, ADDR_COLUMN_PAGE, | 
|  | (page << nand->page_shift) + (col >> 1)); | 
|  | } else { | 
|  | NanD_Address (nand, ADDR_COLUMN_PAGE, | 
|  | (page << nand->page_shift) + col); | 
|  | } | 
|  |  | 
|  | if (nand->bus16) { | 
|  | u16 val; | 
|  |  | 
|  | for (i = 0; i < col; i += 2) { | 
|  | val = READ_NAND (nandptr); | 
|  | nand->data_buf[i] = val & 0xff; | 
|  | nand->data_buf[i + 1] = val >> 8; | 
|  | } | 
|  | } else { | 
|  | for (i = 0; i < col; i++) | 
|  | nand->data_buf[i] = READ_NAND (nandptr); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Calculate and write the ECC if we have enough data */ | 
|  | if ((col < nand->eccsize) && (last >= nand->eccsize)) { | 
|  | nand_calculate_ecc (&nand->data_buf[0], &(ecc_code[0])); | 
|  | for (i = 0; i < 3; i++) { | 
|  | nand->data_buf[(nand->oobblock + | 
|  | oob_config.ecc_pos[i])] = ecc_code[i]; | 
|  | } | 
|  | if (oob_config.eccvalid_pos != -1) { | 
|  | nand->data_buf[nand->oobblock + | 
|  | oob_config.eccvalid_pos] = 0xf0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Calculate and write the second ECC if we have enough data */ | 
|  | if ((nand->oobblock == 512) && (last == nand->oobblock)) { | 
|  | nand_calculate_ecc (&nand->data_buf[256], &(ecc_code[3])); | 
|  | for (i = 3; i < 6; i++) { | 
|  | nand->data_buf[(nand->oobblock + | 
|  | oob_config.ecc_pos[i])] = ecc_code[i]; | 
|  | } | 
|  | if (oob_config.eccvalid_pos != -1) { | 
|  | nand->data_buf[nand->oobblock + | 
|  | oob_config.eccvalid_pos] &= 0x0f; | 
|  | } | 
|  | } | 
|  | #endif | 
|  | /* Prepad for partial page programming !!! */ | 
|  | for (i = 0; i < col; i++) | 
|  | nand->data_buf[i] = 0xff; | 
|  |  | 
|  | /* Postpad for partial page programming !!! oob is already padded */ | 
|  | for (i = last; i < nand->oobblock; i++) | 
|  | nand->data_buf[i] = 0xff; | 
|  |  | 
|  | /* Send command to begin auto page programming */ | 
|  | NanD_Command (nand, NAND_CMD_READ0); | 
|  | NanD_Command (nand, NAND_CMD_SEQIN); | 
|  | if (nand->bus16) { | 
|  | NanD_Address (nand, ADDR_COLUMN_PAGE, | 
|  | (page << nand->page_shift) + (col >> 1)); | 
|  | } else { | 
|  | NanD_Address (nand, ADDR_COLUMN_PAGE, | 
|  | (page << nand->page_shift) + col); | 
|  | } | 
|  |  | 
|  | /* Write out complete page of data */ | 
|  | if (nand->bus16) { | 
|  | for (i = 0; i < (nand->oobblock + nand->oobsize); i += 2) { | 
|  | WRITE_NAND (nand->data_buf[i] + | 
|  | (nand->data_buf[i + 1] << 8), | 
|  | nand->IO_ADDR); | 
|  | } | 
|  | } else { | 
|  | for (i = 0; i < (nand->oobblock + nand->oobsize); i++) | 
|  | WRITE_NAND (nand->data_buf[i], nand->IO_ADDR); | 
|  | } | 
|  |  | 
|  | /* Send command to actually program the data */ | 
|  | NanD_Command (nand, NAND_CMD_PAGEPROG); | 
|  | NanD_Command (nand, NAND_CMD_STATUS); | 
|  | #ifdef NAND_NO_RB | 
|  | { | 
|  | u_char ret_val; | 
|  |  | 
|  | do { | 
|  | ret_val = READ_NAND (nandptr);	/* wait till ready */ | 
|  | } while ((ret_val & 0x40) != 0x40); | 
|  | } | 
|  | #endif | 
|  | /* See if device thinks it succeeded */ | 
|  | if (READ_NAND (nand->IO_ADDR) & 0x01) { | 
|  | printf ("%s: Failed write, page 0x%08x, ", __FUNCTION__, | 
|  | page); | 
|  | return -1; | 
|  | } | 
|  | #ifdef CONFIG_MTD_NAND_VERIFY_WRITE | 
|  | /* | 
|  | * The NAND device assumes that it is always writing to | 
|  | * a cleanly erased page. Hence, it performs its internal | 
|  | * write verification only on bits that transitioned from | 
|  | * 1 to 0. The device does NOT verify the whole page on a | 
|  | * byte by byte basis. It is possible that the page was | 
|  | * not completely erased or the page is becoming unusable | 
|  | * due to wear. The read with ECC would catch the error | 
|  | * later when the ECC page check fails, but we would rather | 
|  | * catch it early in the page write stage. Better to write | 
|  | * no data than invalid data. | 
|  | */ | 
|  |  | 
|  | /* Send command to read back the page */ | 
|  | if (col < nand->eccsize) | 
|  | NanD_Command (nand, NAND_CMD_READ0); | 
|  | else | 
|  | NanD_Command (nand, NAND_CMD_READ1); | 
|  | if (nand->bus16) { | 
|  | NanD_Address (nand, ADDR_COLUMN_PAGE, | 
|  | (page << nand->page_shift) + (col >> 1)); | 
|  | } else { | 
|  | NanD_Address (nand, ADDR_COLUMN_PAGE, | 
|  | (page << nand->page_shift) + col); | 
|  | } | 
|  |  | 
|  | /* Loop through and verify the data */ | 
|  | if (nand->bus16) { | 
|  | for (i = col; i < last; i = +2) { | 
|  | if ((nand->data_buf[i] + | 
|  | (nand->data_buf[i + 1] << 8)) != READ_NAND (nand->IO_ADDR)) { | 
|  | printf ("%s: Failed write verify, page 0x%08x ", | 
|  | __FUNCTION__, page); | 
|  | return -1; | 
|  | } | 
|  | } | 
|  | } else { | 
|  | for (i = col; i < last; i++) { | 
|  | if (nand->data_buf[i] != READ_NAND (nand->IO_ADDR)) { | 
|  | printf ("%s: Failed write verify, page 0x%08x ", | 
|  | __FUNCTION__, page); | 
|  | return -1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MTD_NAND_ECC | 
|  | /* | 
|  | * We also want to check that the ECC bytes wrote | 
|  | * correctly for the same reasons stated above. | 
|  | */ | 
|  | NanD_Command (nand, NAND_CMD_READOOB); | 
|  | if (nand->bus16) { | 
|  | NanD_Address (nand, ADDR_COLUMN_PAGE, | 
|  | (page << nand->page_shift) + (col >> 1)); | 
|  | } else { | 
|  | NanD_Address (nand, ADDR_COLUMN_PAGE, | 
|  | (page << nand->page_shift) + col); | 
|  | } | 
|  | if (nand->bus16) { | 
|  | for (i = 0; i < nand->oobsize; i += 2) { | 
|  | u16 val; | 
|  |  | 
|  | val = READ_NAND (nand->IO_ADDR); | 
|  | nand->data_buf[i] = val & 0xff; | 
|  | nand->data_buf[i + 1] = val >> 8; | 
|  | } | 
|  | } else { | 
|  | for (i = 0; i < nand->oobsize; i++) { | 
|  | nand->data_buf[i] = READ_NAND (nand->IO_ADDR); | 
|  | } | 
|  | } | 
|  | for (i = 0; i < ecc_bytes; i++) { | 
|  | if ((nand->data_buf[(oob_config.ecc_pos[i])] != ecc_code[i]) && ecc_code[i]) { | 
|  | printf ("%s: Failed ECC write " | 
|  | "verify, page 0x%08x, " | 
|  | "%6i bytes were succesful\n", | 
|  | __FUNCTION__, page, i); | 
|  | return -1; | 
|  | } | 
|  | } | 
|  | #endif	/* CONFIG_MTD_NAND_ECC */ | 
|  | #endif	/* CONFIG_MTD_NAND_VERIFY_WRITE */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int nand_write_ecc (struct nand_chip* nand, size_t to, size_t len, | 
|  | size_t * retlen, const u_char * buf, u_char * ecc_code) | 
|  | { | 
|  | int i, page, col, cnt, ret = 0; | 
|  |  | 
|  | /* Do not allow write past end of device */ | 
|  | if ((to + len) > nand->totlen) { | 
|  | printf ("%s: Attempt to write past end of page\n", __FUNCTION__); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* Shift to get page */ | 
|  | page = ((int) to) >> nand->page_shift; | 
|  |  | 
|  | /* Get the starting column */ | 
|  | col = to & (nand->oobblock - 1); | 
|  |  | 
|  | /* Initialize return length value */ | 
|  | *retlen = 0; | 
|  |  | 
|  | /* Select the NAND device */ | 
|  | #ifdef CONFIG_OMAP1510 | 
|  | archflashwp(0,0); | 
|  | #endif | 
|  | #ifdef CFG_NAND_WP | 
|  | NAND_WP_OFF(); | 
|  | #endif | 
|  |  | 
|  | NAND_ENABLE_CE(nand);  /* set pin low */ | 
|  |  | 
|  | /* Check the WP bit */ | 
|  | NanD_Command(nand, NAND_CMD_STATUS); | 
|  | if (!(READ_NAND(nand->IO_ADDR) & 0x80)) { | 
|  | printf ("%s: Device is write protected!!!\n", __FUNCTION__); | 
|  | ret = -1; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Loop until all data is written */ | 
|  | while (*retlen < len) { | 
|  | /* Invalidate cache, if we write to this page */ | 
|  | if (nand->cache_page == page) | 
|  | nand->cache_page = -1; | 
|  |  | 
|  | /* Write data into buffer */ | 
|  | if ((col + len) >= nand->oobblock) { | 
|  | for (i = col, cnt = 0; i < nand->oobblock; i++, cnt++) { | 
|  | nand->data_buf[i] = buf[(*retlen + cnt)]; | 
|  | } | 
|  | } else { | 
|  | for (i = col, cnt = 0; cnt < (len - *retlen); i++, cnt++) { | 
|  | nand->data_buf[i] = buf[(*retlen + cnt)]; | 
|  | } | 
|  | } | 
|  | /* We use the same function for write and writev !) */ | 
|  | ret = nand_write_page (nand, page, col, i, ecc_code); | 
|  | if (ret) | 
|  | goto out; | 
|  |  | 
|  | /* Next data start at page boundary */ | 
|  | col = 0; | 
|  |  | 
|  | /* Update written bytes count */ | 
|  | *retlen += cnt; | 
|  |  | 
|  | /* Increment page address */ | 
|  | page++; | 
|  | } | 
|  |  | 
|  | /* Return happy */ | 
|  | *retlen = len; | 
|  |  | 
|  | out: | 
|  | /* De-select the NAND device */ | 
|  | NAND_DISABLE_CE(nand);  /* set pin high */ | 
|  | #ifdef CONFIG_OMAP1510 | 
|  | archflashwp(0,1); | 
|  | #endif | 
|  | #ifdef CFG_NAND_WP | 
|  | NAND_WP_ON(); | 
|  | #endif | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* read from the 16 bytes of oob data that correspond to a 512 byte | 
|  | * page or 2 256-byte pages. | 
|  | */ | 
|  | int nand_read_oob(struct nand_chip* nand, size_t ofs, size_t len, | 
|  | size_t * retlen, u_char * buf) | 
|  | { | 
|  | int len256 = 0; | 
|  | struct Nand *mychip; | 
|  | int ret = 0; | 
|  |  | 
|  | mychip = &nand->chips[ofs >> nand->chipshift]; | 
|  |  | 
|  | /* update address for 2M x 8bit devices. OOB starts on the second */ | 
|  | /* page to maintain compatibility with nand_read_ecc. */ | 
|  | if (nand->page256) { | 
|  | if (!(ofs & 0x8)) | 
|  | ofs += 0x100; | 
|  | else | 
|  | ofs -= 0x8; | 
|  | } | 
|  |  | 
|  | NAND_ENABLE_CE(nand);  /* set pin low */ | 
|  | NanD_Command(nand, NAND_CMD_READOOB); | 
|  | if (nand->bus16) { | 
|  | NanD_Address(nand, ADDR_COLUMN_PAGE, | 
|  | ((ofs >> nand->page_shift) << nand->page_shift) + | 
|  | ((ofs & (nand->oobblock - 1)) >> 1)); | 
|  | } else { | 
|  | NanD_Address(nand, ADDR_COLUMN_PAGE, ofs); | 
|  | } | 
|  |  | 
|  | /* treat crossing 8-byte OOB data for 2M x 8bit devices */ | 
|  | /* Note: datasheet says it should automaticaly wrap to the */ | 
|  | /*       next OOB block, but it didn't work here. mf.      */ | 
|  | if (nand->page256 && ofs + len > (ofs | 0x7) + 1) { | 
|  | len256 = (ofs | 0x7) + 1 - ofs; | 
|  | NanD_ReadBuf(nand, buf, len256); | 
|  |  | 
|  | NanD_Command(nand, NAND_CMD_READOOB); | 
|  | NanD_Address(nand, ADDR_COLUMN_PAGE, ofs & (~0x1ff)); | 
|  | } | 
|  |  | 
|  | NanD_ReadBuf(nand, &buf[len256], len - len256); | 
|  |  | 
|  | *retlen = len; | 
|  | /* Reading the full OOB data drops us off of the end of the page, | 
|  | * causing the flash device to go into busy mode, so we need | 
|  | * to wait until ready 11.4.1 and Toshiba TC58256FT nands */ | 
|  |  | 
|  | ret = NanD_WaitReady(nand, 1); | 
|  | NAND_DISABLE_CE(nand);  /* set pin high */ | 
|  |  | 
|  | return ret; | 
|  |  | 
|  | } | 
|  |  | 
|  | /* write to the 16 bytes of oob data that correspond to a 512 byte | 
|  | * page or 2 256-byte pages. | 
|  | */ | 
|  | int nand_write_oob(struct nand_chip* nand, size_t ofs, size_t len, | 
|  | size_t * retlen, const u_char * buf) | 
|  | { | 
|  | int len256 = 0; | 
|  | int i; | 
|  | unsigned long nandptr = nand->IO_ADDR; | 
|  |  | 
|  | #ifdef PSYCHO_DEBUG | 
|  | printf("nand_write_oob(%lx, %d): %2.2X %2.2X %2.2X %2.2X ... %2.2X %2.2X .. %2.2X %2.2X\n", | 
|  | (long)ofs, len, buf[0], buf[1], buf[2], buf[3], | 
|  | buf[8], buf[9], buf[14],buf[15]); | 
|  | #endif | 
|  |  | 
|  | NAND_ENABLE_CE(nand);  /* set pin low to enable chip */ | 
|  |  | 
|  | /* Reset the chip */ | 
|  | NanD_Command(nand, NAND_CMD_RESET); | 
|  |  | 
|  | /* issue the Read2 command to set the pointer to the Spare Data Area. */ | 
|  | NanD_Command(nand, NAND_CMD_READOOB); | 
|  | if (nand->bus16) { | 
|  | NanD_Address(nand, ADDR_COLUMN_PAGE, | 
|  | ((ofs >> nand->page_shift) << nand->page_shift) + | 
|  | ((ofs & (nand->oobblock - 1)) >> 1)); | 
|  | } else { | 
|  | NanD_Address(nand, ADDR_COLUMN_PAGE, ofs); | 
|  | } | 
|  |  | 
|  | /* update address for 2M x 8bit devices. OOB starts on the second */ | 
|  | /* page to maintain compatibility with nand_read_ecc. */ | 
|  | if (nand->page256) { | 
|  | if (!(ofs & 0x8)) | 
|  | ofs += 0x100; | 
|  | else | 
|  | ofs -= 0x8; | 
|  | } | 
|  |  | 
|  | /* issue the Serial Data In command to initial the Page Program process */ | 
|  | NanD_Command(nand, NAND_CMD_SEQIN); | 
|  | if (nand->bus16) { | 
|  | NanD_Address(nand, ADDR_COLUMN_PAGE, | 
|  | ((ofs >> nand->page_shift) << nand->page_shift) + | 
|  | ((ofs & (nand->oobblock - 1)) >> 1)); | 
|  | } else { | 
|  | NanD_Address(nand, ADDR_COLUMN_PAGE, ofs); | 
|  | } | 
|  |  | 
|  | /* treat crossing 8-byte OOB data for 2M x 8bit devices */ | 
|  | /* Note: datasheet says it should automaticaly wrap to the */ | 
|  | /*       next OOB block, but it didn't work here. mf.      */ | 
|  | if (nand->page256 && ofs + len > (ofs | 0x7) + 1) { | 
|  | len256 = (ofs | 0x7) + 1 - ofs; | 
|  | for (i = 0; i < len256; i++) | 
|  | WRITE_NAND(buf[i], nandptr); | 
|  |  | 
|  | NanD_Command(nand, NAND_CMD_PAGEPROG); | 
|  | NanD_Command(nand, NAND_CMD_STATUS); | 
|  | #ifdef NAND_NO_RB | 
|  | { u_char ret_val; | 
|  | do { | 
|  | ret_val = READ_NAND(nandptr); /* wait till ready */ | 
|  | } while ((ret_val & 0x40) != 0x40); | 
|  | } | 
|  | #endif | 
|  | if (READ_NAND(nandptr) & 1) { | 
|  | puts ("Error programming oob data\n"); | 
|  | /* There was an error */ | 
|  | NAND_DISABLE_CE(nand);  /* set pin high */ | 
|  | *retlen = 0; | 
|  | return -1; | 
|  | } | 
|  | NanD_Command(nand, NAND_CMD_SEQIN); | 
|  | NanD_Address(nand, ADDR_COLUMN_PAGE, ofs & (~0x1ff)); | 
|  | } | 
|  |  | 
|  | if (nand->bus16) { | 
|  | for (i = len256; i < len; i += 2) { | 
|  | WRITE_NAND(buf[i] + (buf[i+1] << 8), nandptr); | 
|  | } | 
|  | } else { | 
|  | for (i = len256; i < len; i++) | 
|  | WRITE_NAND(buf[i], nandptr); | 
|  | } | 
|  |  | 
|  | NanD_Command(nand, NAND_CMD_PAGEPROG); | 
|  | NanD_Command(nand, NAND_CMD_STATUS); | 
|  | #ifdef NAND_NO_RB | 
|  | {	u_char ret_val; | 
|  | do { | 
|  | ret_val = READ_NAND(nandptr); /* wait till ready */ | 
|  | } while ((ret_val & 0x40) != 0x40); | 
|  | } | 
|  | #endif | 
|  | if (READ_NAND(nandptr) & 1) { | 
|  | puts ("Error programming oob data\n"); | 
|  | /* There was an error */ | 
|  | NAND_DISABLE_CE(nand);  /* set pin high */ | 
|  | *retlen = 0; | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | NAND_DISABLE_CE(nand);  /* set pin high */ | 
|  | *retlen = len; | 
|  | return 0; | 
|  |  | 
|  | } | 
|  |  | 
|  | int nand_legacy_erase(struct nand_chip* nand, size_t ofs, size_t len, int clean) | 
|  | { | 
|  | /* This is defined as a structure so it will work on any system | 
|  | * using native endian jffs2 (the default). | 
|  | */ | 
|  | static struct jffs2_unknown_node clean_marker = { | 
|  | JFFS2_MAGIC_BITMASK, | 
|  | JFFS2_NODETYPE_CLEANMARKER, | 
|  | 8		/* 8 bytes in this node */ | 
|  | }; | 
|  | unsigned long nandptr; | 
|  | struct Nand *mychip; | 
|  | int ret = 0; | 
|  |  | 
|  | if (ofs & (nand->erasesize-1) || len & (nand->erasesize-1)) { | 
|  | printf ("Offset and size must be sector aligned, erasesize = %d\n", | 
|  | (int) nand->erasesize); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | nandptr = nand->IO_ADDR; | 
|  |  | 
|  | /* Select the NAND device */ | 
|  | #ifdef CONFIG_OMAP1510 | 
|  | archflashwp(0,0); | 
|  | #endif | 
|  | #ifdef CFG_NAND_WP | 
|  | NAND_WP_OFF(); | 
|  | #endif | 
|  | NAND_ENABLE_CE(nand);  /* set pin low */ | 
|  |  | 
|  | /* Check the WP bit */ | 
|  | NanD_Command(nand, NAND_CMD_STATUS); | 
|  | if (!(READ_NAND(nand->IO_ADDR) & 0x80)) { | 
|  | printf ("nand_write_ecc: Device is write protected!!!\n"); | 
|  | ret = -1; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* Check the WP bit */ | 
|  | NanD_Command(nand, NAND_CMD_STATUS); | 
|  | if (!(READ_NAND(nand->IO_ADDR) & 0x80)) { | 
|  | printf ("%s: Device is write protected!!!\n", __FUNCTION__); | 
|  | ret = -1; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* FIXME: Do nand in the background. Use timers or schedule_task() */ | 
|  | while(len) { | 
|  | /*mychip = &nand->chips[shr(ofs, nand->chipshift)];*/ | 
|  | mychip = &nand->chips[ofs >> nand->chipshift]; | 
|  |  | 
|  | /* always check for bad block first, genuine bad blocks | 
|  | * should _never_  be erased. | 
|  | */ | 
|  | if (ALLOW_ERASE_BAD_DEBUG || !check_block(nand, ofs)) { | 
|  | /* Select the NAND device */ | 
|  | NAND_ENABLE_CE(nand);  /* set pin low */ | 
|  |  | 
|  | NanD_Command(nand, NAND_CMD_ERASE1); | 
|  | NanD_Address(nand, ADDR_PAGE, ofs); | 
|  | NanD_Command(nand, NAND_CMD_ERASE2); | 
|  |  | 
|  | NanD_Command(nand, NAND_CMD_STATUS); | 
|  |  | 
|  | #ifdef NAND_NO_RB | 
|  | {	u_char ret_val; | 
|  | do { | 
|  | ret_val = READ_NAND(nandptr); /* wait till ready */ | 
|  | } while ((ret_val & 0x40) != 0x40); | 
|  | } | 
|  | #endif | 
|  | if (READ_NAND(nandptr) & 1) { | 
|  | printf ("%s: Error erasing at 0x%lx\n", | 
|  | __FUNCTION__, (long)ofs); | 
|  | /* There was an error */ | 
|  | ret = -1; | 
|  | goto out; | 
|  | } | 
|  | if (clean) { | 
|  | int n;	/* return value not used */ | 
|  | int p, l; | 
|  |  | 
|  | /* clean marker position and size depend | 
|  | * on the page size, since 256 byte pages | 
|  | * only have 8 bytes of oob data | 
|  | */ | 
|  | if (nand->page256) { | 
|  | p = NAND_JFFS2_OOB8_FSDAPOS; | 
|  | l = NAND_JFFS2_OOB8_FSDALEN; | 
|  | } else { | 
|  | p = NAND_JFFS2_OOB16_FSDAPOS; | 
|  | l = NAND_JFFS2_OOB16_FSDALEN; | 
|  | } | 
|  |  | 
|  | ret = nand_write_oob(nand, ofs + p, l, (size_t *)&n, | 
|  | (u_char *)&clean_marker); | 
|  | /* quit here if write failed */ | 
|  | if (ret) | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | ofs += nand->erasesize; | 
|  | len -= nand->erasesize; | 
|  | } | 
|  |  | 
|  | out: | 
|  | /* De-select the NAND device */ | 
|  | NAND_DISABLE_CE(nand);  /* set pin high */ | 
|  | #ifdef CONFIG_OMAP1510 | 
|  | archflashwp(0,1); | 
|  | #endif | 
|  | #ifdef CFG_NAND_WP | 
|  | NAND_WP_ON(); | 
|  | #endif | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  |  | 
|  | static inline int nandcheck(unsigned long potential, unsigned long physadr) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | unsigned long nand_probe(unsigned long physadr) | 
|  | { | 
|  | struct nand_chip *nand = NULL; | 
|  | int i = 0, ChipID = 1; | 
|  |  | 
|  | #ifdef CONFIG_MTD_NAND_ECC_JFFS2 | 
|  | oob_config.ecc_pos[0] = NAND_JFFS2_OOB_ECCPOS0; | 
|  | oob_config.ecc_pos[1] = NAND_JFFS2_OOB_ECCPOS1; | 
|  | oob_config.ecc_pos[2] = NAND_JFFS2_OOB_ECCPOS2; | 
|  | oob_config.ecc_pos[3] = NAND_JFFS2_OOB_ECCPOS3; | 
|  | oob_config.ecc_pos[4] = NAND_JFFS2_OOB_ECCPOS4; | 
|  | oob_config.ecc_pos[5] = NAND_JFFS2_OOB_ECCPOS5; | 
|  | oob_config.eccvalid_pos = 4; | 
|  | #else | 
|  | oob_config.ecc_pos[0] = NAND_NOOB_ECCPOS0; | 
|  | oob_config.ecc_pos[1] = NAND_NOOB_ECCPOS1; | 
|  | oob_config.ecc_pos[2] = NAND_NOOB_ECCPOS2; | 
|  | oob_config.ecc_pos[3] = NAND_NOOB_ECCPOS3; | 
|  | oob_config.ecc_pos[4] = NAND_NOOB_ECCPOS4; | 
|  | oob_config.ecc_pos[5] = NAND_NOOB_ECCPOS5; | 
|  | oob_config.eccvalid_pos = NAND_NOOB_ECCVPOS; | 
|  | #endif | 
|  | oob_config.badblock_pos = 5; | 
|  |  | 
|  | for (i=0; i<CFG_MAX_NAND_DEVICE; i++) { | 
|  | if (nand_dev_desc[i].ChipID == NAND_ChipID_UNKNOWN) { | 
|  | nand = &nand_dev_desc[i]; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (!nand) | 
|  | return (0); | 
|  |  | 
|  | memset((char *)nand, 0, sizeof(struct nand_chip)); | 
|  |  | 
|  | nand->IO_ADDR = physadr; | 
|  | nand->cache_page = -1;  /* init the cache page */ | 
|  | NanD_ScanChips(nand); | 
|  |  | 
|  | if (nand->totlen == 0) { | 
|  | /* no chips found, clean up and quit */ | 
|  | memset((char *)nand, 0, sizeof(struct nand_chip)); | 
|  | nand->ChipID = NAND_ChipID_UNKNOWN; | 
|  | return (0); | 
|  | } | 
|  |  | 
|  | nand->ChipID = ChipID; | 
|  | if (curr_device == -1) | 
|  | curr_device = i; | 
|  |  | 
|  | nand->data_buf = malloc (nand->oobblock + nand->oobsize); | 
|  | if (!nand->data_buf) { | 
|  | puts ("Cannot allocate memory for data structures.\n"); | 
|  | return (0); | 
|  | } | 
|  |  | 
|  | return (nand->totlen); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MTD_NAND_ECC | 
|  | /* | 
|  | * Pre-calculated 256-way 1 byte column parity | 
|  | */ | 
|  | static const u_char nand_ecc_precalc_table[] = { | 
|  | 0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, | 
|  | 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00, | 
|  | 0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, | 
|  | 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65, | 
|  | 0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, | 
|  | 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66, | 
|  | 0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, | 
|  | 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03, | 
|  | 0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, | 
|  | 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69, | 
|  | 0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, | 
|  | 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c, | 
|  | 0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, | 
|  | 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f, | 
|  | 0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, | 
|  | 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a, | 
|  | 0x6a, 0x3f, 0x3c, 0x69, 0x33, 0x66, 0x65, 0x30, | 
|  | 0x30, 0x65, 0x66, 0x33, 0x69, 0x3c, 0x3f, 0x6a, | 
|  | 0x0f, 0x5a, 0x59, 0x0c, 0x56, 0x03, 0x00, 0x55, | 
|  | 0x55, 0x00, 0x03, 0x56, 0x0c, 0x59, 0x5a, 0x0f, | 
|  | 0x0c, 0x59, 0x5a, 0x0f, 0x55, 0x00, 0x03, 0x56, | 
|  | 0x56, 0x03, 0x00, 0x55, 0x0f, 0x5a, 0x59, 0x0c, | 
|  | 0x69, 0x3c, 0x3f, 0x6a, 0x30, 0x65, 0x66, 0x33, | 
|  | 0x33, 0x66, 0x65, 0x30, 0x6a, 0x3f, 0x3c, 0x69, | 
|  | 0x03, 0x56, 0x55, 0x00, 0x5a, 0x0f, 0x0c, 0x59, | 
|  | 0x59, 0x0c, 0x0f, 0x5a, 0x00, 0x55, 0x56, 0x03, | 
|  | 0x66, 0x33, 0x30, 0x65, 0x3f, 0x6a, 0x69, 0x3c, | 
|  | 0x3c, 0x69, 0x6a, 0x3f, 0x65, 0x30, 0x33, 0x66, | 
|  | 0x65, 0x30, 0x33, 0x66, 0x3c, 0x69, 0x6a, 0x3f, | 
|  | 0x3f, 0x6a, 0x69, 0x3c, 0x66, 0x33, 0x30, 0x65, | 
|  | 0x00, 0x55, 0x56, 0x03, 0x59, 0x0c, 0x0f, 0x5a, | 
|  | 0x5a, 0x0f, 0x0c, 0x59, 0x03, 0x56, 0x55, 0x00 | 
|  | }; | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Creates non-inverted ECC code from line parity | 
|  | */ | 
|  | static void nand_trans_result(u_char reg2, u_char reg3, | 
|  | u_char *ecc_code) | 
|  | { | 
|  | u_char a, b, i, tmp1, tmp2; | 
|  |  | 
|  | /* Initialize variables */ | 
|  | a = b = 0x80; | 
|  | tmp1 = tmp2 = 0; | 
|  |  | 
|  | /* Calculate first ECC byte */ | 
|  | for (i = 0; i < 4; i++) { | 
|  | if (reg3 & a)		/* LP15,13,11,9 --> ecc_code[0] */ | 
|  | tmp1 |= b; | 
|  | b >>= 1; | 
|  | if (reg2 & a)		/* LP14,12,10,8 --> ecc_code[0] */ | 
|  | tmp1 |= b; | 
|  | b >>= 1; | 
|  | a >>= 1; | 
|  | } | 
|  |  | 
|  | /* Calculate second ECC byte */ | 
|  | b = 0x80; | 
|  | for (i = 0; i < 4; i++) { | 
|  | if (reg3 & a)		/* LP7,5,3,1 --> ecc_code[1] */ | 
|  | tmp2 |= b; | 
|  | b >>= 1; | 
|  | if (reg2 & a)		/* LP6,4,2,0 --> ecc_code[1] */ | 
|  | tmp2 |= b; | 
|  | b >>= 1; | 
|  | a >>= 1; | 
|  | } | 
|  |  | 
|  | /* Store two of the ECC bytes */ | 
|  | ecc_code[0] = tmp1; | 
|  | ecc_code[1] = tmp2; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Calculate 3 byte ECC code for 256 byte block | 
|  | */ | 
|  | static void nand_calculate_ecc (const u_char *dat, u_char *ecc_code) | 
|  | { | 
|  | u_char idx, reg1, reg3; | 
|  | int j; | 
|  |  | 
|  | /* Initialize variables */ | 
|  | reg1 = reg3 = 0; | 
|  | ecc_code[0] = ecc_code[1] = ecc_code[2] = 0; | 
|  |  | 
|  | /* Build up column parity */ | 
|  | for(j = 0; j < 256; j++) { | 
|  |  | 
|  | /* Get CP0 - CP5 from table */ | 
|  | idx = nand_ecc_precalc_table[dat[j]]; | 
|  | reg1 ^= idx; | 
|  |  | 
|  | /* All bit XOR = 1 ? */ | 
|  | if (idx & 0x40) { | 
|  | reg3 ^= (u_char) j; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Create non-inverted ECC code from line parity */ | 
|  | nand_trans_result((reg1 & 0x40) ? ~reg3 : reg3, reg3, ecc_code); | 
|  |  | 
|  | /* Calculate final ECC code */ | 
|  | ecc_code[0] = ~ecc_code[0]; | 
|  | ecc_code[1] = ~ecc_code[1]; | 
|  | ecc_code[2] = ((~reg1) << 2) | 0x03; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Detect and correct a 1 bit error for 256 byte block | 
|  | */ | 
|  | static int nand_correct_data (u_char *dat, u_char *read_ecc, u_char *calc_ecc) | 
|  | { | 
|  | u_char a, b, c, d1, d2, d3, add, bit, i; | 
|  |  | 
|  | /* Do error detection */ | 
|  | d1 = calc_ecc[0] ^ read_ecc[0]; | 
|  | d2 = calc_ecc[1] ^ read_ecc[1]; | 
|  | d3 = calc_ecc[2] ^ read_ecc[2]; | 
|  |  | 
|  | if ((d1 | d2 | d3) == 0) { | 
|  | /* No errors */ | 
|  | return 0; | 
|  | } else { | 
|  | a = (d1 ^ (d1 >> 1)) & 0x55; | 
|  | b = (d2 ^ (d2 >> 1)) & 0x55; | 
|  | c = (d3 ^ (d3 >> 1)) & 0x54; | 
|  |  | 
|  | /* Found and will correct single bit error in the data */ | 
|  | if ((a == 0x55) && (b == 0x55) && (c == 0x54)) { | 
|  | c = 0x80; | 
|  | add = 0; | 
|  | a = 0x80; | 
|  | for (i=0; i<4; i++) { | 
|  | if (d1 & c) | 
|  | add |= a; | 
|  | c >>= 2; | 
|  | a >>= 1; | 
|  | } | 
|  | c = 0x80; | 
|  | for (i=0; i<4; i++) { | 
|  | if (d2 & c) | 
|  | add |= a; | 
|  | c >>= 2; | 
|  | a >>= 1; | 
|  | } | 
|  | bit = 0; | 
|  | b = 0x04; | 
|  | c = 0x80; | 
|  | for (i=0; i<3; i++) { | 
|  | if (d3 & c) | 
|  | bit |= b; | 
|  | c >>= 2; | 
|  | b >>= 1; | 
|  | } | 
|  | b = 0x01; | 
|  | a = dat[add]; | 
|  | a ^= (b << bit); | 
|  | dat[add] = a; | 
|  | return 1; | 
|  | } | 
|  | else { | 
|  | i = 0; | 
|  | while (d1) { | 
|  | if (d1 & 0x01) | 
|  | ++i; | 
|  | d1 >>= 1; | 
|  | } | 
|  | while (d2) { | 
|  | if (d2 & 0x01) | 
|  | ++i; | 
|  | d2 >>= 1; | 
|  | } | 
|  | while (d3) { | 
|  | if (d3 & 0x01) | 
|  | ++i; | 
|  | d3 >>= 1; | 
|  | } | 
|  | if (i == 1) { | 
|  | /* ECC Code Error Correction */ | 
|  | read_ecc[0] = calc_ecc[0]; | 
|  | read_ecc[1] = calc_ecc[1]; | 
|  | read_ecc[2] = calc_ecc[2]; | 
|  | return 2; | 
|  | } | 
|  | else { | 
|  | /* Uncorrectable Error */ | 
|  | return -1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Should never happen */ | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | #ifdef CONFIG_JFFS2_NAND | 
|  | int read_jffs2_nand(size_t start, size_t len, | 
|  | size_t * retlen, u_char * buf, int nanddev) | 
|  | { | 
|  | return nand_legacy_rw(nand_dev_desc + nanddev, NANDRW_READ | NANDRW_JFFS2, | 
|  | start, len, retlen, buf); | 
|  | } | 
|  | #endif /* CONFIG_JFFS2_NAND */ |