|  | /* | 
|  | * (C) Copyright 2000-2004 | 
|  | * Wolfgang Denk, DENX Software Engineering, wd@denx.de. | 
|  | * | 
|  | * See file CREDITS for list of people who contributed to this | 
|  | * project. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public License as | 
|  | * published by the Free Software Foundation; either version 2 of | 
|  | * the License, or (at your option) any later version. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write to the Free Software | 
|  | * Foundation, Inc., 59 Temple Place, Suite 330, Boston, | 
|  | * MA 02111-1307 USA | 
|  | */ | 
|  |  | 
|  | #include <common.h> | 
|  | #include <mpc8xx.h> | 
|  | #include <asm/processor.h> | 
|  |  | 
|  | #if !defined(CONFIG_TQM866M) || defined(CFG_MEASURE_CPUCLK) | 
|  |  | 
|  | #define PITC_SHIFT 16 | 
|  | #define PITR_SHIFT 16 | 
|  | /* pitc values to time for 58/8192 seconds (about 70.8 milliseconds) */ | 
|  | #define SPEED_PIT_COUNTS 58 | 
|  | #define SPEED_PITC	 ((SPEED_PIT_COUNTS - 1) << PITC_SHIFT) | 
|  | #define SPEED_PITC_INIT	 ((SPEED_PIT_COUNTS + 1) << PITC_SHIFT) | 
|  |  | 
|  | /* Access functions for the Machine State Register */ | 
|  | static __inline__ unsigned long get_msr(void) | 
|  | { | 
|  | unsigned long msr; | 
|  |  | 
|  | asm volatile("mfmsr %0" : "=r" (msr) :); | 
|  | return msr; | 
|  | } | 
|  |  | 
|  | static __inline__ void set_msr(unsigned long msr) | 
|  | { | 
|  | asm volatile("mtmsr %0" : : "r" (msr)); | 
|  | } | 
|  |  | 
|  | /* ------------------------------------------------------------------------- */ | 
|  |  | 
|  | /* | 
|  | * Measure CPU clock speed (core clock GCLK1, GCLK2), | 
|  | * also determine bus clock speed (checking bus divider factor) | 
|  | * | 
|  | * (Approx. GCLK frequency in Hz) | 
|  | * | 
|  | * Initializes timer 2 and PIT, but disables them before return. | 
|  | * [Use timer 2, because MPC823 CPUs mask 0.x do not have timers 3 and 4] | 
|  | * | 
|  | * When measuring the CPU clock against the PIT, we count cpu clocks | 
|  | * for 58/8192 seconds with a prescale divide by 177 for the cpu clock. | 
|  | * These strange values for the timing interval and prescaling are used | 
|  | * because the formula for the CPU clock is: | 
|  | * | 
|  | *    CPU clock = count * (177 * (8192 / 58)) | 
|  | * | 
|  | *		= count * 24999.7241 | 
|  | * | 
|  | *    which is very close to | 
|  | * | 
|  | *		= count * 25000 | 
|  | * | 
|  | * Since the count gives the CPU clock divided by 25000, we can get | 
|  | * the CPU clock rounded to the nearest 0.1 MHz by | 
|  | * | 
|  | *    CPU clock = ((count + 2) / 4) * 100000; | 
|  | * | 
|  | * The rounding is important since the measurement is sometimes going | 
|  | * to be high or low by 0.025 MHz, depending on exactly how the clocks | 
|  | * and counters interact. By rounding we get the exact answer for any | 
|  | * CPU clock that is an even multiple of 0.1 MHz. | 
|  | */ | 
|  |  | 
|  | unsigned long measure_gclk(void) | 
|  | { | 
|  | volatile immap_t *immr = (immap_t *) CFG_IMMR; | 
|  | volatile cpmtimer8xx_t *timerp = &immr->im_cpmtimer; | 
|  | ulong timer2_val; | 
|  | ulong msr_val; | 
|  |  | 
|  | #ifdef CFG_8XX_XIN | 
|  | /* dont use OSCM, only use EXTCLK/512 */ | 
|  | immr->im_clkrst.car_sccr |= SCCR_RTSEL | SCCR_RTDIV; | 
|  | #else | 
|  | immr->im_clkrst.car_sccr &= ~(SCCR_RTSEL | SCCR_RTDIV); | 
|  | #endif | 
|  |  | 
|  | /* Reset + Stop Timer 2, no cascading | 
|  | */ | 
|  | timerp->cpmt_tgcr &= ~(TGCR_CAS2 | TGCR_RST2); | 
|  |  | 
|  | /* Keep stopped, halt in debug mode | 
|  | */ | 
|  | timerp->cpmt_tgcr |= (TGCR_FRZ2 | TGCR_STP2); | 
|  |  | 
|  | /* Timer 2 setup: | 
|  | * Output ref. interrupt disable, int. clock | 
|  | * Prescale by 177. Note that prescaler divides by value + 1 | 
|  | * so we must subtract 1 here. | 
|  | */ | 
|  | timerp->cpmt_tmr2 = ((177 - 1) << TMR_PS_SHIFT) | TMR_ICLK_IN_GEN; | 
|  |  | 
|  | timerp->cpmt_tcn2 = 0;		/* reset state		*/ | 
|  | timerp->cpmt_tgcr |= TGCR_RST2;	/* enable timer 2	*/ | 
|  |  | 
|  | /* | 
|  | * PIT setup: | 
|  | * | 
|  | * We want to time for SPEED_PITC_COUNTS counts (of 8192 Hz), | 
|  | * so the count value would be SPEED_PITC_COUNTS - 1. | 
|  | * But there would be an uncertainty in the start time of 1/4 | 
|  | * count since when we enable the PIT the count is not | 
|  | * synchronized to the 32768 Hz oscillator. The trick here is | 
|  | * to start the count higher and wait until the PIT count | 
|  | * changes to the required value before starting timer 2. | 
|  | * | 
|  | * One count high should be enough, but occasionally the start | 
|  | * is off by 1 or 2 counts of 32768 Hz. With the start value | 
|  | * set two counts high it seems very reliable. | 
|  | */ | 
|  |  | 
|  | immr->im_sitk.sitk_pitck = KAPWR_KEY;	/* PIT initialization */ | 
|  | immr->im_sit.sit_pitc = SPEED_PITC_INIT; | 
|  |  | 
|  | immr->im_sitk.sitk_piscrk = KAPWR_KEY; | 
|  | immr->im_sit.sit_piscr = CFG_PISCR; | 
|  |  | 
|  | /* | 
|  | * Start measurement - disable interrupts, just in case | 
|  | */ | 
|  | msr_val = get_msr (); | 
|  | set_msr (msr_val & ~MSR_EE); | 
|  |  | 
|  | immr->im_sit.sit_piscr |= PISCR_PTE; | 
|  |  | 
|  | /* spin until get exact count when we want to start */ | 
|  | while (immr->im_sit.sit_pitr > SPEED_PITC); | 
|  |  | 
|  | timerp->cpmt_tgcr &= ~TGCR_STP2;	/* Start Timer 2	*/ | 
|  | while ((immr->im_sit.sit_piscr & PISCR_PS) == 0); | 
|  | timerp->cpmt_tgcr |= TGCR_STP2;		/* Stop  Timer 2	*/ | 
|  |  | 
|  | /* re-enable external interrupts if they were on */ | 
|  | set_msr (msr_val); | 
|  |  | 
|  | /* Disable timer and PIT | 
|  | */ | 
|  | timer2_val = timerp->cpmt_tcn2;		/* save before reset timer */ | 
|  |  | 
|  | timerp->cpmt_tgcr &= ~(TGCR_RST2 | TGCR_FRZ2 | TGCR_STP2); | 
|  | immr->im_sit.sit_piscr &= ~PISCR_PTE; | 
|  |  | 
|  | #if defined(CFG_8XX_XIN) | 
|  | /* not using OSCM, using XIN, so scale appropriately */ | 
|  | return (((timer2_val + 2) / 4) * (CFG_8XX_XIN/512))/8192 * 100000L; | 
|  | #else | 
|  | return ((timer2_val + 2) / 4) * 100000L;	/* convert to Hz	*/ | 
|  | #endif | 
|  | } | 
|  |  | 
|  | #endif | 
|  |  | 
|  | #if !defined(CONFIG_TQM866M) | 
|  |  | 
|  | /* | 
|  | * get_clocks() fills in gd->cpu_clock depending on CONFIG_8xx_GCLK_FREQ | 
|  | * or (if it is not defined) measure_gclk() (which uses the ref clock) | 
|  | * from above. | 
|  | */ | 
|  | int get_clocks (void) | 
|  | { | 
|  | DECLARE_GLOBAL_DATA_PTR; | 
|  |  | 
|  | uint immr = get_immr (0);	/* Return full IMMR contents */ | 
|  | volatile immap_t *immap = (immap_t *) (immr & 0xFFFF0000); | 
|  | uint sccr = immap->im_clkrst.car_sccr; | 
|  | /* | 
|  | * If for some reason measuring the gclk frequency won't | 
|  | * work, we return the hardwired value. | 
|  | * (For example, the cogent CMA286-60 CPU module has no | 
|  | * separate oscillator for PITRTCLK) | 
|  | */ | 
|  | #if defined(CONFIG_8xx_GCLK_FREQ) | 
|  | gd->cpu_clk = CONFIG_8xx_GCLK_FREQ; | 
|  | #elif defined(CONFIG_8xx_OSCLK) | 
|  | #define PLPRCR_val(a) ((pll & PLPRCR_ ## a ## _MSK) >> PLPRCR_ ## a ## _SHIFT) | 
|  | uint pll = immap->im_clkrst.car_plprcr; | 
|  | uint clk; | 
|  |  | 
|  | if ((immr & 0x0FFF) >= MPC8xx_NEW_CLK) { /* MPC866/87x/88x series */ | 
|  | clk = ((CONFIG_8xx_OSCLK / (PLPRCR_val(PDF)+1)) * | 
|  | (PLPRCR_val(MFI) + PLPRCR_val(MFN) / (PLPRCR_val(MFD)+1))) / | 
|  | (1<<PLPRCR_val(S)); | 
|  | } else { | 
|  | clk = CONFIG_8xx_OSCLK * (PLPRCR_val(MF)+1); | 
|  | } | 
|  | if (pll & PLPRCR_CSRC) {	/* Low frequency division factor is used  */ | 
|  | gd->cpu_clk = clk / (2 << ((sccr >> 8) & 7)); | 
|  | } else {			/* High frequency division factor is used */ | 
|  | gd->cpu_clk = clk / (1 << ((sccr >> 5) & 7)); | 
|  | } | 
|  | #else | 
|  | gd->cpu_clk = measure_gclk(); | 
|  | #endif /* CONFIG_8xx_GCLK_FREQ */ | 
|  |  | 
|  | if ((sccr & SCCR_EBDF11) == 0) { | 
|  | /* No Bus Divider active */ | 
|  | gd->bus_clk = gd->cpu_clk; | 
|  | } else { | 
|  | /* The MPC8xx has only one BDF: half clock speed */ | 
|  | gd->bus_clk = gd->cpu_clk / 2; | 
|  | } | 
|  |  | 
|  | return (0); | 
|  | } | 
|  |  | 
|  | #else /* CONFIG_MPC866_FAMILY */ | 
|  |  | 
|  | static long init_pll_866 (long clk); | 
|  |  | 
|  | /* This function sets up PLL (init_pll_866() is called) and | 
|  | * fills gd->cpu_clk and gd->bus_clk according to the environment | 
|  | * variable 'cpuclk' or to CFG_866_CPUCLK_DEFAULT (if 'cpuclk' | 
|  | * contains invalid value). | 
|  | * This functions requires an MPC866 series CPU. | 
|  | */ | 
|  | int get_clocks_866 (void) | 
|  | { | 
|  | DECLARE_GLOBAL_DATA_PTR; | 
|  |  | 
|  | volatile immap_t *immr = (immap_t *) CFG_IMMR; | 
|  | char		  tmp[64]; | 
|  | long		  cpuclk = 0; | 
|  | long		  sccr_reg; | 
|  |  | 
|  | if (getenv_r ("cpuclk", tmp, sizeof (tmp)) > 0) | 
|  | cpuclk = simple_strtoul (tmp, NULL, 10) * 1000000; | 
|  |  | 
|  | if ((CFG_866_CPUCLK_MIN > cpuclk) || (CFG_866_CPUCLK_MAX < cpuclk)) | 
|  | cpuclk = CFG_866_CPUCLK_DEFAULT; | 
|  |  | 
|  | gd->cpu_clk = init_pll_866 (cpuclk); | 
|  | #if defined(CFG_MEASURE_CPUCLK) | 
|  | gd->cpu_clk = measure_gclk (); | 
|  | #endif | 
|  |  | 
|  | /* if cpu clock <= 66 MHz then set bus division factor to 1, | 
|  | * otherwise set it to 2 | 
|  | */ | 
|  | sccr_reg = immr->im_clkrst.car_sccr; | 
|  | sccr_reg &= ~SCCR_EBDF11; | 
|  | if (gd->cpu_clk <= 66000000) { | 
|  | sccr_reg |= SCCR_EBDF00;	/* bus division factor = 1 */ | 
|  | gd->bus_clk = gd->cpu_clk; | 
|  | } else { | 
|  | sccr_reg |= SCCR_EBDF01;	/* bus division factor = 2 */ | 
|  | gd->bus_clk = gd->cpu_clk / 2; | 
|  | } | 
|  | immr->im_clkrst.car_sccr = sccr_reg; | 
|  |  | 
|  | return (0); | 
|  | } | 
|  |  | 
|  | /* Adjust sdram refresh rate to actual CPU clock. | 
|  | */ | 
|  | int sdram_adjust_866 (void) | 
|  | { | 
|  | DECLARE_GLOBAL_DATA_PTR; | 
|  |  | 
|  | volatile immap_t *immr = (immap_t *) CFG_IMMR; | 
|  | long		  mamr; | 
|  |  | 
|  | mamr = immr->im_memctl.memc_mamr; | 
|  | mamr &= ~MAMR_PTA_MSK; | 
|  | mamr |= ((gd->cpu_clk / CFG_866_PTA_PER_CLK) << MAMR_PTA_SHIFT); | 
|  | immr->im_memctl.memc_mamr = mamr; | 
|  |  | 
|  | return (0); | 
|  | } | 
|  |  | 
|  | /* Configure PLL for MPC866/859 CPU series | 
|  | * PLL multiplication factor is set to the value nearest to the desired clk, | 
|  | * assuming a oscclk of 10 MHz. | 
|  | */ | 
|  | static long init_pll_866 (long clk) | 
|  | { | 
|  | extern void plprcr_write_866 (long); | 
|  |  | 
|  | volatile immap_t *immr = (immap_t *) CFG_IMMR; | 
|  | long		  n, plprcr; | 
|  | char		  mfi, mfn, mfd, s, pdf; | 
|  | long		  step_mfi, step_mfn; | 
|  |  | 
|  | if (clk < 20000000) { | 
|  | clk *= 2; | 
|  | pdf = 1; | 
|  | } else { | 
|  | pdf = 0; | 
|  | } | 
|  |  | 
|  | if (clk < 40000000) { | 
|  | s = 2; | 
|  | step_mfi = CFG_866_OSCCLK / 4; | 
|  | mfd = 7; | 
|  | step_mfn = CFG_866_OSCCLK / 30; | 
|  | } else if (clk < 80000000) { | 
|  | s = 1; | 
|  | step_mfi = CFG_866_OSCCLK / 2; | 
|  | mfd = 14; | 
|  | step_mfn = CFG_866_OSCCLK / 30; | 
|  | } else { | 
|  | s = 0; | 
|  | step_mfi = CFG_866_OSCCLK; | 
|  | mfd = 29; | 
|  | step_mfn = CFG_866_OSCCLK / 30; | 
|  | } | 
|  |  | 
|  | /* Calculate integer part of multiplication factor | 
|  | */ | 
|  | n = clk / step_mfi; | 
|  | mfi = (char)n; | 
|  |  | 
|  | /* Calculate numerator of fractional part of multiplication factor | 
|  | */ | 
|  | n = clk - (n * step_mfi); | 
|  | mfn = (char)(n / step_mfn); | 
|  |  | 
|  | /* Calculate effective clk | 
|  | */ | 
|  | n = ((mfi * step_mfi) + (mfn * step_mfn)) / (pdf + 1); | 
|  |  | 
|  | immr->im_clkrstk.cark_plprcrk = KAPWR_KEY; | 
|  |  | 
|  | plprcr = (immr->im_clkrst.car_plprcr & ~(PLPRCR_MFN_MSK | 
|  | | PLPRCR_MFD_MSK | PLPRCR_S_MSK | 
|  | | PLPRCR_MFI_MSK | PLPRCR_DBRMO | 
|  | | PLPRCR_PDF_MSK)) | 
|  | | (mfn << PLPRCR_MFN_SHIFT) | 
|  | | (mfd << PLPRCR_MFD_SHIFT) | 
|  | | (s << PLPRCR_S_SHIFT) | 
|  | | (mfi << PLPRCR_MFI_SHIFT) | 
|  | | (pdf << PLPRCR_PDF_SHIFT); | 
|  |  | 
|  | if( (mfn > 0) && ((mfd / mfn) > 10) ) | 
|  | plprcr |= PLPRCR_DBRMO; | 
|  |  | 
|  | plprcr_write_866 (plprcr);		/* set value using SIU4/9 workaround */ | 
|  | immr->im_clkrstk.cark_plprcrk = 0x00000000; | 
|  |  | 
|  | return (n); | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_MPC866_FAMILY */ | 
|  |  | 
|  | #if defined(CONFIG_TQM8xxL) && !defined(CONFIG_TQM866M) | 
|  | /* | 
|  | * Adjust sdram refresh rate to actual CPU clock | 
|  | * and set timebase source according to actual CPU clock | 
|  | */ | 
|  | int adjust_sdram_tbs_8xx (void) | 
|  | { | 
|  | DECLARE_GLOBAL_DATA_PTR; | 
|  |  | 
|  | volatile immap_t *immr = (immap_t *) CFG_IMMR; | 
|  | long		  mamr; | 
|  | long              sccr; | 
|  |  | 
|  | mamr = immr->im_memctl.memc_mamr; | 
|  | mamr &= ~MAMR_PTA_MSK; | 
|  | mamr |= ((gd->cpu_clk / CFG_PTA_PER_CLK) << MAMR_PTA_SHIFT); | 
|  | immr->im_memctl.memc_mamr = mamr; | 
|  |  | 
|  | if (gd->cpu_clk < 67000000) { | 
|  | sccr = immr->im_clkrst.car_sccr; | 
|  | sccr |= SCCR_TBS; | 
|  | immr->im_clkrst.car_sccr = sccr; | 
|  | } | 
|  |  | 
|  | return (0); | 
|  | } | 
|  | #endif /* CONFIG_TQM8xxL/M, !TQM866M */ | 
|  |  | 
|  | /* ------------------------------------------------------------------------- */ |